Search results for: cox proportional hazard regression
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4229

Search results for: cox proportional hazard regression

3599 Determining the Factors Affecting Social Media Addiction (Virtual Tolerance, Virtual Communication), Phubbing, and Perception of Addiction in Nurses

Authors: Fatima Zehra Allahverdi, Nukhet Bayer

Abstract:

Objective: Three questions were formulated to examine stressful working units (intensive care units, emergency unit nurses) utilizing the self-perception theory and social support theory. This study provides a distinctive input by inspecting the combination of variables regarding stressful working environments. Method: The descriptive research was conducted with the participation of 400 nurses working at Ankara City Hospital. The study used Multivariate Analysis of Variance (MANOVA), regression analysis, and a mediation model. Hypothesis one used MANOVA followed by a Scheffe post hoc test. Hypothesis two utilized regression analysis using a hierarchical linear regression model. Hypothesis three used a mediation model. Result: The study utilized mediation analyses. Findings supported the hypotheses that intensive care units have significantly high scores in virtual communication and virtual tolerance. The number of years on the job, virtual communication, virtual tolerance, and phubbing significantly predicted 51% of the variance of perception of addiction. Interestingly, the number of years on the job, while significant, was negatively related to perception of addiction. Conclusion: The reasoning behind these findings and the lack of significance in the emergency unit is discussed. Around 7% of the variance of phubbing was accounted for through working in intensive care units. The model accounted for 26.80 % of the differences in the perception of addiction.

Keywords: phubbing, social media, working units, years on the job, stress

Procedia PDF Downloads 53
3598 Control Performance Simulation and Analysis for Microgravity Vibration Isolation System Onboard Chinese Space Station

Authors: Wei Liu, Shuquan Wang, Yang Gao

Abstract:

Microgravity Science Experiment Rack (MSER) will be onboard TianHe (TH) spacecraft planned to be launched in 2018. TH is one module of Chinese Space Station. Microgravity Vibration Isolation System (MVIS), which is MSER’s core part, is used to isolate disturbance from TH and provide high-level microgravity for science experiment payload. MVIS is two stage vibration isolation system, consisting of Follow Unit (FU) and Experiment Support Unit (ESU). FU is linked to MSER by umbilical cables, and ESU suspends within FU and without physical connection. The FU’s position and attitude relative to TH is measured by binocular vision measuring system, and the acceleration and angular velocity is measured by accelerometers and gyroscopes. Air-jet thrusters are used to generate force and moment to control FU’s motion. Measurement module on ESU contains a set of Position-Sense-Detectors (PSD) sensing the ESU’s position and attitude relative to FU, accelerometers and gyroscopes sensing ESU’s acceleration and angular velocity. Electro-magnetic actuators are used to control ESU’s motion. Firstly, the linearized equations of FU’s motion relative to TH and ESU’s motion relative to FU are derived, laying the foundation for control system design and simulation analysis. Subsequently, two control schemes are proposed. One control scheme is that ESU tracks FU and FU tracks TH, shorten as E-F-T. The other one is that FU tracks ESU and ESU tracks TH, shorten as F-E-T. In addition, motion spaces are constrained within ±15 mm、±2° between FU and ESU, and within ±300 mm between FU and TH or between ESU and TH. A Proportional-Integrate-Differentiate (PID) controller is designed to control FU’s position and attitude. ESU’s controller includes an acceleration feedback loop and a relative position feedback loop. A Proportional-Integrate (PI) controller is designed in the acceleration feedback loop to reduce the ESU’s acceleration level, and a PID controller in the relative position feedback loop is used to avoid collision. Finally, simulations of E-F-T and F-E-T are performed considering variety uncertainties, disturbances and motion space constrains. The simulation results of E-T-H showed that control performance was from 0 to -20 dB for vibration frequency from 0.01 to 0.1 Hz, and vibration was attenuated 40 dB per ten octave above 0.1Hz. The simulation results of T-E-H showed that vibration was attenuated 20 dB per ten octave at the beginning of 0.01Hz.

Keywords: microgravity science experiment rack, microgravity vibration isolation system, PID control, vibration isolation performance

Procedia PDF Downloads 160
3597 Unlocking E-commerce: Analyzing User Behavior and Segmenting Customers for Strategic Insights

Authors: Aditya Patil, Arun Patil, Vaishali Patil, Sudhir Chitnis, Anjum Patel

Abstract:

Rapid growth has given e-commerce platforms a lot of client behavior and spending data. To maximize their strategy, businesses must understand how customers utilize online shopping platforms and what influences their purchases. Our research focuses on e-commerce user behavior and purchasing trends. This extensive study examines spending and user behavior. Regression and grouping disclose relevant data from the dataset. We can understand user spending trends via multilevel regression. We can analyze how pricing, user demographics, and product categories affect customer purchase decisions with this technique. Clustering groups consumers by spending. Important information was found. Purchase habits vary by user group. Our analysis illuminates the complex world of e-commerce consumer behavior and purchase trends. Understanding user behavior helps create effective e-commerce marketing strategies. This market can benefit from K-means clustering. This study focuses on tailoring strategies to user groups and improving product and price effectiveness. Customer buying behaviors across categories were shown via K-means clusters. Average spending is highest in Cluster 4 and lowest in Cluster 3. Clothing is less popular than gadgets and appliances around the holidays. Cluster spending distribution is examined using average variables. Our research enhances e-commerce analytics. Companies can improve customer service and decision-making with this data.

Keywords: e-commerce, regression, clustering, k-means

Procedia PDF Downloads 18
3596 Analysis on Prediction Models of TBM Performance and Selection of Optimal Input Parameters

Authors: Hang Lo Lee, Ki Il Song, Hee Hwan Ryu

Abstract:

An accurate prediction of TBM(Tunnel Boring Machine) performance is very difficult for reliable estimation of the construction period and cost in preconstruction stage. For this purpose, the aim of this study is to analyze the evaluation process of various prediction models published since 2000 for TBM performance, and to select the optimal input parameters for the prediction model. A classification system of TBM performance prediction model and applied methodology are proposed in this research. Input and output parameters applied for prediction models are also represented. Based on these results, a statistical analysis is performed using the collected data from shield TBM tunnel in South Korea. By performing a simple regression and residual analysis utilizinFg statistical program, R, the optimal input parameters are selected. These results are expected to be used for development of prediction model of TBM performance.

Keywords: TBM performance prediction model, classification system, simple regression analysis, residual analysis, optimal input parameters

Procedia PDF Downloads 309
3595 Audit Committee Characteristics and Earnings Quality of Listed Food and Beverages Firms in Nigeria

Authors: Hussaini Bala

Abstract:

There are different opinions in the literature on the relationship between Audit Committee characteristics and earnings management. The mix of opinions makes the direction of their relationship ambiguous. This study investigated the relationship between Audit Committee characteristics and earnings management of listed food and beverages Firms in Nigeria. The study covered the period of six years from 2007 to 2012. Data for the study were extracted from the Firms’ annual reports and accounts. After running the OLS regression, a robustness test was conducted for the validity of statistical inferences. The dependent variable was generated using two steps regression in order to determine the discretionary accrual of the sample Firms. Multiple regression was employed to run the data of the study using Random Model. The results from the analysis revealed a significant association between audit committee characteristics and earnings management of the Firms. While audit committee size and committees’ financial expertise showed an inverse relationship with earnings management, committee’s independence, and frequency of meetings are positively and significantly related to earnings management. In line with the findings, the study recommended among others that listed food and beverages Firms in Nigeria should strictly comply with the provision of Companies and Allied Matters Act (CAMA) and SEC Code of Corporate Governance on the issues regarding Audit Committees. Regulators such as SEC should increase the minimum number of Audit Committee members with financial expertise and also have a statutory position on the maximum number of Audit Committees meetings, which should not be greater than four meetings in a year as SEC code of corporate governance is silent on this.

Keywords: audit committee, earnings management, listed Food and beverages size, leverage, Nigeria

Procedia PDF Downloads 271
3594 Assessing the Impacts of Urbanization on Urban Precincts: A Case of Golconda Precinct, Hyderabad

Authors: Sai AKhila Budaraju

Abstract:

Heritage sites are an integral part of cities and carry a sense of identity to the cities/ towns, but the process of urbanization is a carrying potential threat for the loss of these heritage sites/monuments. Both Central and State Governments listed the historic Golconda fort as National Important Monument and the Heritage precinct with eight heritage-listed buildings and two historical sites respectively, for conservation and preservation, due to the presence of IT Corridor 6kms away accommodating more people in the precinct is under constant pressure. The heritage precinct possesses high property values, being a prime location connecting the IT corridor and CBD (central business district )areas. The primary objective of the study was to assess and identify the factors that are affecting the heritage precinct through Mapping and documentation, Identifying and assessing the factors through empirical analysis, Ordinal regression analysis and Hedonic Pricing Model. Ordinal regression analysis was used to identify the factors that contribute to the changes in the precinct due to urbanization. Hedonic Pricing Model was used to understand and establish a relation whether the presence of historical monuments is also a contributing factor to the property value and to what extent this influence can contribute. The above methods and field visit indicates the Physical, socio-economic factors and the neighborhood characteristics of the precinct contributing to the property values. The outturns and the potential elements derived from the analysis of the Development Control Rules were derived as recommendations to Integrate both Old and newly built environments.

Keywords: heritage planning, heritage conservation, hedonic pricing model, ordinal regression analysis

Procedia PDF Downloads 193
3593 Forecasting Stock Indexes Using Bayesian Additive Regression Tree

Authors: Darren Zou

Abstract:

Forecasting the stock market is a very challenging task. Various economic indicators such as GDP, exchange rates, interest rates, and unemployment have a substantial impact on the stock market. Time series models are the traditional methods used to predict stock market changes. In this paper, a machine learning method, Bayesian Additive Regression Tree (BART) is used in predicting stock market indexes based on multiple economic indicators. BART can be used to model heterogeneous treatment effects, and thereby works well when models are misspecified. It also has the capability to handle non-linear main effects and multi-way interactions without much input from financial analysts. In this research, BART is proposed to provide a reliable prediction on day-to-day stock market activities. By comparing the analysis results from BART and with time series method, BART can perform well and has better prediction capability than the traditional methods.

Keywords: BART, Bayesian, predict, stock

Procedia PDF Downloads 130
3592 Incorporation of Safety into Design by Safety Cube

Authors: Mohammad Rajabalinejad

Abstract:

Safety is often seen as a requirement or a performance indicator through the design process, and this does not always result in optimally safe products or systems. This paper suggests integrating the best safety practices with the design process to enrich the exploration experience for designers and add extra values for customers. For this purpose, the commonly practiced safety standards and design methods have been reviewed and their common blocks have been merged forming Safety Cube. Safety Cube combines common blocks for design, hazard identification, risk assessment and risk reduction through an integral approach. An example application presents the use of Safety Cube for design of machinery.

Keywords: safety, safety cube, product, system, machinery, design

Procedia PDF Downloads 246
3591 Detecting Trends in Annual Discharge and Precipitation in the Chott Melghir Basin in Southeastern Algeria

Authors: M. T. Bouziane, A. Benkhaled, B. Achour

Abstract:

In this study, data from 30 catchments in the Chott Melghir basin in the semiarid region of southern East Algeria were analyzed to investigate changes in annual discharge, annual precipitation over the 1965-2005 period. These data were analyzed with the aid of Kendall test trend and regression analysis. The results indicate that the major variations in all catchments discharge in Chott Melghir correspond well to the precipitation. Changes in total annual discharge of Chott Melghir were lower than changes in annual precipitation. Annual precipitation decreased by 66 percent and annual discharge decreased by 4 percent. No significant trend is detected for annual discharge and precipitation at major catchments up to 95% confidence level. The decreasing trend in Chott Melghir discharge is mainly attributed to the decrease of precipitation.

Keywords: trends, climate change, precipitation, discharge, Kendall test, regression analysis, Chott Melghir catchments

Procedia PDF Downloads 304
3590 Variation of Litter Chemistry under Intensified Drought: Consequences on Flammability

Authors: E. Ormeno, C. Gutigny, J. Ruffault, J. Madrigal, M. Guijarro, C. Lecareux, C. Ballini

Abstract:

Mediterranean plant species feature numerous metabolic and morpho-physiological responses crucial to survive under both, typical Mediterranean drought conditions and future aggravated drought expected by climate change. Whether these adaptive responses will, in turn, increase the ecosystem perturbation in terms of fire hazard, is an issue that needs to be addressed. The aim of this study was to test whether recurrent and aggravated drought in the Mediterranean area favors the accumulation of waxes in leaf litter, with an eventual increase of litter flammability. The study was conducted in 2017 in a garrigue in Southern France dominated by Quercus coccifera, where two drought treatments were used: a treatment with recurrent aggravated drought consisting of ten rain exclusion structures which withdraw part of the annual precipitation since January 2012, and a natural drought treatment where Q. coccifera stands are free of such structures and thus grow under natural precipitation. Waxes were extracted with organic solvent and analyzed by GC-MS and litter flammability was assessed through measurements of the ignition delay, flame residence time and flame intensity (flame height) using an epiradiator as well as the heat of combustion using an oxygen bomb calorimeter. Results show that after 5 years of rain restriction, wax content in the cuticle of leaf litter increases significantly compared to shrubs growing under natural precipitation, in accordance with the theoretical knowledge which expects increases of cuticle waxes in green leaves in order to limit water evapotranspiration. Wax concentrations were also linearly and positively correlated to litter flammability, a correlation that lies on the high flammability own to the long-chain alkanes (C25-C31) found in leaf litter waxes. This innovative investigation shows that climate change is likely to favor ecosystem fire hazard through accumulation of highly flammable waxes in litter. It also adds valuable information about the types of metabolites that are associated with increasing litter flammability, since so far, within the leaf metabolic profile, only terpene-like compounds had been related to plant flammability.

Keywords: cuticular waxes, drought, flammability, litter

Procedia PDF Downloads 171
3589 A New Distribution and Application on the Lifetime Data

Authors: Gamze Ozel, Selen Cakmakyapan

Abstract:

We introduce a new model called the Marshall-Olkin Rayleigh distribution which extends the Rayleigh distribution using Marshall-Olkin transformation and has increasing and decreasing shapes for the hazard rate function. Various structural properties of the new distribution are derived including explicit expressions for the moments, generating and quantile function, some entropy measures, and order statistics are presented. The model parameters are estimated by the method of maximum likelihood and the observed information matrix is determined. The potentiality of the new model is illustrated by means of real life data set.

Keywords: Marshall-Olkin distribution, Rayleigh distribution, estimation, maximum likelihood

Procedia PDF Downloads 501
3588 Phase II Monitoring of First-Order Autocorrelated General Linear Profiles

Authors: Yihua Wang, Yunru Lai

Abstract:

Statistical process control has been successfully applied in a variety of industries. In some applications, the quality of a process or product is better characterized and summarized by a functional relationship between a response variable and one or more explanatory variables. A collection of this type of data is called a profile. Profile monitoring is used to understand and check the stability of this relationship or curve over time. The independent assumption for the error term is commonly used in the existing profile monitoring studies. However, in many applications, the profile data show correlations over time. Therefore, we focus on a general linear regression model with a first-order autocorrelation between profiles in this study. We propose an exponentially weighted moving average charting scheme to monitor this type of profile. The simulation study shows that our proposed methods outperform the existing schemes based on the average run length criterion.

Keywords: autocorrelation, EWMA control chart, general linear regression model, profile monitoring

Procedia PDF Downloads 460
3587 Breast Cancer Detection Using Machine Learning Algorithms

Authors: Jiwan Kumar, Pooja, Sandeep Negi, Anjum Rouf, Amit Kumar, Naveen Lakra

Abstract:

In modern times where, health issues are increasing day by day, breast cancer is also one of them, which is very crucial and really important to find in the early stages. Doctors can use this model in order to tell their patients whether a cancer is not harmful (benign) or harmful (malignant). We have used the knowledge of machine learning in order to produce the model. we have used algorithms like Logistic Regression, Random forest, support Vector Classifier, Bayesian Network and Radial Basis Function. We tried to use the data of crucial parts and show them the results in pictures in order to make it easier for doctors. By doing this, we're making ML better at finding breast cancer, which can lead to saving more lives and better health care.

Keywords: Bayesian network, radial basis function, ensemble learning, understandable, data making better, random forest, logistic regression, breast cancer

Procedia PDF Downloads 52
3586 Stock Price Informativeness and Profit Warnings: Empirical Analysis

Authors: Adel Almasarwah

Abstract:

This study investigates the nature of association between profit warnings and stock price informativeness in the context of Jordan as an emerging country. The analysis is based on the response of stock price synchronicity to profit warnings percentages that have been published in Jordanian firms throughout the period spanning 2005–2016 in the Amman Stock Exchange. The standard of profit warnings indicators have related negatively to stock price synchronicity in Jordanian firms, meaning that firms with a high portion of profit warnings integrate with more firm-specific information into stock price. Robust regression was used rather than OLS as a parametric test to overcome the variances inflation factor (VIF) and heteroscedasticity issues recognised as having occurred during running the OLS regression; this enabled us to obtained stronger results that fall in line with our prediction that higher profit warning encourages firm investors to collect and process more firm-specific information than common market information.

Keywords: Profit Warnings, Jordanian Firms, Stock Price Informativeness, Synchronicity

Procedia PDF Downloads 142
3585 Major Variables Influencing Marketed Surplus of Seed Cotton in District Khanewal, Pakistan

Authors: Manan Aslam, Shafqat Rasool

Abstract:

This paper attempts to examine impact of major factors affecting marketed surplus of seed cotton in district Khanewal (Punjab) using primary source of data. A representative sample of 40 cotton farmers was selected using stratified random sampling technique. The impact of major factors on marketed surplus of seed cotton growers was estimated by employing double log form of regression analysis. The value of adjusted R2 was 0.64 whereas the F-value was 10.81. The findings of analysis revealed that experience of farmers, education of farmers, area under cotton crop and distance from wholesale market were the significant variables affecting marketed surplus of cotton whereas the variables (marketing cost and sale price) showed insignificant impact. The study suggests improving prevalent marketing practices to increase volume of marketed surplus of cotton in district Khanewal.

Keywords: seed cotton, marketed surplus, double log regression analysis

Procedia PDF Downloads 307
3584 Modelling of Factors Affecting Bond Strength of Fibre Reinforced Polymer Externally Bonded to Timber and Concrete

Authors: Abbas Vahedian, Rijun Shrestha, Keith Crews

Abstract:

In recent years, fibre reinforced polymers as applications of strengthening materials have received significant attention by civil engineers and environmentalists because of their excellent characteristics. Currently, these composites have become a mainstream technology for strengthening of infrastructures such as steel, concrete and more recently, timber and masonry structures. However, debonding is identified as the main problem which limit the full utilisation of the FRP material. In this paper, a preliminary analysis of factors affecting bond strength of FRP-to-concrete and timber bonded interface has been conducted. A novel theoretical method through regression analysis has been established to evaluate these factors. Results of proposed model are then assessed with results of pull-out tests and satisfactory comparisons are achieved between measured failure loads (R2 = 0.83, P < 0.0001) and the predicted loads (R2 = 0.78, P < 0.0001).

Keywords: debonding, fibre reinforced polymers (FRP), pull-out test, stepwise regression analysis

Procedia PDF Downloads 248
3583 Modified Clusterwise Regression for Pavement Management

Authors: Mukesh Khadka, Alexander Paz, Hanns de la Fuente-Mella

Abstract:

Typically, pavement performance models are developed in two steps: (i) pavement segments with similar characteristics are grouped together to form a cluster, and (ii) the corresponding performance models are developed using statistical techniques. A challenge is to select the characteristics that define clusters and the segments associated with them. If inappropriate characteristics are used, clusters may include homogeneous segments with different performance behavior or heterogeneous segments with similar performance behavior. Prediction accuracy of performance models can be improved by grouping the pavement segments into more uniform clusters by including both characteristics and a performance measure. This grouping is not always possible due to limited information. It is impractical to include all the potential significant factors because some of them are potentially unobserved or difficult to measure. Historical performance of pavement segments could be used as a proxy to incorporate the effect of the missing potential significant factors in clustering process. The current state-of-the-art proposes Clusterwise Linear Regression (CLR) to determine the pavement clusters and the associated performance models simultaneously. CLR incorporates the effect of significant factors as well as a performance measure. In this study, a mathematical program was formulated for CLR models including multiple explanatory variables. Pavement data collected recently over the entire state of Nevada were used. International Roughness Index (IRI) was used as a pavement performance measure because it serves as a unified standard that is widely accepted for evaluating pavement performance, especially in terms of riding quality. Results illustrate the advantage of the using CLR. Previous studies have used CLR along with experimental data. This study uses actual field data collected across a variety of environmental, traffic, design, and construction and maintenance conditions.

Keywords: clusterwise regression, pavement management system, performance model, optimization

Procedia PDF Downloads 251
3582 PID Control of Quad-Rotor Unnamed Vehicle Based on Lagrange Approach Modelling

Authors: A. Benbouali, H. Saidi, A. Derrouazin, T. Bessaad

Abstract:

Aerial robotics is a very exciting research field dealing with a variety of subjects, including the attitude control. This paper deals with the control of a four rotor vertical take-off and landing (VTOL) Unmanned Aerial Vehicle. The paper presents a mathematical model based on the approach of Lagrange for the flight control of an autonomous quad-rotor. It also describes the controller architecture which is based on PID regulators. The control method has been simulated in closed loop in different situations. All the calculation stages and the simulation results have been detailed.

Keywords: quad-rotor, lagrange approach, proportional integral derivate (PID) controller, Matlab/Simulink

Procedia PDF Downloads 400
3581 Lean Implementation Analysis on the Safety Performance of Construction Projects in the Philippines

Authors: Kim Lindsay F. Restua, Jeehan Kyra A. Rivero, Joneka Myles D. Taguba

Abstract:

Lean construction is defined as an approach in construction with the purpose of reducing waste in the process without compromising the value of the project. There are numerous lean construction tools that are applied in the construction process, which maximizes the efficiency of work and satisfaction of customers while minimizing waste. However, the complexity and differences of construction projects cause a rise in challenges on achieving the lean benefits construction can give, such as improvement in safety performance. The objective of this study is to determine the relationship between lean construction tools and their effects on safety performance. The relationship between construction tools applied in construction and safety performance is identified through Logistic Regression Analysis, and Correlation Analysis was conducted thereafter. Based on the findings, it was concluded that almost 60% of the factors listed in the study, which are different tools and effects of lean construction, were determined to have a significant relationship with the level of safety in construction projects.

Keywords: correlation analysis, lean construction tools, lean construction, logistic regression analysis, risk management, safety

Procedia PDF Downloads 186
3580 Mutual Fund Anchoring Bias with its Parent Firm Performance: Evidence from Mutual Fund Industry of Pakistan

Authors: Muhammad Tahir

Abstract:

Purpose The purpose of the study is to find anchoring bias behavior in mutual fund return with its parent firm performance in Pakistan. Research Methodology The paper used monthly returns of equity funds whose parent firm exist from 2011 to 2021, along with parent firm return. Proximity to 52-week highest return calculated by dividing fund return by parent firm 52-week highest return. Control variables are also taken and used pannel regression model to estimate our results. For robust results, we also used feasible generalize least square (FGLS) model. Findings The results showed that there exist anchoring biased in mutual fund return with its parent firm performance. The FGLS results reaffirms the same results as obtained from panner regression results. Proximity to 52-week highest Xc is significant in both models. Research Implication Since most of mutual funds has a parent firm, anchoring behavior biased found in mutual fund with its parent firm performance. Practical Implication Mutual fund investors in Pakistan invest in equity funds in which behavioral bias exist, although there might be better opportunity in market. Originality/Value Addition Our research is a pioneer study to investigate anchoring bias in mutual fund return with its parent firm performance. Research limitations Our sample is limited to only 23 equity funds, which has a parent firm and data was available from 2011 to 2021.

Keywords: mutual fund, anchoring bias, 52-week high return, proximity to 52-week high, parent firm performance, pannel regression, FGLS

Procedia PDF Downloads 119
3579 Topical Nonsteroidal Anti-Inflammatory Eye Drops and Oral Acetazolamide for Macular Edema after Uncomplicated Phacoemulsification: Outcome and Predictors of Non-Response

Authors: Wissam Aljundi, Loay Daas, Yaser Abu Dail, Barbara Käsmann-Kellner, Berthold Seitz, Alaa Din Abdin

Abstract:

Purpose: To investigate the effectiveness of nonsteroidal anti-inflammatory eye drops (NSAIDs) combined with oral acetazolamide for postoperative macular edema (PME) after uncomplicated phacoemulsification (PE) and to identify predictors of non-response. Methods: We analyzed data of uncomplicated PE and identified eyes with PME. First-line therapy included topical NSAIDs combined with oral acetazolamide. In case of non-response, triamcinolone was administered subtenonally. Outcome measures included best-corrected visual acuity (BCVA) and central macular thickness (CMT). Results: 94 eyes out of 9750 uncomplicated PE developed PME, of which 60 eyes were included. Follow-ups occurred 6.4±1.8, 12.5±3.7, and 18.6±6.0 weeks after diagnosis. BCVA and CMT improved significantly in all follow-ups. 40 eyes showed response to first-line therapy at first follow-up (G1). The remaining 20 eyes showed no response and required subtenon triamcinolone (G2), of which 11 eyes showed complete regression at the second follow-up and 4 eyes at the third follow-up. 5 eyes showed no response and required intravitreal injection. Multivariate linear regression model showed that diabetes mellitus (DM) and increased cumulative dissipated energy (CDE) are predictors of non-response. Conclusion: Topical NSAIDs with acetazolamide resulted in complete regression of PME in 67% of all cases. DM and increased CDE might be considered as predictors of nonresponse to this treatment.

Keywords: postoperative macular edema, intravitreal injection, cumulative energy, irvine gass syndrome, pseudophakie

Procedia PDF Downloads 117
3578 Functional Decomposition Based Effort Estimation Model for Software-Intensive Systems

Authors: Nermin Sökmen

Abstract:

An effort estimation model is needed for software-intensive projects that consist of hardware, embedded software or some combination of the two, as well as high level software solutions. This paper first focuses on functional decomposition techniques to measure functional complexity of a computer system and investigates its impact on system development effort. Later, it examines effects of technical difficulty and design team capability factors in order to construct the best effort estimation model. With using traditional regression analysis technique, the study develops a system development effort estimation model which takes functional complexity, technical difficulty and design team capability factors as input parameters. Finally, the assumptions of the model are tested.

Keywords: functional complexity, functional decomposition, development effort, technical difficulty, design team capability, regression analysis

Procedia PDF Downloads 293
3577 Enhancing Seismic Resilience in Urban Environments

Authors: Beatriz González-rodrigo, Diego Hidalgo-leiva, Omar Flores, Claudia Germoso, Maribel Jiménez-martínez, Laura Navas-sánchez, Belén Orta, Nicola Tarque, Orlando Hernández- Rubio, Miguel Marchamalo, Juan Gregorio Rejas, Belén Benito-oterino

Abstract:

Cities facing seismic hazard necessitate detailed risk assessments for effective urban planning and vulnerability identification, ensuring the safety and sustainability of urban infrastructure. Comprehensive studies involving seismic hazard, vulnerability, and exposure evaluations are pivotal for estimating potential losses and guiding proactive measures against seismic events. However, broad-scale traditional risk studies limit consideration of specific local threats and identify vulnerable housing within a structural typology. Achieving precise results at neighbourhood levels demands higher resolution seismic hazard exposure, and vulnerability studies. This research aims to bolster sustainability and safety against seismic disasters in three Central American and Caribbean capitals. It integrates geospatial techniques and artificial intelligence into seismic risk studies, proposing cost-effective methods for exposure data collection and damage prediction. The methodology relies on prior seismic threat studies in pilot zones, utilizing existing exposure and vulnerability data in the region. Emphasizing detailed building attributes enables the consideration of behaviour modifiers affecting seismic response. The approach aims to generate detailed risk scenarios, facilitating prioritization of preventive actions pre-, during, and post-seismic events, enhancing decision-making certainty. Detailed risk scenarios necessitate substantial investment in fieldwork, training, research, and methodology development. Regional cooperation becomes crucial given similar seismic threats, urban planning, and construction systems among involved countries. The outcomes hold significance for emergency planning and national and regional construction regulations. The success of this methodology depends on cooperation, investment, and innovative approaches, offering insights and lessons applicable to regions facing moderate seismic threats with vulnerable constructions. Thus, this framework aims to fortify resilience in seismic-prone areas and serves as a reference for global urban planning and disaster management strategies. In conclusion, this research proposes a comprehensive framework for seismic risk assessment in high-risk urban areas, emphasizing detailed studies at finer resolutions for precise vulnerability evaluations. The approach integrates regional cooperation, geospatial technologies, and adaptive fragility curve adjustments to enhance risk assessment accuracy, guiding effective mitigation strategies and emergency management plans.

Keywords: assessment, behaviour modifiers, emergency management, mitigation strategies, resilience, vulnerability

Procedia PDF Downloads 68
3576 Heart Ailment Prediction Using Machine Learning Methods

Authors: Abhigyan Hedau, Priya Shelke, Riddhi Mirajkar, Shreyash Chaple, Mrunali Gadekar, Himanshu Akula

Abstract:

The heart is the coordinating centre of the major endocrine glandular structure of the body, which produces hormones that profoundly affect the operations of the body, and diagnosing cardiovascular disease is a difficult but critical task. By extracting knowledge and information about the disease from patient data, data mining is a more practical technique to help doctors detect disorders. We use a variety of machine learning methods here, including logistic regression and support vector classifiers (SVC), K-nearest neighbours Classifiers (KNN), Decision Tree Classifiers, Random Forest classifiers and Gradient Boosting classifiers. These algorithms are applied to patient data containing 13 different factors to build a system that predicts heart disease in less time with more accuracy.

Keywords: logistic regression, support vector classifier, k-nearest neighbour, decision tree, random forest and gradient boosting

Procedia PDF Downloads 50
3575 A Case Comparative Study of Infant Mortality Rate in North-West Nigeria

Authors: G. I. Onwuka, A. Danbaba, S. U. Gulumbe

Abstract:

This study investigated of Infant Mortality Rate as observed at a general hospital in Kaduna-South, Kaduna State, North West Nigeria. The causes of infant Mortality were examined. The data used for this analysis were collected at the statistics unit of the Hospital. The analysis was carried out on the data using Multiple Linear regression Technique and this showed that there is linear relationship between the dependent variable (death) and the independent variables (malaria, measles, anaemia, and coronary heart disease). The resultant model also revealed that a unit increment in each of these diseases would result to a unit increment in death recorded, 98.7% of the total variation in mortality is explained by the given model. The highest number of mortality was recorded in July, 2005 and the lowest mortality recorded in October, 2009.Recommendations were however made based on the results of the study.

Keywords: infant mortality rate, multiple linear regression, diseases, serial correlation

Procedia PDF Downloads 329
3574 Investigating the Effect of Study Plan and Homework on Student's Performance by Using Web Based Learning MyMathLab

Authors: Mohamed Chabi, Mahmoud I. Syam, Sarah Aw

Abstract:

In Summer 2012, the Foundation Program Unit of Qatar University has started implementing new ways of teaching Math by introducing MML (MyMathLab) as an innovative interactive tool to support standard teaching. In this paper, we focused on the effect of proper use of the Study Plan component of MML on student’s performance. Authors investigated the results of students of pre-calculus course during Fall 2013 in Foundation Program at Qatar University. The results showed that there is a strong correlation between study plan results and final exam results, also a strong relation between homework results and final exam results. In addition, the attendance average affected on the student’s results in general. Multiple regression is determined between passing rate dependent variable and study plan, homework as independent variable.

Keywords: MyMathLab, study plan, assessment, homework, attendance, correlation, regression

Procedia PDF Downloads 419
3573 Mediterranean Diet, Duration of Admission and Mortality in Elderly, Hospitalized Patients: A Cross-Sectional Study

Authors: Christos Lampropoulos, Maria Konsta, Ifigenia Apostolou, Vicky Dradaki, Tamta Sirbilatze, Irini Dri, Christina Kordali, Vaggelis Lambas, Kostas Argyros, Georgios Mavras

Abstract:

Objectives: Mediterranean diet has been associated with lower incidence of cardiovascular disease and cancer. The purpose of our study was to examine the hypothesis that Mediterranean diet may protect against mortality and reduce admission duration in elderly, hospitalized patients. Methods: Sample population included 150 patients (78 men, 72 women, mean age 80±8.2). The following data were taken into account in analysis: anthropometric and laboratory data, dietary habits (MedDiet score), patients’ nutritional status [Mini Nutritional Assessment (MNA) score], physical activity (International Physical Activity Questionnaires, IPAQ), smoking status, cause and duration of current admission, medical history (co-morbidities, previous admissions). Primary endpoints were mortality (from admission until 6 months afterwards) and duration of admission, compared to national guidelines for closed consolidated medical expenses. Logistic regression and linear regression analysis were performed in order to identify independent predictors for mortality and admission duration difference respectively. Results: According to MNA, nutrition was normal in 54/150 (36%) of patients, 46/150 (30.7%) of them were at risk of malnutrition and the rest 50/150 (33.3%) were malnourished. After performing multivariate logistic regression analysis we found that the odds of death decreased 30% per each unit increase of MedDiet score (OR=0.7, 95% CI:0.6-0.8, p < 0.0001). Patients with cancer-related admission were 37.7 times more likely to die, compared to those with infection (OR=37.7, 95% CI:4.4-325, p=0.001). According to multivariate linear regression analysis, admission duration was inversely related to Mediterranean diet, since it is decreased 0.18 days on average for each unit increase of MedDiet score (b:-0.18, 95% CI:-0.33 - -0.035, p=0.02). Additionally, the duration of current admission increased on average 0.83 days for each previous hospital admission (b:0.83, 95% CI:0.5-1.16, p<0.0001). The admission duration of patients with cancer was on average 4.5 days higher than the patients who admitted due to infection (b:4.5, 95% CI:0.9-8, p=0.015). Conclusion: Mediterranean diet adequately protects elderly, hospitalized patients against mortality and reduces the duration of hospitalization.

Keywords: Mediterranean diet, malnutrition, nutritional status, prognostic factors for mortality

Procedia PDF Downloads 313
3572 The Effect of User Comments on Traffic Application Usage

Authors: I. Gokasar, G. Bakioglu

Abstract:

With the unprecedented rates of technological improvements, people start to solve their problems with the help of technological tools. According to application stores and websites in which people evaluate and comment on the traffic apps, there are more than 100 traffic applications which have different features with respect to their purpose of usage ranging from the features of traffic apps for public transit modes to the features of traffic apps for private cars. This study focuses on the top 30 traffic applications which were chosen with respect to their download counts. All data about the traffic applications were obtained from related websites. The purpose of this study is to analyze traffic applications in terms of their categorical attributes with the help of developing a regression model. The analysis results suggest that negative interpretations (e.g., being deficient) does not lead to lower star ratings of the applications. However, those negative interpretations result in a smaller increase in star rate. In addition, women use higher star rates than men for the evaluation of traffic applications.

Keywords: traffic app, real–time information, traffic congestion, regression analysis, dummy variables

Procedia PDF Downloads 429
3571 Impact of Trade Cooperation of BRICS Countries on Economic Growth

Authors: Svetlana Gusarova

Abstract:

The essential role in the recent development of world economy has led to the developing countries, notably to BRICS countries (Brazil, Russia, India, China, South Africa). Over the next 50 years the BRICS countries are expected to be the engines of global trade and economic growth. Trade cooperation of BRICS countries can enhance their economic development. BRICS countries were among Top 10 world exporters of office and telecom equipment, of textiles, of clothing, of iron and steel, of chemicals, of agricultural products, of automotive products, of fuel and mining products. China was one of the main trading partners of all BRICS countries, maintaining close relationship with all BRICS countries in the development of trade. Author analyzed trade complementarity of BRICS countries and revealed the high level of complementarity of their trade flows in connection with availability of specialization in different types of goods. The correlation and regression analysis of communication of Intra-BRICS merchandise turnover and their GDP (PPP) revealed very strong impact on the development of their economies.

Keywords: BRICS countries, trade cooperation, complementarity, regression analysis

Procedia PDF Downloads 281
3570 Adaptive Neuro Fuzzy Inference System Model Based on Support Vector Regression for Stock Time Series Forecasting

Authors: Anita Setianingrum, Oki S. Jaya, Zuherman Rustam

Abstract:

Forecasting stock price is a challenging task due to the complex time series of the data. The complexity arises from many variables that affect the stock market. Many time series models have been proposed before, but those previous models still have some problems: 1) put the subjectivity of choosing the technical indicators, and 2) rely upon some assumptions about the variables, so it is limited to be applied to all datasets. Therefore, this paper studied a novel Adaptive Neuro-Fuzzy Inference System (ANFIS) time series model based on Support Vector Regression (SVR) for forecasting the stock market. In order to evaluate the performance of proposed models, stock market transaction data of TAIEX and HIS from January to December 2015 is collected as experimental datasets. As a result, the method has outperformed its counterparts in terms of accuracy.

Keywords: ANFIS, fuzzy time series, stock forecasting, SVR

Procedia PDF Downloads 246