Search results for: disease prediction
5254 Identification of Significant Genes in Rheumatoid Arthritis, Melanoma Metastasis, Ulcerative Colitis and Crohn’s Disease
Authors: Krishna Pal Singh, Shailendra Kumar Gupta, Olaf Wolkenhauer
Abstract:
Background: Our study aimed to identify common genes and potential targets across the four diseases, which include rheumatoid arthritis, melanoma metastasis, ulcerative colitis, and Crohn’s disease. We used a network and systems biology approach to identify the hub gene, which can act as a potential target for all four disease conditions. The regulatory network was extracted from the PPI using the MCODE module present in Cytoscape. Our objective was to investigate the significance of hub genes in these diseases using gene ontology and KEGG pathway enrichment analysis. Methods: Our methodology involved collecting disease gene-related information from DisGeNET databases and performing protein-protein interaction (PPI) network and core genes screening. We then conducted gene ontology and KEGG pathway enrichment analysis. Results: We found that IL6 plays a critical role in all disease conditions and in different pathways that can be associated with the development of all four diseases. Conclusions: The theoretical importance of our research is that we employed various systems and structural biology techniques to identify a crucial protein that could serve as a promising target for treating multiple diseases. Our data collection and analysis procedures involved rigorous scrutiny, ensuring high-quality results. Our conclusion is that IL6 plays a significant role in all four diseases, and it can act as a potential target for treating them. Our findings may have important implications for the development of novel therapeutic interventions for these diseases.Keywords: melanoma metastasis, rheumatoid arthritis, inflammatory bowel diseases, integrated bioinformatics analysis
Procedia PDF Downloads 895253 Wind Power Forecasting Using Echo State Networks Optimized by Big Bang-Big Crunch Algorithm
Authors: Amir Hossein Hejazi, Nima Amjady
Abstract:
In recent years, due to environmental issues traditional energy sources had been replaced by renewable ones. Wind energy as the fastest growing renewable energy shares a considerable percent of energy in power electricity markets. With this fast growth of wind energy worldwide, owners and operators of wind farms, transmission system operators, and energy traders need reliable and secure forecasts of wind energy production. In this paper, a new forecasting strategy is proposed for short-term wind power prediction based on Echo State Networks (ESN). The forecast engine utilizes state-of-the-art training process including dynamical reservoir with high capability to learn complex dynamics of wind power or wind vector signals. The study becomes more interesting by incorporating prediction of wind direction into forecast strategy. The Big Bang-Big Crunch (BB-BC) evolutionary optimization algorithm is adopted for adjusting free parameters of ESN-based forecaster. The proposed method is tested by real-world hourly data to show the efficiency of the forecasting engine for prediction of both wind vector and wind power output of aggregated wind power production.Keywords: wind power forecasting, echo state network, big bang-big crunch, evolutionary optimization algorithm
Procedia PDF Downloads 5725252 Injury Prediction for Soccer Players Using Machine Learning
Authors: Amiel Satvedi, Richard Pyne
Abstract:
Injuries in professional sports occur on a regular basis. Some may be minor, while others can cause huge impact on a player's career and earning potential. In soccer, there is a high risk of players picking up injuries during game time. This research work seeks to help soccer players reduce the risk of getting injured by predicting the likelihood of injury while playing in the near future and then providing recommendations for intervention. The injury prediction tool will use a soccer player's number of minutes played on the field, number of appearances, distance covered and performance data for the current and previous seasons as variables to conduct statistical analysis and provide injury predictive results using a machine learning linear regression model.Keywords: injury predictor, soccer injury prevention, machine learning in soccer, big data in soccer
Procedia PDF Downloads 1825251 Neuroprotective Effects of Dehydroepiandrosterone (DHEA) in Rat Model of Alzheimer’s Disease
Authors: Hanan F. Aly, Fateheya M. Metwally, Hanaa H. Ahmed
Abstract:
The current study is undertaken to elucidate a possible neuroprotective role of dehydroepiandrosterone (DHEA) against the development of Alzheimer’s disease in experimental rat model. Alzheimer’s disease was produced in young female ovariectomized rats by intraperitoneal administration of AlCl3 (4.2 mg/kg body weight) daily for 12 weeks. Half of these animals also received orally DHEA (250 mg/kg body weight, three times weekly) for 18 weeks. Control groups of animals received either DHAE alone, or no DHEA, or were not ovariectomized. After such treatment the animals were analyzed for oxidative stress biomarkers such as hydrogen peroxide, nitric oxide and malondialdehyde, total antioxidant capacity, reduced glutathione, glutathione peroxidase, glutathione reductase, superoxide dismutase and catalase activities, antiapoptotic marker Bcl-2 and brain derived neurotrophic factor. Also, brain cholinergic markers (acetylcholinesterase and acetylcholine) were determined. The results revealed significant increase in oxidative stress parameters associated with significant decrease in the antioxidant enzyme activities in Al-intoxicated ovariectomized rats. Significant depletion in brain Bcl-2 and brain-derived neurotrophic factor levels were also detected. Moreover, significant elevations in brain acetylcholinesterase activity accompanied with significant reduction in acetylcholine level were recorded. Significant amelioration in all investigated parameters was detected as a result of treatment of Al-intoxicated ovariectomized rats with DHEA. These results were confirmed by histological examination of brain sections. These results clearly indicate a neuroprotective effect of DHEA against Alzheimer’s disease.Keywords: Alzheimer’s disease, oxidative stress, apoptosis, dehydroepiandrosterone
Procedia PDF Downloads 3235250 Changes of Acute-phase Reactants in Systemic Sclerosis During Long-term Rituximab Therapy
Authors: Liudmila Garzanova, Lidia Ananyeva, Olga Koneva, Olga Ovsyannikova, Oxana Desinova, Mayya Starovoytova, Rushana Shayahmetova, Anna Khelkovskaya-Sergeeva
Abstract:
Objectives. C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR) are associated with severe course, increased morbidity and mortality in systemic sclerosis (SSc). The aim of our study was to assess changes in CRP and ESR in SSc patients during long-term RTX therapy. Methods. This study included 113 patients with SSc. Mean age was 48.1±13 years, female-85%. The mean disease duration was 6±5 years. The diffuse cutaneous subset of the disease had 55% of patients. All pts had interstitial lung disease (ILD). All patients received prednisolone at a mean dose of 11.6±4.8 mg/day, and 53 of them - were immunosuppressants at inclusion. Patients received RTX due to the ineffectiveness of previous therapy for ILD. The parameters were evaluated over the periods: at baseline (point 0), 13±2.3 month (point 1, n=113), 42±14 month (point 2, n=80) and 79±6.5 month (point 3, n=25) after initiation of RTX therapy. Cumulative mean dose of RTX at point 1 = 1.7±0.6g, at point 2 = 3±1.5g, and at point 3 = 3.8±2.4g. The results are presented in the form of mean values, delta(Δ)-difference between the baseline parameter and follow-up point. Results. There was an improvement in studied parameters on RTX therapy. There was a significant decrease of ESR, CRP and activity index (EScSG-AI) at all observation points (p=0.001). In point 1: ΔCRP was 6.7 mg/l, ΔESR = 7.4 mm/h, ΔActivity index (EScSG-AI) = 1.7. In point 2: ΔCRP was 8.7 mg/l, ΔESR = 7.5 mm/h, ΔActivity index (EScSG-AI) = 1.9. In point 3: ΔCRP was 16.1 mg/l, ΔESR = 11 mm/h, ΔActivity index (EScSG-AI) = 2.1. Conclusion. There was a significant decrease in CRP and ESR during long-term RTX therapy, which correlated with a decrease in the disease activity index. RTX is an effective treatment option for SSc with an elevation of acute-phase reactants.Keywords: C-reactive protein, interstitial lung disease, systemic sclerosis, rituximab
Procedia PDF Downloads 265249 Integration of Big Data to Predict Transportation for Smart Cities
Authors: Sun-Young Jang, Sung-Ah Kim, Dongyoun Shin
Abstract:
The Intelligent transportation system is essential to build smarter cities. Machine learning based transportation prediction could be highly promising approach by delivering invisible aspect visible. In this context, this research aims to make a prototype model that predicts transportation network by using big data and machine learning technology. In detail, among urban transportation systems this research chooses bus system. The research problem that existing headway model cannot response dynamic transportation conditions. Thus, bus delay problem is often occurred. To overcome this problem, a prediction model is presented to fine patterns of bus delay by using a machine learning implementing the following data sets; traffics, weathers, and bus statues. This research presents a flexible headway model to predict bus delay and analyze the result. The prototyping model is composed by real-time data of buses. The data are gathered through public data portals and real time Application Program Interface (API) by the government. These data are fundamental resources to organize interval pattern models of bus operations as traffic environment factors (road speeds, station conditions, weathers, and bus information of operating in real-time). The prototyping model is designed by the machine learning tool (RapidMiner Studio) and conducted tests for bus delays prediction. This research presents experiments to increase prediction accuracy for bus headway by analyzing the urban big data. The big data analysis is important to predict the future and to find correlations by processing huge amount of data. Therefore, based on the analysis method, this research represents an effective use of the machine learning and urban big data to understand urban dynamics.Keywords: big data, machine learning, smart city, social cost, transportation network
Procedia PDF Downloads 2605248 Hepatitis B Vaccination Status and Its Determinants among Primary Health Care Workers in Northwest Pakistan
Authors: Mohammad Tahir Yousafzai, Rubina Qasim
Abstract:
We assessed Hepatitis B vaccination and its determinants among health care workers (HCW) in Northwest Pakistan. HCWs from both public and private clinics were interviewed about hepatitis B vaccination, socio-demographic, hepatitis B virus transmission modes, disease threat and benefits of vaccination. Logistic regression was performed. Hepatitis B vaccination was 40% (Qualified Physicians: 86% and non-qualified Dispensers:16%). Being Qualified Physician (Adj. OR 26.6; 95%CI 9.3-73.2), Non-qualified Physician (Adj.OR 1.9; 95%CI 0.8-4.6), qualified Dispensers (Adj. OR 3.6; 95%CI 1.3-9.5) compared to non-qualified Dispensers, working in public clinics (Adj. OR 2.5; 95%CI 1.1-5.7) compared to private, perceived disease threat after exposure to blood and body fluids (Adj. OR 1.1; 95%CI 1.1-1.2) and perceived benefits of vaccination (Adj. OR 1.1; 95%CI 1.1-1.2) were significant predictors of hepatitis B vaccination. Improved perception of disease threat and benefits of vaccination and qualification of HCWs are associated with hepatitis B vaccination.Keywords: Hepatitis B vaccine, immunization, healthcare workers, primary health
Procedia PDF Downloads 3125247 Development of Deep Neural Network-Based Strain Values Prediction Models for Full-Scale Reinforced Concrete Frames Using Highly Flexible Sensing Sheets
Authors: Hui Zhang, Sherif Beskhyroun
Abstract:
Structural Health monitoring systems (SHM) are commonly used to identify and assess structural damage. In terms of damage detection, SHM needs to periodically collect data from sensors placed in the structure as damage-sensitive features. This includes abnormal changes caused by the strain field and abnormal symptoms of the structure, such as damage and deterioration. Currently, deploying sensors on a large scale in a building structure is a challenge. In this study, a highly stretchable strain sensors are used in this study to collect data sets of strain generated on the surface of full-size reinforced concrete (RC) frames under extreme cyclic load application. This sensing sheet can be switched freely between the test bending strain and the axial strain to achieve two different configurations. On this basis, the deep neural network prediction model of the frame beam and frame column is established. The training results show that the method can accurately predict the strain value and has good generalization ability. The two deep neural network prediction models will also be deployed in the SHM system in the future as part of the intelligent strain sensor system.Keywords: strain sensing sheets, deep neural networks, strain measurement, SHM system, RC frames
Procedia PDF Downloads 995246 The Diet Adherence in Cardiovascular Disease Risk Factors Patients in the North of Iran Based on the Mediterranean Diet Adherence
Authors: Marjan Mahdavi-Roshan, Arsalan Salari, Mahboobeh Gholipour, Moona Naghshbandi
Abstract:
Background and objectives: Before any nutritional intervention, it is necessary to have the prospect of eating habits of people with cardiovascular risk factors. In this study, we assessed the adherence of healthy diet based on Mediterranean dietary pattern and related factors in adults in the north of Iran. Methods: This study was conducted on 550 men and women with cardiovascular risk factors that referred to Heshmat hospital in Rasht, northern Iran. Information was collected by interview and reading medical history and measuring anthropometric indexes. The Mediterranean Diet Adherence Screener was used for assessing dietary adherence, this screener was modified according to religious beliefs and culture of Iran. Results: The mean age of participants was 58±0.38 years. The mean of body mass index was 27±0.01 kg/m2, and the mean of waist circumference was 98±0.2 cm. The mean of dietary adherence was 5.76±0.07. 45% of participants had low adherence, and just 4% had suitable adherence. The mean of dietary adherence in men was significantly higher than women (p=0. 07). Participants in rural area and high educational participants insignificantly had an unsuitable dietary Adherence. There was no significant association between some cardiovascular disease risk factors and dietary adherence. Conclusion: Education to different group about dietary intake correction and using a Mediterranean dietary pattern that is similar to dietary intake in the north of Iran, for controlling cardiovascular disease is necessary.Keywords: dietary adherence, Mediterranean dietary pattern, cardiovascular disease, north of Iran
Procedia PDF Downloads 2525245 Serum Levels of Plasminogen Activator Inhibitor-1 (PAI-1) Are Increased in Alzheimer’s Disease and MCI Patients and Correlate With Cognitive Deficits
Authors: Francesco Angelucci, Katerina Veverova, Alžbeta Katonová, Lydia Piendel, Martin Vyhnalek, Jakub Hort
Abstract:
Alzheimer's disease (AD) is a central nervous system (CNS) disease characterized by loss of memory, cognitive functions and neurodegeneration. Plasmin is an enzyme degrading many plasma proteins. In the CNS, plasmin may reduce the accumulation of A, and have other actions relevant to AD pathophysiology. Brain plasmin synthesis is regulated by two enzymes: one activating, the tissue plasminogen activator (tPA), and the other inhibiting, the plasminogen activator inhibitor-1 (PAI-1). We investigated whether tPA and PAI-1 serum levels in AD and amnestic mild cognitive impairment (aMCI) patients are altered compared to cognitively healthy controls. Moreover, we examined the PAI-1/tPA ratio in these patient groups. 40 AD, 40 aMCI and 10 healthy controls were recruited. Venous blood was collected and PAI-1 and tPA serum concentrations were quantified by sandwich ELISAs. The results showed that PAI-1 levels increased in AD and aMCI patients. This increase negatively correlated with cognitive deficit measured by MMSE. Similarly, the ratio between tPA and PAI-1 gradually increases in aMCI and AD patients. This study demonstrates that AD and aMCI patients have altered PAI-1 serum levels and PAI-1/tPA ratio. Since these enzymes are CNS regulators of plasmin, PAI-1 serum levels could be a marker reflecting a cognitive decline in AD.Keywords: Alzheimer disease, amnestic mild cognitive impairment, plasmin, tissue-type plasminogen activator
Procedia PDF Downloads 765244 Strategies to Combat the Covid-19 Epidemic
Authors: Marziye Hadian, Alireza Jabbari
Abstract:
Background: The World Health Organization has identified COVID-19 as a public health emergency and is urging governments to stop the virus transmission by adopting appropriate policies. In this regard, the countries have taken different approaches to cutting the chain or controlling the spread of the disease. Methods: The present study was a systematize review of publications relating to prevention strategies for covid-19 disease. The study was carried out based on the PRISMA guidelines and CASP for articles and AACODS for grey literature. Finding: The study findings showed that in order to confront the COVID-19 epidemic, in general, there are three approaches of "mitigation", "active control" and "suppression" and four strategies of "quarantine", "isolation", "social distance" as well as "lockdown" in both individual and social dimensions to deal with epidemics that the choice of each approach requires specific strategies and has different effects when it comes to controlling and inhibiting the disease. Conclusion: The only way to control the disease is to change your behavior and lifestyle. In addition to prevention strategies, use of masks, observance of personal hygiene principles such as regular hand washing and non-contact of contaminated hands with the face, as well as observance of public health principles such as control of sneezing and coughing, safe extermination of personal protective equipment, etc. have not been included in the category of prevention tools. However, it has a great impact on controlling the epidemic, especially the new coronavirus epidemic.Keywords: novel corona virus, COVID-19, prevention tools, prevention strategies
Procedia PDF Downloads 1405243 Computational Agent-Based Approach for Addressing the Consequences of Releasing Gene Drive Mosquito to Control Malaria
Authors: Imran Hashmi, Sipkaduwa Arachchige Sashika Sureni Wickramasooriya
Abstract:
Gene-drive technology has emerged as a promising tool for disease control by influencing the population dynamics of disease-carrying organisms. Various gene drive mechanisms, derived from global laboratory experiments, aim to strategically manage and prevent the spread of targeted diseases. One prominent strategy involves population replacement, wherein genetically modified mosquitoes are introduced to replace the existing local wild population. To enhance our understanding and aid in the design of effective release strategies, we employ a comprehensive mathematical model. The utilized approach employs agent-based modeling, enabling the consideration of individual mosquito attributes and flexibility in parameter manipulation. Through the integration of an agent-based model and a meta-population spatial approach, the dynamics of gene drive mosquito spreading in a released site are simulated. The model's outcomes offer valuable insights into future population dynamics, providing guidance for the development of informed release strategies. This research significantly contributes to the ongoing discourse on the responsible and effective implementation of gene drive technology for disease vector control.Keywords: gene drive, agent-based modeling, disease-carrying organisms, malaria
Procedia PDF Downloads 655242 Using Machine Learning as an Alternative for Predicting Exchange Rates
Authors: Pedro Paulo Galindo Francisco, Eli Dhadad Junior
Abstract:
This study addresses the Meese-Rogoff Puzzle by introducing the latest machine learning techniques as alternatives for predicting the exchange rates. Using RMSE as a comparison metric, Meese and Rogoff discovered that economic models are unable to outperform the random walk model as short-term exchange rate predictors. Decades after this study, no statistical prediction technique has proven effective in overcoming this obstacle; although there were positive results, they did not apply to all currencies and defined periods. Recent advancements in artificial intelligence technologies have paved the way for a new approach to exchange rate prediction. Leveraging this technology, we applied five machine learning techniques to attempt to overcome the Meese-Rogoff puzzle. We considered daily data for the real, yen, British pound, euro, and Chinese yuan against the US dollar over a time horizon from 2010 to 2023. Our results showed that none of the presented techniques were able to produce an RMSE lower than the Random Walk model. However, the performance of some models, particularly LSTM and N-BEATS were able to outperform the ARIMA model. The results also suggest that machine learning models have untapped potential and could represent an effective long-term possibility for overcoming the Meese-Rogoff puzzle.Keywords: exchage rate, prediction, machine learning, deep learning
Procedia PDF Downloads 315241 Electrochemical Bioassay for Haptoglobin Quantification: Application in Bovine Mastitis Diagnosis
Authors: Soledad Carinelli, Iñigo Fernández, José Luis González-Mora, Pedro A. Salazar-Carballo
Abstract:
Mastitis is the most relevant inflammatory disease in cattle, affecting the animal health and causing important economic losses on dairy farms. This disease takes place in the mammary gland or udder when some opportunistic microorganisms, such as Staphylococcus aureus, Streptococcus agalactiae, Corynebacterium bovis, etc., invade the teat canal. According to the severity of the inflammation, mastitis can be classified as sub-clinical, clinical and chronic. Standard methods for mastitis detection include counts of somatic cells, cell culture, electrical conductivity of the milk, and California test (evaluation of “gel-like” matrix consistency after cell lysed with detergents). However, these assays present some limitations for accurate detection of subclinical mastitis. Currently, haptoglobin, an acute phase protein, has been proposed as novel and effective biomarker for mastitis detection. In this work, an electrochemical biosensor based on polydopamine-modified magnetic nanoparticles (MNPs@pDA) for haptoglobin detection is reported. Thus, MNPs@pDA has been synthesized by our group and functionalized with hemoglobin due to its high affinity to haptoglobin protein. The protein was labeled with specific antibodies modified with alkaline phosphatase enzyme for its electrochemical detection using an electroactive substrate (1-naphthyl phosphate) by differential pulse voltammetry. After the optimization of assay parameters, the haptoglobin determination was evaluated in milk. The strategy presented in this work shows a wide range of detection, achieving a limit of detection of 43 ng/mL. The accuracy of the strategy was determined by recovery assays, being of 84 and 94.5% for two Hp levels around the cut off value. Milk real samples were tested and the prediction capacity of the electrochemical biosensor was compared with a Haptoglobin commercial ELISA kit. The performance of the assay has demonstrated this strategy is an excellent and real alternative as screen method for sub-clinical bovine mastitis detection.Keywords: bovine mastitis, haptoglobin, electrochemistry, magnetic nanoparticles, polydopamine
Procedia PDF Downloads 1735240 Algorithm and Software Based on Multilayer Perceptron Neural Networks for Estimating Channel Use in the Spectral Decision Stage in Cognitive Radio Networks
Authors: Danilo López, Johana Hernández, Edwin Rivas
Abstract:
The use of the Multilayer Perceptron Neural Networks (MLPNN) technique is presented to estimate the future state of use of a licensed channel by primary users (PUs); this will be useful at the spectral decision stage in cognitive radio networks (CRN) to determine approximately in which time instants of future may secondary users (SUs) opportunistically use the spectral bandwidth to send data through the primary wireless network. To validate the results, sequences of occupancy data of channel were generated by simulation. The results show that the prediction percentage is greater than 60% in some of the tests carried out.Keywords: cognitive radio, neural network, prediction, primary user
Procedia PDF Downloads 3715239 Effects of Cranberry Juice Enriched with n-3 PUFA Consumption in Adjunct with Non-Surgical Periodontal Therapy on Glycemic Control, Antioxidant Status and Periodontal indices in Type 2 Diabetes Patients with Periodontitis
Authors: A. Zare Javid, H. Babaee, E. Ashrafzadeh, H. Yousefimanesh, M. Zakerkish, K. Ahmadi Angali, M. Ravanbakhsh
Abstract:
Introduction: Type 2 diabetes mellitus and periodontal disease hold a physiologically relationship. Periodontal disease, a common widespread chronic disease, is considered as an important complication in diabetes mellitus. The prevalence and severity of periodontal disease are increased among diabetic patients. A balanced nutrition may improve either diabetes or periodontal disease by controlling one of them. The aim of this study was to evaluate the effects of cranberry juice enriched with n-3 PUFA and their individual consumption on glycemic control and antioxidant status in diabetic patients with periodontal disease. Methods: In this randomized clinical trial 41 diabetic patients (35 – 65 y) with chronic adult periodontal disease were recruited from Endocrinology Clinic of Golestan Hospital in Ahvaz city, Iran. Subjects were randomly assigned to four groups as follow: one control group (n=12) and three intervention groups as receiving 1 g n-3 PUFA capsule (n=10), 400 ml cranberry juice (n=9), 400 ml cranberry juice enriched with 1g n-3 PUFA (n=10) for 8 weeks. Non-surgical periodontal therapy was provided for all patients during study. Fasting blood glucose, glycated hemoglobin, plasma and saliva TAOC and MDA, pocket depth and bleeding on probing were measured at baseline and post intervention. Results: There was a significant reduction in glycated hemoglobin observed in intervention groups of receiving n-3 PUFA and cranberry enriched with n-3 PUFA (11 %, P = 0.01 and 7 %, P = 0.01, respectively). The intervention group receiving n-3 PUFA had significantly lower glycated hemoglobin compared with control group. There was no significant difference found in FBS between and within groups. Furthermore, there was a significant increase in plasma TAOC only in cranberry enriched with n-3 PUFA group. Moreover, plasma MDA significantly decreased in intervention groups of receiving cranberry and cranberry enriched with n-3 PUFA. A significant increase was observed in TAOC of salvia in cranberry enriched with n-3 PUFA group compared to control group .The intervention group receiving cranberry enriched with n-3 PUFA had significantly lower MDA of salvia compared with control group. Pocket depth were significantly decreased in all groups, however, bleeding on probing didn’t significantly changed in patients post intervention. Conclusion: It is suggested that consumption of cranberry juice enriched with n-3 PUFA as a nutritional approach in adjunct with non-surgical periodontal therapy may help to improve glycosylated hemogolobin and TAOC in salvia and plasma in diabetic patients with periodontal disease.Keywords: antioxidant, cranberry, oxidant status, periodontal disease, type 2 diabetes mellitus
Procedia PDF Downloads 4235238 Demographic Profile, Risk Factors and In-hospital Outcomes of Acute Coronary Syndrome (ACS) in Young Population, in Pakistan-Single Center Real World Experience
Authors: Asma Qudrat, Abid Ullah, Rafi Ullah, Ali Raza, Shah Zeb, Syed Ali Shan Ul-Haq, Shahkar Ahmed Shah, Attiya Hameed Khan, Saad Zaheer, Umama Qasim, Kiran Jamal, Zahoor khan
Abstract:
Objectives: Coronary artery disease (CAD) is the major public health issue associated with high mortality and morbidity rate worldwide. Young patients with ACS have unique characteristics with different demographic profiles and risk factors. The precise diagnosis and early risk stratification is important in guiding treatment and predicting the prognosis of young patients with ACS. To evaluate the associated demographics, risk factors, and outcomes profile of ACS in young age patients. Methods: The research follow a retrospective design, the single centre study of patients diagnosis with the first event of ACS in young age (>18 and <40) were included. Data collection included demographic profiles, risk factors, and in-hospital outcomes of young ACS patients. The patient’s data was retrieved through Electronic Medical Records (EMR) of Peshawar Institute of Cardiology (PIC), and all characteristic were assessed. Results: In this study, 77% were male, and 23% were female patients. The risk factors were assessed with CAD and shown significant results (P < 0.01). The most common presentation was STEMI, with (45%) most in ACS young patients. The angiographic pattern showed single vessel disease (SVD) in 49%, double vessel disease (DVD) in 17% and triple vessel disease (TVD) was found in 10%, and Left Artery Disease (LAD) (54%) was present to be the most common involved artery. Conclusion: It is concluded that the male sex was predominant in ACS young age patients. SVD was the common coronary angiographic finding. Risk factors showed significant results towards CAD and common presentations.Keywords: coronary artery disease, Non-ST elevation myocardial infarction, ST elevation myocardial infarction, unstable angina, acute coronary syndrome
Procedia PDF Downloads 1635237 Metabolic Predictive Model for PMV Control Based on Deep Learning
Authors: Eunji Choi, Borang Park, Youngjae Choi, Jinwoo Moon
Abstract:
In this study, a predictive model for estimating the metabolism (MET) of human body was developed for the optimal control of indoor thermal environment. Human body images for indoor activities and human body joint coordinated values were collected as data sets, which are used in predictive model. A deep learning algorithm was used in an initial model, and its number of hidden layers and hidden neurons were optimized. Lastly, the model prediction performance was analyzed after the model being trained through collected data. In conclusion, the possibility of MET prediction was confirmed, and the direction of the future study was proposed as developing various data and the predictive model.Keywords: deep learning, indoor quality, metabolism, predictive model
Procedia PDF Downloads 2575236 Self-Efficacy Psychoeducational Programme for Patients With End-Stage Renal Disease
Authors: H.C. Chen, S. W. C. Chan, K. Cheng, A. Vathsala, H. K. Sran, H. He
Abstract:
Background: End-stage renal disease (ESRD) is the last stage of chronic kidney disease. The numbers of patients with ESRD have increased worldwide due to the growing number of aging, diabetes and hypertension populations. Patients with ESRD suffer from physical illness and psychological distress due to complex treatment regimens, which often affect the patients’ social and psychological functioning. As a result, the patients may fail to perform daily self-care and self-management, and consequently experience worsening conditions. Aims: The study aims to examine the effectiveness of a self-efficacy psychoeducational programme on primary outcome (self-efficacy) and secondary outcomes (psychological wellbeing, treatment adherence, and quality of life) in patients with ESRD and haemodialysis in Singapore. Methodology: A randomised controlled, two-group pretest and repeated posttests design will be carried out. A total of 154 participants (n=154) will be recruited. The participants in the control group will receive a routine treatment. The participants in the intervention group will receive a self-efficacy psychoeducational programme in addition to the routine treatment. The programme is a two-session of educational intervention in a week. A booklet, two consecutive sessions of face-to-face individual education, and an abdominal breathing exercise are adopted in the programme. Outcome measurements include Dialysis Specific Self-efficacy Scale, Kidney Disease Quality of Life- 36 Hospital Anxiety and Depression Scale, Renal Adherence Attitudes Questionnaire and Renal Adherence Behaviour Questionnaire. The questionnaires will be used to measure at baseline, 1- and 3- and 6-month follow-up periods. Process evaluation will be conducted with a semi-structured face to face interview. Quantitative data will be analysed using SPSS21.0 software. Qualitative data will be analysed by content analysis. Significance of the study: This study will identify a clinically useful and potentially effective approach to help patients with end-stage renal disease and haemodialysis by enhancing their self-efficacy in self-care behaviour, and therefore improving their psychological wellbeing, treatment adherence and quality of life. This study will provide information to develop clinical guidelines to improve patients’ disease self-management and to enhance health-related outcomes. Hopefully it will help reducing disease burden.Keywords: end-stage renal disease (ESRD), haemodialysis, psychoeducation, self-efficacy
Procedia PDF Downloads 3035235 Parkinson’s Disease Hand-Eye Coordination and Dexterity Evaluation System
Authors: Wann-Yun Shieh, Chin-Man Wang, Ya-Cheng Shieh
Abstract:
This study aims to develop an objective scoring system to evaluate hand-eye coordination and hand dexterity for Parkinson’s disease. This system contains three boards, and each of them is implemented with the sensors to sense a user’s finger operations. The operations include the peg test, the block test, and the blind block test. A user has to use the vision, hearing, and tactile abilities to finish these operations, and the board will record the results automatically. These results can help the physicians to evaluate a user’s reaction, coordination, dexterity function. The results will be collected to a cloud database for further analysis and statistics. A researcher can use this system to obtain systematic, graphic reports for an individual or a group of users. Particularly, a deep learning model is developed to learn the features of the data from different users. This model will help the physicians to assess the Parkinson’s disease symptoms by a more intellective algorithm.Keywords: deep learning, hand-eye coordination, reaction, hand dexterity
Procedia PDF Downloads 665234 First-Trimester Screening of Preeclampsia in a Routine Care
Authors: Tamar Grdzelishvili, Zaza Sinauridze
Abstract:
Introduction: Preeclampsia is a complication of the second trimester of pregnancy, which is characterized by high morbidity and multiorgan damage. Many complex pathogenic mechanisms are now implicated to be responsible for this disease (1). Preeclampsia is one of the leading causes of maternal mortality worldwide. Statistics are enough to convince you of the seriousness of this pathology: about 100,000 women die of preeclampsia every year. It occurs in 3-14% (varies significantly depending on racial origin or ethnicity and geographical region) of pregnant women, in 75% of cases - in a mild form, and in 25% - in a severe form. During severe pre-eclampsia-eclampsia, perinatal mortality increases by 5 times and stillbirth by 9.6 times. Considering that the only way to treat the disease is to end the pregnancy, the main thing is timely diagnosis and prevention of the disease. Identification of high-risk pregnant women for PE and giving prophylaxis would reduce the incidence of preterm PE. First-trimester screening model developed by the Fetal Medicine Foundation (FMF), which uses the Bayes-theorem to combine maternal characteristics and medical history together with measurements of mean arterial pressure, uterine artery pulsatility index, and serum placental growth factor, has been proven to be effective and have superior screening performance to that of traditional risk factor-based approach for the prediction of PE (2) Methods: Retrospective single center screening study. The study population consisted of women from the Tbilisi maternity hospital “Pineo medical ecosystem” who met the following criteria: they spoke Georgian, English, or Russian and agreed to participate in the study after discussing informed consent and answering questions. Prior to the study, the informed consent forms approved by the Institutional Review Board were obtained from the study subjects. Early assessment of preeclampsia was performed between 11-13 weeks of pregnancy. The following were evaluated: anamnesis, dopplerography of the uterine artery, mean arterial blood pressure, and biochemical parameter: Pregnancy-associated plasma protein A (PAPP-A). Individual risk assessment was performed with performed by Fast Screen 3.0 software ThermoFisher scientific. Results: A total of 513 women were recruited and through the study, 51 women were diagnosed with preeclampsia (34.5% in the pregnant women with high risk, 6.5% in the pregnant women with low risk; P<0.000 1). Conclusions: First-trimester screening combining maternal factors with uterine artery Doppler, blood pressure, and pregnancy-associated plasma protein-A is useful to predict PE in a routine care setting. More patient studies are needed for final conclusions. The research is still ongoing.Keywords: first-trimester, preeclampsia, screening, pregnancy-associated plasma protein
Procedia PDF Downloads 775233 Probabilistic-Based Design of Bridges under Multiple Hazards: Floods and Earthquakes
Authors: Kuo-Wei Liao, Jessica Gitomarsono
Abstract:
Bridge reliability against natural hazards such as floods or earthquakes is an interdisciplinary problem that involves a wide range of knowledge. Moreover, due to the global climate change, engineers have to design a structure against the multi-hazard threats. Currently, few of the practical design guideline has included such concept. The bridge foundation in Taiwan often does not have a uniform width. However, few of the researches have focused on safety evaluation of a bridge with a complex pier. Investigation of the scouring depth under such situation is very important. Thus, this study first focuses on investigating and improving the scour prediction formula for a bridge with complicated foundation via experiments and artificial intelligence. Secondly, a probabilistic design procedure is proposed using the established prediction formula for practical engineers under the multi-hazard attacks.Keywords: bridge, reliability, multi-hazards, scour
Procedia PDF Downloads 3745232 Machine Learning Development Audit Framework: Assessment and Inspection of Risk and Quality of Data, Model and Development Process
Authors: Jan Stodt, Christoph Reich
Abstract:
The usage of machine learning models for prediction is growing rapidly and proof that the intended requirements are met is essential. Audits are a proven method to determine whether requirements or guidelines are met. However, machine learning models have intrinsic characteristics, such as the quality of training data, that make it difficult to demonstrate the required behavior and make audits more challenging. This paper describes an ML audit framework that evaluates and reviews the risks of machine learning applications, the quality of the training data, and the machine learning model. We evaluate and demonstrate the functionality of the proposed framework by auditing an steel plate fault prediction model.Keywords: audit, machine learning, assessment, metrics
Procedia PDF Downloads 2715231 Measuring the Unmeasurable: A Project of High Risk Families Prediction and Management
Authors: Peifang Hsieh
Abstract:
The prevention of child abuse has aroused serious concerns in Taiwan because of the disparity between the increasing amount of reported child abuse cases that doubled over the past decade and the scarcity of social workers. New Taipei city, with the most population in Taiwan and over 70% of its 4 million citizens are migrant families in which the needs of children can be easily neglected due to insufficient support from relatives and communities, sees urgency for a social support system, by preemptively identifying and outreaching high-risk families of child abuse, so as to offer timely assistance and preventive measure to safeguard the welfare of the children. Big data analysis is the inspiration. As it was clear that high-risk families of child abuse have certain characteristics in common, New Taipei city decides to consolidate detailed background information data from departments of social affairs, education, labor, and health (for example considering status of parents’ employment, health, and if they are imprisoned, fugitives or under substance abuse), to cross-reference for accurate and prompt identification of the high-risk families in need. 'The Service Center for High-Risk Families' (SCHF) was established to integrate data cross-departmentally. By utilizing the machine learning 'random forest method' to build a risk prediction model which can early detect families that may very likely to have child abuse occurrence, the SCHF marks high-risk families red, yellow, or green to indicate the urgency for intervention, so as to those families concerned can be provided timely services. The accuracy and recall rates of the above model were 80% and 65%. This prediction model can not only improve the child abuse prevention process by helping social workers differentiate the risk level of newly reported cases, which may further reduce their major workload significantly but also can be referenced for future policy-making.Keywords: child abuse, high-risk families, big data analysis, risk prediction model
Procedia PDF Downloads 1355230 Non-Destructive Prediction System Using near Infrared Spectroscopy for Crude Palm Oil
Authors: Siti Nurhidayah Naqiah Abdull Rani, Herlina Abdul Rahim
Abstract:
Near infrared (NIR) spectroscopy has always been of great interest in the food and agriculture industries. The development of predictive models has facilitated the estimation process in recent years. In this research, 176 crude palm oil (CPO) samples acquired from Felda Johor Bulker Sdn Bhd were studied. A FOSS NIRSystem was used to tak e absorbance measurements from the sample. The wavelength range for the spectral measurement is taken at 1600nm to 1900nm. Partial Least Square Regression (PLSR) prediction model with 50 optimal number of principal components was implemented to study the relationship between the measured Free Fatty Acid (FFA) values and the measured spectral absorption. PLSR showed predictive ability of FFA values with correlative coefficient (R) of 0.9808 for the training set and 0.9684 for the testing set.Keywords: palm oil, fatty acid, NIRS, PLSR
Procedia PDF Downloads 2095229 Associations Between Psychological Distress and COVID-19 Disease Course: A Retrospective Cohort Study of 3084 Cases in Belgium
Authors: Gwendy Darras, Mattias Desmet
Abstract:
Previous research showed that psychological distress has a negative impact on the disease course of viral infections. For COVID-19, the same association was observed in small samples of specific segments of the population (e.g. health care workers). The present study presents a more refined analysis of this association, measuring a broader spectrum of psychological distress in a large sample (n=3084) of the general Flemish population. Several types of psychological distress (state, trait and health anxiety, depression, intra-, and interpersonal stress) are registered throughout three periods: one year before the contamination, one week before the contamination, and during the contamination. In doing so, validated scales such as DASS-21, IIP-32, and FCV-19S are used. Furthermore, the course of COVID-19 is registered in several ways: number of symptoms, number of days sick leave due to COVID-19, and number of days the symptoms have lasted. Also, different control variables such as vaccination status, medical and psychological history are taken into account. Statistical analysis shows that all types of psychological distress are positively correlated with the severity of the COVID-19 disease course. Anxiety during the contamination shows the strongest correlation, but psychological distress one year before the onset of COVID-19 was still significantly associated with the worsening of the disease course. As the assessment of the latter type of distress happened before the onset of the COVID-19 disease course, retrospective bias resulting in artificial associations between self-reported stress and COVID-19 severity is unlikely to have impacted the observations. In view of possible future pandemics, it is important to focus on general stress and anxiety reduction in the general population as soon as possible. It is also advisable to minimize the use of stress-inducing messages to encourage the population to adhere to the measures issued during a pandemic.Keywords: anxiety, COVID-19, depression, psychoneuroimmunology, psychological distress, stress
Procedia PDF Downloads 835228 Lexicon-Based Sentiment Analysis for Stock Movement Prediction
Authors: Zane Turner, Kevin Labille, Susan Gauch
Abstract:
Sentiment analysis is a broad and expanding field that aims to extract and classify opinions from textual data. Lexicon-based approaches are based on the use of a sentiment lexicon, i.e., a list of words each mapped to a sentiment score, to rate the sentiment of a text chunk. Our work focuses on predicting stock price change using a sentiment lexicon built from financial conference call logs. We present a method to generate a sentiment lexicon based upon an existing probabilistic approach. By using a domain-specific lexicon, we outperform traditional techniques and demonstrate that domain-specific sentiment lexicons provide higher accuracy than generic sentiment lexicons when predicting stock price change.Keywords: computational finance, sentiment analysis, sentiment lexicon, stock movement prediction
Procedia PDF Downloads 1275227 Lexicon-Based Sentiment Analysis for Stock Movement Prediction
Authors: Zane Turner, Kevin Labille, Susan Gauch
Abstract:
Sentiment analysis is a broad and expanding field that aims to extract and classify opinions from textual data. Lexicon-based approaches are based on the use of a sentiment lexicon, i.e., a list of words each mapped to a sentiment score, to rate the sentiment of a text chunk. Our work focuses on predicting stock price change using a sentiment lexicon built from financial conference call logs. We introduce a method to generate a sentiment lexicon based upon an existing probabilistic approach. By using a domain-specific lexicon, we outperform traditional techniques and demonstrate that domain-specific sentiment lexicons provide higher accuracy than generic sentiment lexicons when predicting stock price change.Keywords: computational finance, sentiment analysis, sentiment lexicon, stock movement prediction
Procedia PDF Downloads 1705226 Transcriptome Analysis for Insights into Disease Progression in Dengue Patients
Authors: Abhaydeep Pandey, Shweta Shukla, Saptamita Goswami, Bhaswati Bandyopadhyay, Vishnampettai Ramachandran, Sudhanshu Vrati, Arup Banerjee
Abstract:
Dengue virus infection is now considered as one of the most important mosquito-borne infection in human. The virus is known to promote vascular permeability, cerebral edema leading to Dengue hemorrhagic fever (DHF) or Dengue shock syndrome (DSS). Dengue infection has known to be endemic in India for over two centuries as a benign and self-limited disease. In the last couple of years, the disease symptoms have changed, manifesting severe secondary complication. So far, Delhi has experienced 12 outbreaks of dengue virus infection since 1997 with the last reported in 2014-15. Without specific antivirals, the case management of high-risk dengue patients entirely relies on supportive care, involving constant monitoring and timely fluid support to prevent hypovolemic shock. Nonetheless, the diverse clinical spectrum of dengue disease, as well as its initial similarity to other viral febrile illnesses, presents a challenge in the early identification of this high-risk group. WHO recommends the use of warning signs to identify high-risk patients, but warning signs generally appear during, or just one day before the development of severe illness, thus, providing only a narrow window for clinical intervention. The ability to predict which patient may develop DHF and DSS may improve the triage and treatment. With the recent discovery of high throughput RNA sequencing allows us to understand the disease progression at the genomic level. Here, we will collate the results of RNA-Sequencing data obtained recently from PBMC of different categories of dengue patients from India and will discuss the possible role of deregulated genes and long non-coding RNAs NEAT1 for development of disease progression.Keywords: long non-coding RNA (lncRNA), dengue, peripheral blood mononuclear cell (PBMC), nuclear enriched abundant transcript 1 (NEAT1), dengue hemorrhagic fever (DHF), dengue shock syndrome (DSS)
Procedia PDF Downloads 3085225 Effects of Blood Pressure According to Age on End-Stage Renal Disease Development in Diabetes Mellitus Patients: A Nationwide Population-Based Cohort Study
Authors: Eun Hui Bae, Sang Yeob Lim, Bongseong Kim, Tae Ryom Oh, Su Hyun Song, Sang Heon Suh, Hong Sang Choi, Eun Mi Yang, Chang Seong Kim, Seong Kwon Ma, Kyung-Do Han, Soo Wan Kim
Abstract:
Background: Recent hypertension guidelines have recommended lower blood pressure (BP) targets in high-risk patients. However, there are no specific guidelines based on age or systolic and diastolic blood pressure (SBP and DBP, respectively). We aimed to assess the effects of age-related BP on the development of end-stage renal disease (ESRD) in patients with diabetes. Methods: A total of 2,563,870 patients with DM aged >20 years were selected from the Korean National Health Screening Program from 2009 to 2012 and followed up until the end of 2019. Participants were categorized into age and BP groups, and the hazard ratios (HRs) for ESRD were calculated. Results: During a median follow-up of 7.15 years, the incidence rates of ESRD increased with increasing SBP and DBP. The HR for ESRD was the highest in patients younger than 40 years of age with DBP ≥ 100 mmHg. The effect of SBP and DBP on ESRD development was attenuated with age (interaction p-value was <0.0001 for age and SBP and 0.0022 for age and DBP). The subgroup analysis for sex, anti-hypertension medication, and history of chronic kidney disease (CKD) showed higher HRs for ESRD among males younger than 40 years, not taking anti-hypertension medications and CKD compared to those among females older than 40 years, anti-hypertension medication and non-CKD groups. Conclusions: Higher SBP and DBP increase the risk of developing ESRD in patients with diabetes, and in particular, younger individuals face greater risk. Therefore, intensive BP management is warranted in younger patients to prevent ESRD.Keywords: hypertension, young adult, end-stage renal disease, diabetes mellitus, chronic kidney disease, blood pressure
Procedia PDF Downloads 129