Search results for: Redundancy Matrix
1699 Sensitivity Enhancement in Graphene Based Surface Plasmon Resonance (SPR) Biosensor
Authors: Angad S. Kushwaha, Rajeev Kumar, Monika Srivastava, S. K. Srivastava
Abstract:
A lot of research work is going on in the field of graphene based SPR biosensor. In the conventional SPR based biosensor, graphene is used as a biomolecular recognition element. Graphene adsorbs biomolecules due to carbon based ring structure through sp2 hybridization. The proposed SPR based biosensor configuration will open a new avenue for efficient biosensing by taking the advantage of Graphene and its fascinating nanofabrication properties. In the present study, we have studied an SPR biosensor based on graphene mediated by Zinc Oxide (ZnO) and Gold. In the proposed structure, prism (BK7) base is coated with Zinc Oxide followed by Gold and Graphene. Using the waveguide approach by transfer matrix method, the proposed structure has been investigated theoretically. We have analyzed the reflectance versus incidence angle curve using He-Ne laser of wavelength 632.8 nm. Angle, at which the reflectance is minimized, termed as SPR angle. The shift in SPR angle is responsible for biosensing. From the analysis of reflectivity curve, we have found that there is a shift in SPR angle as the biomolecules get attached on the graphene surface. This graphene layer also enhances the sensitivity of the SPR sensor as compare to the conventional sensor. The sensitivity also increases by increasing the no of graphene layer. So in our proposed biosensor we have found minimum possible reflectivity with optimum level of sensitivity.Keywords: biosensor, sensitivity, surface plasmon resonance, transfer matrix method
Procedia PDF Downloads 4171698 Magnetorheological Silicone Composites Filled with Micro- and Nano-Sized Magnetites with the Addition of Ionic Liquids
Authors: M. Masłowski, M. Zaborski
Abstract:
Magnetorheological elastomer composites based on micro- and nano-sized Fe3O4 magnetoactive fillers in silicone rubber are reported and studied. To improve the dispersion of applied fillers in polymer matrix, ionic liquids such as 1-ethyl-3-methylimidazolium diethylphosphate, 1-butyl-3-methylimidazolium hexafluorophosphate, 1-hexyl-3-methylimidazolium chloride, 1-butyl-3-methylimidazolium trifluoromethanesulfonate,1-butyl-3-methylimidazolium tetrafluoroborate, trihexyltetradecylphosphonium chloride were added during the process of composites preparation. The method of preparation process influenced the specific properties of MREs (isotropy/anisotropy), similarly to ferromagnetic particles content and theirs quantity. Micro and non-sized magnetites were active fillers improving the mechanical properties of elastomers. They also changed magnetic properties and reinforced the magnetorheological effect of composites. Application of ionic liquids as dispersing agents influenced the dispersion of magnetic fillers in the elastomer matrix. Scanning electron microscopy images used to observe magnetorheological elastomer microstructures proved that the dispersion improvement had a significant effect on the composites properties. Moreover, the particles orientation and their arrangement in the elastomer investigated by vibration sample magnetometer showed the correlation between MRE microstructure and their magnetic properties.Keywords: magnetorheological elastomers, iron oxides, ionic liquids, dispersion
Procedia PDF Downloads 3311697 Synthesis of Antibacterial Bone Cement from Re-Cycle Biowaste Containing Methylmethacrylate (MMA) Matrix
Authors: Sungging Pintowantoro, Yuli Setiyorini, Rochman Rochim, Agung Purniawan
Abstract:
The bacterial infections are frequent and undesired occurrences after bone fracture treatment. One approach to reduce the incidence of bone fracture infection is the additional of microbial agents into bone cement. In this study, the synthesis of bone cement from re-cycles biowaste was successfully conducted completed with anti-bacterial function. The re-cycle of biowaste using microwave assisted was done in our previous studies in order to produce some of powder (calcium carbonate, carbonated-hydroxyapatite and chitosan). The ratio of these powder combined with methylmethacrylate (MMA) as the matrix in bone cement were investigated using XRD, FTIR, SEM-EDX, hardness test and anti-bacterial test, respectively. From the XRD, FTIR and EDX were resulted the formation of carbonated-hydroxyapatite, calcium carbonate and chitosan. The morphology was revealed porous structure both C2H3K1L and C2H1K3L, respectively. The antibacterial activity was tested against Staphylococcus aureus (S. aureus) for 24 hours. The inhibition of S. aureus was clearly shown, the hollow zone was resulted in various distance 14.2mm, 7.5mm, and 7.7mm, respectively. The hardness test was depicted in various results, however, C2H1K3L can be achived 36.84HV which is closed to dry cancelous bone 35HV. In general, this study results was promising materials to use as bone cement materials.Keywords: biomaterials, biowaste recycling, materials processing, microwave processing
Procedia PDF Downloads 3521696 Behavior of Cold Formed Steel in Trusses
Authors: Reinhard Hermawan Lasut, Henki Wibowo Ashadi
Abstract:
The use of materials in Indonesia's construction sector requires engineers and practitioners to develop efficient construction technology, one of the materials used in cold-formed steel. Generally, the use of cold-formed steel is used in the construction of roof trusses found in houses or factories. The failure of the roof truss structure causes errors in the calculation analysis in the form of cross-sectional dimensions or frame configuration. The roof truss structure, vertical distance effect to the span length at the edge of the frame carries the compressive load. If the span is too long, local buckling will occur which causes problems in the frame strength. The model analysis uses various shapes of roof trusses, span lengths and angles with analysis of the structural stiffness matrix method. Model trusses with one-fifth shortened span and one-sixth shortened span also The trusses model is reviewed with increasing angles. It can be concluded that the trusses model by shortening the span in the compression area can reduce deflection and the model by increasing the angle does not get good results because the higher the roof, the heavier the load carried by the roof so that the force is not channeled properly. The shape of the truss must be calculated correctly so the truss is able to withstand the working load so that there is no structural failure.Keywords: cold-formed, trusses, deflection, stiffness matrix method
Procedia PDF Downloads 1661695 Application of Taguchi Techniques on Machining of A356/Al2O3 Metal Matrix Nano-Composite
Authors: Abdallah M. Abdelkawy, Tarek M. El Hossainya, I. El Mahallawib
Abstract:
Recently, significant achievements have been made in development and manufacturing of nano-dispersed metal matrix nanocomposites (MMNCs). They gain their importance due to their high strength to weight ratio. The machining problems of these new materials are less widely investigated, thus this work focuses on machining of them. Aluminum-Silicon (A356)/ MMNC dispersed with alumina (Al2O3) is important in many applications include engine blocks. The final finish process of this application depends heavily on machining. The most important machining parameter studied includes: cutting force and surface roughness. Experimental trails are performed on the number of special samples of MMNC (with different Al2O3%) where the relation between Al2O3% and cutting speed, feed rate and cutting depth with cutting force and surface roughness were studied. The data obtained were statistically analyzed using Analysis of variance (ANOVA) to define the significant factors on both cutting force and surface roughness and their level of confident. Response Surface Methodology (RSM) is used to build a model relating cutting conditions and Al2O3% to the cutting force and surface roughness. The results have shown that feed and depth of cut have the major contribution on the cutting force and the surface roughness followed by cutting speed and nano-percent in MMNCs.Keywords: machinability, cutting force, surface roughness, Ra, RSM, ANOVA, MMNCs
Procedia PDF Downloads 3691694 Effect of Hollow and Solid Recycled-Poly Fibers on the Mechanical and Morphological Properties of Short-Fiber-Reinforced Polypropylene Composites
Authors: S. Kerakra, S. Bouhelal, M. Poncot
Abstract:
The aim of this study is to give a comprehensive overview of the effect of short hollow and solid recycled polyethylene terephthalate (PET) fibers in different breaking tenacities reinforced isotactic polypropylene (iPP) composites on the mechanical and morphological properties. Composites of iPP/3, 7and 10 wt% of solid and hollow recycled PET fibers were prepared by batched melt mixing in a Brabender. The incorporation of solid recycled-PET fibers in isotactic polypropylene increase Young’s modulus of iPP relatively, meanwhile it increased proportionally with hollow fibers content. An improvement of the storage modulus, and a shift up in glass transition temperatures of hollow fibers/iPP composites was determined by DMA results. The morphology of composites was determined by scanning electron microscope (SEM) and optical polarized microscopy (OM) showing a good dispersion of the hollow fibers. Also, their flexible aspect (folding, bending) was observed. But, one weak interaction between the polymer/fibers phases was shown. Polymers can be effectively reinforced with short hollow recycled PET fibers due to their characteristics like recyclability, lightweight and the flexible aspect, which allows the absorbance of the energy of a striker with a minimum damage of the matrix. Aiming to improve the affinity matrix–recycled hollow PET fibers, it is suggested the addition of compatibilizers, as maleic anhydride.Keywords: isotactic polypropylene, hollow recycled PET fibers, solid recycled-PET fibers, composites, short fiber, scanning electron microscope
Procedia PDF Downloads 2761693 Speech Perception by Monolingual and Bilingual Dravidian Speakers under Adverse Listening Conditions
Authors: S. B. Rathna Kumar, Sale Kranthi, Sandya K. Varudhini
Abstract:
The precise perception of spoken language is influenced by several variables, including the listeners’ native language, distance between speaker and listener, reverberation and background noise. When noise is present in an acoustic environment, it masks the speech signal resulting in reduction in the redundancy of the acoustic and linguistic cues of speech. There is strong evidence that bilinguals face difficulty in speech perception for their second language compared with monolingual speakers under adverse listening conditions such as presence of background noise. This difficulty persists even for speakers who are highly proficient in their second language and is greater in those who have learned the second language later in life. The present study aimed to assess the performance of monolingual (Telugu speaking) and bilingual (Tamil as first language and Telugu as second language) speakers on Telugu speech perception task under quiet and noisy environments. The results indicated that both the groups performed similar in both quiet and noisy environments. The findings of the present study are not in accordance with the findings of previous studies which strongly report poorer speech perception in adverse listening conditions such as noise with bilingual speakers for their second language compared with monolinguals.Keywords: monolingual, bilingual, second language, speech perception, quiet, noise
Procedia PDF Downloads 3891692 Advantages of Matrix Solid Phase Dispersive (MSPD) Extraction Associated to MIPS versus MAE Liquid Extraction for the Simultaneous Analysis of PAHs, PCBs and Some Hydroxylated PAHs in Sediments
Authors: F. Portet-Koltalo, Y. Tian, I. Berger, C. Boulanger-Lecomte, A. Benamar, N. Machour
Abstract:
Sediments are complex environments which can accumulate a great variety of persistent toxic contaminants such as polychlorobiphenyles (PCBs), polycyclic aromatic hydrocarbons (PAHs) and some of their more toxic degradation metabolites such as hydroxylated PAHs (OH-PAHs). Owing to their composition, fine clayey sediments can be more difficult to extract than soils using conventional solvent extraction processes. So this study aimed to compare the potential of MSPD (matrix solid phase dispersive extraction) to extract PCBs, PAHs and OH-PAHs, in comparison with microwave assisted extraction (MAE). Methodologies: MAE extraction with various solvent mixtures was used to extract PCBs, PAHs and OH-PAHs from sediments in two runs, followed by two GC-MS analyses. MSPD consisted in crushing the dried sediment with dispersive agents, introducing the mixture in cartridges and eluting the target compounds with an appropriate volume of selected solvents. So MSPD combined with cartridges containing MIPs (molecularly imprinted polymers) designed for OH-PAHs was used to extract the three families of target compounds in only one run, followed by parallel analyses in GC-MS for PAHs/PCBs and HPLC-FLD for OH-PAHs. Results: MAE extraction was optimized to extract from clayey sediments, in two runs, PAHs/PCBs in one hand and OH-PAHs in the other hand. Indeed, the best conditions of extractions (mixtures of extracting solvents, temperature) were different if we consider the polarity and the thermodegradability of the different families of target contaminants: PAHs/PCBs were better extracted using an acetone/toluene 50/50 mixture at 130°C whereas OH-PAHs were better extracted using an acetonitrile/toluene 90/10 mixture at 100°C. Moreover, the two consecutive GC-MS analyses contributed to double the total analysis time. A matrix solid phase dispersive (MSPD) extraction procedure was also optimized, with the first objective of increasing the extraction recovery yields of PAHs and PCBs from fine-grained sediment. The crushing time (2-10 min), the nature of the dispersing agents added for purifying and increasing the extraction yields (Florisil, octadecylsilane, 3-chloropropyle, 4-benzylchloride), the nature and the volume of eluting solvents (methylene chloride, hexane, hexane/acetone…) were studied. It appeared that in the best conditions, MSPD was a better extraction method than MAE for PAHs and PCBs, with respectively, mean increases of 8.2% and 71%. This method was also faster, easier and less expensive. But the other advantage of MSPD was that it allowed to introduce easily, just after the first elution process of PAHs/PCBs, a step permitting the selective recovery of OH-PAHs. A cartridge containing MIPs designed for phenols was coupled to the cartridge containing the dispersed sediment, and various eluting solvents, different from those used for PAHs and PCBs, were tested to selectively concentrate and extract OH-PAHs. Thereafter OH-PAHs could be analyzed at the same time than PAHs and PCBs: the OH-PAH extract could be analyzed with HPLC-FLD, whereas the PAHs/PCBs extract was analyzed with GC-MS, adding only few minutes more to the total duration of the analytical process. Conclusion: MSPD associated to MIPs appeared to be an easy, fast and low expensive method, able to extract in one run a complex mixture of toxic apolar and more polar contaminants present in clayey fine-grained sediments, an environmental matrix which is generally difficult to analyze.Keywords: contaminated fine-grained sediments, matrix solid phase dispersive extraction, microwave assisted extraction, molecularly imprinted polymers, multi-pollutant analysis
Procedia PDF Downloads 3531691 Ultra-High Molecular Weight Polyethylene (UHMWPE) for Radiation Dosimetry Applications
Authors: Malik Sajjad Mehmood, Aisha Ali, Hamna Khan, Tariq Yasin, Masroor Ikram
Abstract:
Ultra-high molecular weight polyethylene (UHMWPE) is one of the polymers belongs to polyethylene (PE) family having monomer –CH2– and average molecular weight is approximately 3-6 million g/mol. Due its chemical, mechanical, physical and biocompatible properties, it has been extensively used in the field of electrical insulation, medicine, orthopedic, microelectronics, engineering, chemistry and the food industry etc. In order to alter/modify the properties of UHMWPE for particular application of interest, certain various procedures are in practice e.g. treating the material with high energy irradiations like gamma ray, e-beam, and ion bombardment. Radiation treatment of UHMWPE induces free radicals within its matrix, and these free radicals are the precursors of chain scission, chain accumulation, formation of double bonds, molecular emission, crosslinking etc. All the aforementioned physical and chemical processes are mainly responsible for the modification of polymers properties to use them in any particular application of our interest e.g. to fabricate LEDs, optical sensors, antireflective coatings, polymeric optical fibers, and most importantly for radiation dosimetry applications. It is therefore, to check the feasibility of using UHMWPE for radiation dosimetery applications, the compressed sheets of UHMWPE were irradiated at room temperature (~25°C) for total dose values of 30 kGy and 100 kGy, respectively while one were kept un-irradiated as reference. Transmittance data (from 400 nm to 800 nm) of e-beam irradiated UHMWPE and its hybrids were measured by using Muller matrix spectro-polarimeter. As a result significant changes occur in the absorption behavior of irradiated samples. To analyze these (radiation induced) changes in polymer matrix Urbach edge method and modified Tauc’s equation has been used. The results reveal that optical activation energy decreases with irradiation. The values of activation energies are 2.85 meV, 2.48 meV, and 2.40 meV for control, 30 kGy, and 100 kGy samples, respectively. Direct and indirect energy band gaps were also found to decrease with irradiation due to variation of C=C unsaturation in clusters. We believe that the reported results would open new horizons for radiation dosimetery applications.Keywords: electron beam, radiation dosimetry, Tauc’s equation, UHMWPE, Urbach method
Procedia PDF Downloads 4071690 Surface Roughness of Al-Si/10% AlN MMC Material in Milling Operation Using the Taguchi Method
Authors: M. S. Said, J. A. Ghani, Izzati Osman, Z. A. Latiff, S. A .F. Syed Mohd
Abstract:
Metal matrix composites have demand for light-weight structural and functional materials. MMCs have been shown to offer improvements in strength, rigidity, temperature stability, wear resistance, reliability and control of physical properties such as density and coefficient of thermal expansion, thereby providing improved engineering performance in comparison to the un-reinforced matrix. Experiment were conducted at various cutting speed, feed rate and difference cutting tools according to Taguchi method using a standard orthogonal array L9. The volume of AlN reinforced particle was 10% in MMC. The milling process was carried out under dry cutting condition using uncoated carbide, TiN and TiCN tool insert. The parameters used were the cutting speed of (230,300,370 m/min) the federate used were (0.4, 0.6, 0.8 mm/tooth) while the depth of cut is constant (0.3 mm). The tool diameter is 20mm. From the project, the surface roughness mechanism was investigated in detail using Mitutoyo portable surface roughness measurements surftest SJ-310. This machining will be fabricated on MMC with 150mm length, 100mm width and 30mm thick. The results showed using S/N ratio, concluded that a combination of low cutting speed, medium feed rate and uncoated insert give a remarkable surface finish. From the ANOVA result showed the feed rate was major contributing factor (43.76%) following type of insert (40.89%).Keywords: MMC, milling operation and surface roughness, Taguchi method
Procedia PDF Downloads 5291689 Reliability Analysis of a Life Support System in a Public Aquarium
Authors: Mehmet Savsar
Abstract:
Complex Life Support Systems (LSS) are used in all large commercial and public aquariums in order to keep the fish alive. Reliabilities of individual equipment, as well as the complete system, are extremely important and critical since the life and safety of important fish depend on these life support systems. Failure of some critical device or equipment, which do not have redundancy, results in negative consequences and affects life support as a whole. In this paper, we have considered a life support system in a large public aquarium in Kuwait Scientific Center and presented a procedure and analysis to show how the reliability of such systems can be estimated by using appropriate tools and collected data. We have also proposed possible improvements for systems reliability. In particular, addition of parallel components and spare parts are considered and the numbers of spare parts needed for each component to achieve a required reliability during specified lead time are calculated. The results show that significant improvements in system reliability can be achieved by operating some LSS components in parallel and having certain numbers of spares available in the spare parts inventories. The procedures and the results presented in this paper are expected to be useful for aquarium engineers and maintenance managers dealing with LSS.Keywords: life support systems, aquariums, reliability, failures, availability, spare parts
Procedia PDF Downloads 2801688 Embedded Semantic Segmentation Network Optimized for Matrix Multiplication Accelerator
Authors: Jaeyoung Lee
Abstract:
Autonomous driving systems require high reliability to provide people with a safe and comfortable driving experience. However, despite the development of a number of vehicle sensors, it is difficult to always provide high perceived performance in driving environments that vary from time to season. The image segmentation method using deep learning, which has recently evolved rapidly, provides high recognition performance in various road environments stably. However, since the system controls a vehicle in real time, a highly complex deep learning network cannot be used due to time and memory constraints. Moreover, efficient networks are optimized for GPU environments, which degrade performance in embedded processor environments equipped simple hardware accelerators. In this paper, a semantic segmentation network, matrix multiplication accelerator network (MMANet), optimized for matrix multiplication accelerator (MMA) on Texas instrument digital signal processors (TI DSP) is proposed to improve the recognition performance of autonomous driving system. The proposed method is designed to maximize the number of layers that can be performed in a limited time to provide reliable driving environment information in real time. First, the number of channels in the activation map is fixed to fit the structure of MMA. By increasing the number of parallel branches, the lack of information caused by fixing the number of channels is resolved. Second, an efficient convolution is selected depending on the size of the activation. Since MMA is a fixed, it may be more efficient for normal convolution than depthwise separable convolution depending on memory access overhead. Thus, a convolution type is decided according to output stride to increase network depth. In addition, memory access time is minimized by processing operations only in L3 cache. Lastly, reliable contexts are extracted using the extended atrous spatial pyramid pooling (ASPP). The suggested method gets stable features from an extended path by increasing the kernel size and accessing consecutive data. In addition, it consists of two ASPPs to obtain high quality contexts using the restored shape without global average pooling paths since the layer uses MMA as a simple adder. To verify the proposed method, an experiment is conducted using perfsim, a timing simulator, and the Cityscapes validation sets. The proposed network can process an image with 640 x 480 resolution for 6.67 ms, so six cameras can be used to identify the surroundings of the vehicle as 20 frame per second (FPS). In addition, it achieves 73.1% mean intersection over union (mIoU) which is the highest recognition rate among embedded networks on the Cityscapes validation set.Keywords: edge network, embedded network, MMA, matrix multiplication accelerator, semantic segmentation network
Procedia PDF Downloads 1291687 Chaos Analysis of a 3D Finance System and Generalized Synchronization for N-Dimension
Authors: Muhammad Fiaz
Abstract:
The article in hand is the study of complex features like Zero Hopf Bifurcation, Chaos and Synchronization of integer and fractional order version of a new 3D finance system. Trusted tools of averaging theory and active control method are utilized for investigation of Zero Hopf bifurcation and synchronization for both versions respectively. Inventiveness of the paper is to find the answer of a question that is it possible to find a chaotic system which can be synchronized with any other of the same dimension? Based on different examples we categorically develop a theory that if a couple of master and slave chaotic dynamical system is synchronized by selecting a suitable gain matrix with special conditions then the master system is synchronized with any chaotic dynamical system of the same dimension. With the help of this study we developed generalized theorems for synchronization of n-dimension dynamical systems for integer as well as fractional versions. it proposed that this investigation will contribute a lot to control dynamical systems and only a suitable gain matrix with special conditions is enough to synchronize the system under consideration with any other chaotic system of the same dimension. Chaotic properties of fractional version of the new finance system are also analyzed at fractional order q=0.87. Simulations results, where required, also provided for authenticity of analytical study.Keywords: complex analysis, chaos, generalized synchronization, control dynamics, fractional order analysis
Procedia PDF Downloads 681686 Engineering a Tumor Extracellular Matrix Towards an in vivo Mimicking 3D Tumor Microenvironment
Authors: Anna Cameron, Chunxia Zhao, Haofei Wang, Yun Liu, Guang Ze Yang
Abstract:
Since the first publication in 1775, cancer research has built a comprehensive understanding of how cellular components of the tumor niche promote disease development. However, only within the last decade has research begun to establish the impact of non-cellular components of the niche, particularly the extracellular matrix (ECM). The ECM, a three-dimensional scaffold that sustains the tumor microenvironment, plays a crucial role in disease progression. Cancer cells actively deregulate and remodel the ECM to establish a tumor-promoting environment. Recent work has highlighted the need to further our understanding of the complexity of this cancer-ECM relationship. In vitro models use hydrogels to mimic the ECM, as hydrogel matrices offer biological compatibility and stability needed for long term cell culture. However, natural hydrogels are being used in these models verbatim, without tuning their biophysical characteristics to achieve pathophysiological relevance, thus limiting their broad use within cancer research. The biophysical attributes of these gels dictate cancer cell proliferation, invasion, metastasis, and therapeutic response. Evaluating the three most widely used natural hydrogels, Matrigel, collagen, and agarose gel, the permeability, stiffness, and pore-size of each gel were measured and compared to the in vivo environment. The pore size of all three gels fell between 0.5-6 µm, which coincides with the 0.1-5 µm in vivo pore size found in the literature. However, the stiffness for hydrogels able to support cell culture ranged between 0.05 and 0.3 kPa, which falls outside the range of 0.3-20,000 kPa reported in the literature for an in vivo ECM. Permeability was ~100x greater than in vivo measurements, due in large part to the lack of cellular components which impede permeation. Though, these measurements prove important when assessing therapeutic particle delivery, as the ECM permeability decreased with increasing particle size, with 100 nm particles exhibiting a fifth of the permeability of 10 nm particles. This work explores ways of adjusting the biophysical characteristics of hydrogels by changing protein concentration and the trade-off, which occurs due to the interdependence of these factors. The global aim of this work is to produce a more pathophysiologically relevant model for each tumor type.Keywords: cancer, extracellular matrix, hydrogel, microfluidic
Procedia PDF Downloads 911685 Risk and Vulnerability Assessment of Agriculture on Climate Change: Bangnampriao District, Thailand
Authors: Charuvan Kasemsap
Abstract:
This research was studied in Bangnampriao District, Chachernsao Province, Thailand. The primary data relating to flooding, drought, and saline intrusion problem on agriculture were collected by surveying, focus group, and in-depth interview with agricultural officers, technical officers of irrigation department, and local government leader of Bangnampriao District. The likelihood and consequence of risk were determined the risk index by risk assessment matrix. In addition, the risk index and the total coping capacity scores were investigated the vulnerability index by vulnerability matrix. It was found that the high-risk drought and saline intrusion was dramatically along Bang Pakong River owing to the end destination of Chao Phraya Irrigation system of Central Thailand. This leads yearly the damage of rice paddy, mango tree, orchard, and fish pond. Therefore, some agriculture avoids rice growing during January to May, and also pumps fresh water from a canal into individual storage pond. However, Bangnampriao District will be strongly affected by the impacts of climate change. Monthly precipitations are expected to decrease in number; dry seasons are expected to be more in number and longer in duration. Thus, the risk and vulnerability of agriculture are also increasing. Adaptation strategies need to be put in place in order to enhance the resilience of the agriculture.Keywords: agriculture, bangnampriao, climate change, risk assessment
Procedia PDF Downloads 4301684 Braille Code Matrix
Authors: Mohammed E. A. Brixi Nigassa, Nassima Labdelli, Ahmed Slami, Arnaud Pothier, Sofiane Soulimane
Abstract:
According to the world health organization (WHO), there are almost 285 million people with visual disability, 39 million of these people are blind. Nevertheless, there is a code for these people that make their life easier and allow them to access information more easily; this code is the Braille code. There are several commercial devices allowing braille reading, unfortunately, most of these devices are not ergonomic and too expensive. Moreover, we know that 90 % of blind people in the world live in low-incomes countries. Our contribution aim is to concept an original microactuator for Braille reading, as well as being ergonomic, inexpensive and lowest possible energy consumption. Nowadays, the piezoelectric device gives the better actuation for low actuation voltage. In this study, we focus on piezoelectric (PZT) material which can bring together all these conditions. Here, we propose to use one matrix composed by six actuators to form the 63 basic combinations of the Braille code that contain letters, numbers, and special characters in compliance with the standards of the braille code. In this work, we use a finite element model with Comsol Multiphysics software for designing and modeling this type of miniature actuator in order to integrate it into a test device. To define the geometry and the design of our actuator, we used physiological limits of perception of human being. Our results demonstrate in our study that piezoelectric actuator could bring a large deflection out-of-plain. Also, we show that microactuators can exhibit non uniform compression. This deformation depends on thin film thickness and the design of membrane arm. The actuator composed of four arms gives the higher deflexion and it always gives a domed deformation at the center of the deviceas in case of the Braille system. The maximal deflection can be estimated around ten micron per Volt (~ 10µm/V). We noticed that the deflection according to the voltage is a linear function, and this deflection not depends only on the voltage the voltage, but also depends on the thickness of the film used and the design of the anchoring arm. Then, we were able to simulate the behavior of the entire matrix and thus display different characters in Braille code. We used these simulations results to achieve our demonstrator. This demonstrator is composed of a layer of PDMS on which we put our piezoelectric material, and then added another layer of PDMS to isolate our actuator. In this contribution, we compare our results to optimize the final demonstrator.Keywords: Braille code, comsol software, microactuators, piezoelectric
Procedia PDF Downloads 3551683 Thermo-Mechanical Treatments of Cu-Ti Alloys
Authors: M. M. Morgham, A. A. Hameda, N. A. Zriba, H. A. Jawan
Abstract:
This paper aims to study the effect of cold work condition on the microstructure of Cu-1.5wt%Ti, and Cu-3.5wt%Ti and hence mechanical properties. The samples under investigation were machined and solution heat treated. X-ray diffraction technique is used to identify the different phases present after cold deformation by compression and also different heat treatment and also measuring the relative quantities of phases present. Metallographic examination is used to study the microstructure of the samples. The hardness measurements were used to indicate the change in mechanical properties. The results are compared with the mechanical properties obtained by previous workers. Experiments on cold compression followed by aging of Cu-Ti alloys have indicated that the most effective hardening of the material results from continuous precipitation of very fine particles within the matrix. These particles were reported to be β`-type, Cu4Ti phase. The β`-β transformation and particles coarsening within the matrix as well as a long grain boundaries were responsible for the averaging of Cu-1.5wt%Ti and Cu-3.5wt%Ti alloys. It is well know that plate like particles are β – type, Cu3Ti phase. Discontinuous precipitation was found to start at the grain boundaries and expand into grain interior. At the higher aging temperature a classic widmanstätten morphology forms giving rise to a coarse microstructure comprised of α and the equilibrium phase β. Those results were confirmed by X-ray analysis, which found that a few percent of Cu3Ti, β precipitates are formed during aging at high temperature for long time for both Cu- Ti alloys (i.e. Cu-1.5wt%Ti and Cu-3.5wt%Ti).Keywords: metallographic, hardness, precipitation, aging
Procedia PDF Downloads 4061682 Tribocorrosion Behavior of Austempered Ductile Iron Microalloyed with Boron
Authors: S. Gvazava, N. Khidasheli, G. Gordeziani, A. DL. Batako
Abstract:
The work presented in this paper studied the tribological characteristics (wear resistance, friction coefficient) of austempered ductile iron (ADI) with different combinations of structural composition (upper bainite, lower bainite, retained austenite) in dry sliding friction. A range of structural states of the metal matrix was obtained by changing the regimes of isothermal quenching of high-strength cast iron. The tribological tests were carried out using two sets of isothermal quenched cast irons. After austenitization at 900°С for 60 minutes, the specimens from the first group were isothermally quenched at the 300°С temperature and the specimens from the second set – at 400°С. The investigations showed that the isothermal quenching increases the friction coefficient of high-strength cast irons. The friction coefficient was found to be in the range from 0.4 to 0.55 for cast irons, depending on the structures of the metal matrix. The quenched cast irons having lower bainite demonstrate higher wear resistance in dry friction conditions. The dependence of wear resistance on the amount of retained austenite in isothermal quenched cast irons has a nonlinear characteristic and reaches its maximum value when the content of retained austenite is about 15-22%. The boron micro-additives allowed to reduce the friction coefficient of ADI and increase their wear resistance by 1.5-1.7 times.Keywords: wear resistance, dry sliding, austempering, ADI, friction coefficient, retained austenite, isothermal quenching
Procedia PDF Downloads 1811681 Visualization and Performance Measure to Determine Number of Topics in Twitter Data Clustering Using Hybrid Topic Modeling
Authors: Moulana Mohammed
Abstract:
Topic models are widely used in building clusters of documents for more than a decade, yet problems occurring in choosing optimal number of topics. The main problem is the lack of a stable metric of the quality of topics obtained during the construction of topic models. The authors analyzed from previous works, most of the models used in determining the number of topics are non-parametric and quality of topics determined by using perplexity and coherence measures and concluded that they are not applicable in solving this problem. In this paper, we used the parametric method, which is an extension of the traditional topic model with visual access tendency for visualization of the number of topics (clusters) to complement clustering and to choose optimal number of topics based on results of cluster validity indices. Developed hybrid topic models are demonstrated with different Twitter datasets on various topics in obtaining the optimal number of topics and in measuring the quality of clusters. The experimental results showed that the Visual Non-negative Matrix Factorization (VNMF) topic model performs well in determining the optimal number of topics with interactive visualization and in performance measure of the quality of clusters with validity indices.Keywords: interactive visualization, visual mon-negative matrix factorization model, optimal number of topics, cluster validity indices, Twitter data clustering
Procedia PDF Downloads 1341680 Place-Based Practice: A New Zealand Rural Nursing Study
Authors: Jean Ross
Abstract:
Rural nursing is not an identified professional identity in the UK, unlike the USA, Canada, and Australia which recognizes rural nursing as a specialty scope of practice. In New Zealand rural nursing is an underrepresented aspect of nursing practice, is misunderstood and does not fit easily within the wider nursing profession and policies governing practice. This study situated within the New Zealand context adds to the international studies’ aligned with rural nursing practice. The study addresses a gap in the literature by striving to identify and strengthen the awareness of and increase rural nurses’ understanding and articulation of their changing and adapting identity and furthermore an opportunity to appreciate their contribution to the delivery of rural health care. In addition, this study adds to the growing global rural nursing knowledge and theoretical base. This research is a continuation of the author’s academic involvement and ongoing relationships with the rural nursing sector, national policy analysts and health care planners since the 1990s. These relationships have led to awareness, that despite rural nurses’ efforts to explain the particular nuances which make up their practice, there has been little recognition by profession to establish rural nursing as a specialty. The research explored why nurses’ who practiced in the rural Otago region of New Zealand, between the 1990s and early 2000s moved away from the traditional identity as a district, practice or public health nurse and looked towards a more appropriate identity which reflected their emerging practice. This qualitative research situated within the interpretive paradigm embeds this retrospective study within the discipline of nursing and engages with the concepts of place and governmentality. National key informant and Otago regional rural nurse interviews generated data and were analyzed using thematic analysis. Stemming from the analyses, an analytical diagrammatic matrix was developed demonstrating rural nursing as a ‘place–based practice’ governed both from within and beyond location presenting how the nurse aligns the self in the rural community as a meaningful provider of health care. Promoting this matrix may encourage a focal discussion point within the international spectrum of nursing and likewise between rural and non-rural nurses which it is hoped will generate further debate in relation to the different nuances aligned with rural nursing practice. Further, insights from this paper may capture key aspects and issues related to identity formation in respect to rural nurses, from the UK, New Zealand, Canada, USA, and Australia.Keywords: matrix, place, nursing, rural
Procedia PDF Downloads 1401679 Recursion, Merge and Event Sequence: A Bio-Mathematical Perspective
Authors: Noury Bakrim
Abstract:
Formalization is indeed a foundational Mathematical Linguistics as demonstrated by the pioneering works. While dialoguing with this frame, we nonetheless propone, in our approach of language as a real object, a mathematical linguistics/biosemiotics defined as a dialectical synthesis between induction and computational deduction. Therefore, relying on the parametric interaction of cycles, rules, and features giving way to a sub-hypothetic biological point of view, we first hypothesize a factorial equation as an explanatory principle within Category Mathematics of the Ergobrain: our computation proposal of Universal Grammar rules per cycle or a scalar determination (multiplying right/left columns of the determinant matrix and right/left columns of the logarithmic matrix) of the transformable matrix for rule addition/deletion and cycles within representational mapping/cycle heredity basing on the factorial example, being the logarithmic exponent or power of rule deletion/addition. It enables us to propone an extension of minimalist merge/label notions to a Language Merge (as a computing principle) within cycle recursion relying on combinatorial mapping of rules hierarchies on external Entax of the Event Sequence. Therefore, to define combinatorial maps as language merge of features and combinatorial hierarchical restrictions (governing, commanding, and other rules), we secondly hypothesize from our results feature/hierarchy exponentiation on graph representation deriving from Gromov's Symbolic Dynamics where combinatorial vertices from Fe are set to combinatorial vertices of Hie and edges from Fe to Hie such as for all combinatorial group, there are restriction maps representing different derivational levels that are subgraphs: the intersection on I defines pullbacks and deletion rules (under restriction maps) then under disjunction edges H such that for the combinatorial map P belonging to Hie exponentiation by intersection there are pullbacks and projections that are equal to restriction maps RM₁ and RM₂. The model will draw on experimental biomathematics as well as structural frames with focus on Amazigh and English (cases from phonology/micro-semantics, Syntax) shift from Structure to event (especially Amazigh formant principle resolving its morphological heterogeneity).Keywords: rule/cycle addition/deletion, bio-mathematical methodology, general merge calculation, feature exponentiation, combinatorial maps, event sequence
Procedia PDF Downloads 1271678 Synthesis of Beetosan's Hydrogels with Yellow Tea
Authors: Jolanta Jaskowska, Anna Drabczyk, Sonia Kudlacik, Agnieszka Sobczak-Kupiec, Bozena Tyliszczak
Abstract:
The aim of the study was to select the best conditions for the synthesis of Beetosan's hydrogels with yellow tea. The study determined recipe hydrogel matrix by selecting the appropriate ratio of substrates and to investigate the effect of yellow tea, on the structure and properties of the hydrogel materials. The scope of the research included both to obtain of raw materials required for the synthesis of hydrogel materials, as well as an assessment of their properties. In the first stage of research Beetosan (chitosan derived from bees), and extract the yellow tea China Kekecha was obtained. The second stage was synthesis hydrogels modified by yellow tea. The synthesis of polymeric matrix was preparation under UV radiation. Obtained hydrogel materials were investigated extensively using incubation investigations, absorption capacity, and spectroscopic (FT-IR) and X-ray diffraction (XRD) methods. Moreover, there was also performed the surface wettability test and a photomicrograph of the structure using scanning electron microscope. Analysis of the obtained results confirms that presence of yellow tea does not significantly affect the behavior of the hydrogels in the incubation fluids. The results show that hydrogel materials exhibit compatibility with the incubatory solutions and they also retain the stability in the tested liquids. Hydrogels obtained in this method might be applied in the cosmetics industry and in the field of medicine. This is possible due to the many interesting properties of tea and biocompatibility and non-toxicity hydrogel materials. The authors would like to thank the The National Centre for Research and Development (Grant no: LIDER/033/697/L-5/13/NCBR/2014) for providing financial support to this project.Keywords: Beetosan, hygrogels, materials, yellow tea
Procedia PDF Downloads 2751677 Alphabet Recognition Using Pixel Probability Distribution
Authors: Vaidehi Murarka, Sneha Mehta, Dishant Upadhyay
Abstract:
Our project topic is “Alphabet Recognition using pixel probability distribution”. The project uses techniques of Image Processing and Machine Learning in Computer Vision. Alphabet recognition is the mechanical or electronic translation of scanned images of handwritten, typewritten or printed text into machine-encoded text. It is widely used to convert books and documents into electronic files etc. Alphabet Recognition based OCR application is sometimes used in signature recognition which is used in bank and other high security buildings. One of the popular mobile applications includes reading a visiting card and directly storing it to the contacts. OCR's are known to be used in radar systems for reading speeders license plates and lots of other things. The implementation of our project has been done using Visual Studio and Open CV (Open Source Computer Vision). Our algorithm is based on Neural Networks (machine learning). The project was implemented in three modules: (1) Training: This module aims “Database Generation”. Database was generated using two methods: (a) Run-time generation included database generation at compilation time using inbuilt fonts of OpenCV library. Human intervention is not necessary for generating this database. (b) Contour–detection: ‘jpeg’ template containing different fonts of an alphabet is converted to the weighted matrix using specialized functions (contour detection and blob detection) of OpenCV. The main advantage of this type of database generation is that the algorithm becomes self-learning and the final database requires little memory to be stored (119kb precisely). (2) Preprocessing: Input image is pre-processed using image processing concepts such as adaptive thresholding, binarizing, dilating etc. and is made ready for segmentation. “Segmentation” includes extraction of lines, words, and letters from the processed text image. (3) Testing and prediction: The extracted letters are classified and predicted using the neural networks algorithm. The algorithm recognizes an alphabet based on certain mathematical parameters calculated using the database and weight matrix of the segmented image.Keywords: contour-detection, neural networks, pre-processing, recognition coefficient, runtime-template generation, segmentation, weight matrix
Procedia PDF Downloads 3891676 Graphene Reinforced Magnesium Metal Matrix Composites for Biomedical Applications
Authors: Khurram Munir, Cuie Wen, Yuncang Li
Abstract:
Magnesium (Mg) metal matrix composites (MMCs) reinforced with graphene nanoplatelets (GNPs) have been developed by powder metallurgy (PM). In this study, GNPs with different concentrations (0.1-0.3 wt.%) were dispersed into Mg powders by high-energy ball-milling processes. The microstructure and resultant mechanical properties of the fabricated nanocomposites were characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Raman spectroscopy (RS), compression and nano-wear tests. The corrosion resistance of the fabricated composites was evaluated by electrochemical tests and hydrogen evolution measurements. Finally, the biological response of Mg-GNPs composites was assessed using osteoblast-like SaOS2 cells. The results indicate that GNPs are excellent candidates as reinforcements in Mg matrices for the manufacture of biodegradable Mg-based composite implants. GNP addition improved the mechanical properties of Mg via synergetic strengthening modes. Moreover, retaining the structural integrity of GNPs during PM processing improved the ductility, compressive strength, and corrosion resistance of the Mg-GNP composites as compared to monolithic Mg. Cytotoxicity assessments did not reveal any significant toxicity with the addition of GNPs to Mg matrices. This study demonstrates that Mg-xGNPs with x < 0.3 wt.%, may constitute novel biodegradable implant materials for load-bearing applications.Keywords: magnesium-graphene composites, strengthening mechanisms, In vitro cytotoxicity, biocorrosion
Procedia PDF Downloads 1581675 Tuning the Microstructure and Mechanical Properties of Fine Recycled Plastic Aggregates in Concrete Using Ethylene-Vinyl Acetate
Authors: Ahmed Al-Mansour, Qiang Zeng
Abstract:
Recycling waste plastics in the form of concrete components, i.e. fine aggregates, has been an attractive topic among the society of civil engineers. Not only does the recycling of plastics reduce the overall cost of concrete production, but it also takes part in solving environmental issues. Nevertheless, the incorporation of recycled plastics into concrete results in an increasing reduction in the mechanical properties of concrete as the percentage of replacement of natural aggregates increases. In order to overcome this reduction, Ethylene-vinyl acetate (EVA) was used as an additive in concrete with recycled plastic aggregates. The aim of this additive is to: 1) increase the interfacial interaction at the interfacial transition zone (ITZ) between plastic pellets and cement matrix, and 2) mitigate the loss in mechanical properties. Three different groups of samples (i.e. cubes and prisms) were tested according to the plastics substituting fine aggregates. 5, 10, and 15% of fine aggregates were substituted for recycled plastic pellets, and 2 – 4% of the cement was substituted for EVA that produces a flexible agent when mixed properly with water. Compressive and tensile strength tests were conducted for the mechanical properties, while SEM and X-CT scan were implemented for further investigation of calcium-silicate-hydrate (C–S–H) formation and ITZ analysis. The optimal amount of plastic particles with EVA is suggested to get the most compact and dense matrix structure according to the results of this study.Keywords: the durability of concrete, ethylene-vinyl acetate (EVA), interfacial transition zone (ITZ), recycled plastics
Procedia PDF Downloads 1861674 2 Stage CMOS Regulated Cascode Distributed Amplifier Design Based On Inductive Coupling Technique in Submicron CMOS Process
Authors: Kittipong Tripetch, Nobuhiko Nakano
Abstract:
This paper proposes one stage and two stage CMOS Complementary Regulated Cascode Distributed Amplifier (CRCDA) design based on Inductive and Transformer coupling techniques. Usually, Distributed amplifier is based on inductor coupling between gate and gate of MOSFET and between drain and drain of MOSFET. But this paper propose some new idea, by coupling with differential primary windings of transformer between gate and gate of MOSFET first stage and second stage of regulated cascade amplifier and by coupling with differential secondary windings transformer of MOSFET between drain and drain of MOSFET first stage and second stage of regulated cascade amplifier. This paper also proposes polynomial modeling of Silicon Transformer passive equivalent circuit from Nanyang Technological University which is used to extract frequency response of transformer. Cadence simulation results are used to verify validity of transformer polynomial modeling which can be used to design distributed amplifier without Cadence. 4 parameters of scattering matrix of 2 port of the propose circuit is derived as a function of 4 parameters of impedance matrix.Keywords: CMOS regulated cascode distributed amplifier, silicon transformer modeling with polynomial, low power consumption, distribute amplification technique
Procedia PDF Downloads 5111673 Development and Evaluation of a Gut-Brain Axis Chip Based on 3D Printing Interconnecting Microchannel Scaffolds
Authors: Zhuohan Li, Jing Yang, Yaoyuan Cui
Abstract:
The gut-brain axis (GBA), a communication network between gut microbiota and the brain, benefits for investigation of brain diseases. Currently, organ chips are considered one of the potential tools for GBA research. However, most of the available GBA chips have limitations in replicating the three-dimensional (3D) growth environment of cells and lack the required cell types for barrier function. In the present study, a microfluidic chip was developed for GBA interaction. Blood-brain barrier (BBB) module was prepared with HBMEC, HBVP, U87 cells and decellularized matrix (dECM). Intestinal epithelial barrier (IEB) was prepared with Caco-2 and vascular endothelial cells and dECM. GBA microfluidic device was integrated with IEB and BBB modules using 3D printing interconnecting microchannel scaffolds. BBB and IEB interaction on this GBA chip were evaluated with lipopolysaccharide (LPS) exposure. The present GBA chip achieved multicellular three-dimensional cultivation. Compared with the co-culture cell model in the transwell, fluorescein was absorbed more slowly by 5.16-fold (IEB module) and 4.69-fold (BBB module) on the GBA chip. Accumulation of Rhodamine 123 and Hoechst33342 was dramatically decreased. The efflux function of transporters on IEB and BBB was significantly increased on the GBA chip. After lipopolysaccharide (LPS) disrupted the IEB, and then BBB dysfunction was further observed, which confirmed the interaction between IEB and BBB modules. These results demonstrated that this GBA chip may offer a promising tool for gut-brain interaction study.Keywords: decellularized matrix, gut-brain axis, organ-on-chip, three-dimensional printing.
Procedia PDF Downloads 361672 Durability Study of Pultruded CFRP Plates under Sustained Bending in Distilled Water and Seawater Immersions: Effects on the Visco-Elastic Properties
Authors: Innocent Kafodya, Guijun Xian
Abstract:
This paper presents effects of distilled water, seawater and sustained bending strains of 30% and 50% ultimate strain at room temperature, on the durability of unidirectional pultruded carbon fiber reinforced polymer (CFRP) plates. In this study, dynamic mechanical analyzer (DMA) was used to investigate the synergic effects of the immersions and bending strains on the visco-elastic properties of (CFRP) such as storage modulus, tan delta and glass transition temperature. The study reveals that the storage modulus and glass transition temperature increase while tan delta peak decreases in the initial stage of both immersions due to the progression of curing. The storage modulus and Tg subsequently decrease and tan delta increases due to the matrix plasticization. The blister induced damages in the unstrained seawater samples enhance water uptake and cause more serious degradation of Tg and storage modulus than in water immersion. Increasing sustained bending decreases Tg and storage modulus in a long run for both immersions due to resin matrix cracking and debonding. The combined effects of immersions and strains are not clearly reflected due to the statistical effects of DMA sample sizes and competing processes of molecular reorientation and postcuring.Keywords: pultruded CFRP plate, bending strain, glass transition temperature, storage modulus, tan delta
Procedia PDF Downloads 2691671 In-situ Performance of Pre-applied Bonded Waterproofing Membranes at Contaminated Test Slabs
Authors: Ulli Heinlein, Thomas Freimann
Abstract:
Pre-applied bonded membranes are used as positive-side waterproofing on concrete basements, are installed before the concrete work, and achieve a tear-resistant and waterproof bond with the subsequently placed fresh concrete. This bond increases redundancy compared to lose waterproofing membranes by preventing lateral water migrations in the event of damage. So far, the membranes have been tested in the laboratory, but it is not yet known how they behave on construction sites in the presence of dirt, soil, cement paste or moisture. This article, therefore, conducts investigations on six construction sites using 18 test slabs where the pre-applied bonded membranes are selectively contaminated or wetted. Subsequently, cores are taken, and the influence of the contaminations on the adhesive tensile strength and waterproof bond is tested. Pre-applied bonded membranes with smooth or granular but closed surfaces show no sensitivity to wetness, whereas open-pored membranes with nonwovens do not tolerate standing water. Contaminations decline the performance of all pre-applied bonded membranes since a separating layer is formed between the bonding layer and the concrete. The influence depends on the thickness of the contamination and its mechanical properties.Keywords: waterproofing, positive-side waterproofing, basement, pre-applied bonded waterproofing membrane, In-situ testing, lateral water migrations
Procedia PDF Downloads 1861670 Surface Modified Nano-Diamond/Polyimide Hybrid Composites
Authors: Hati̇ce Bi̇rtane, Asli Beyler Çi̇ği̇l, Memet Vezi̇r Kahraman
Abstract:
Polyimide (PI) is one of the most important super-engineering materials because of its mechanical properties and its thermal stability. Electronic industry is the typical extensive applications of polyimides including interlayer insulation films, buffer coating, films, alpha-ray shielding films, and alignment films for liquid crystal displays. The mechanical and thermal properties of polymers are generally improved by the addition of inorganic additives. The challenges in this area of high-performance organic/inorganic hybrid materials are to obtain significant improvements in the interfacial adhesion between the polymer matrix and the reinforcing material since the organic matrix is relatively incompatible with the inorganic phase. In this study, modified nanodiamond was prepared from the reaction of nanodiamond and (3-Mercaptopropyl)trimethoxysilane. Poly(amic acid) was prepared from the reaction of 3,3',4,4'-Benzophenonetetracarboxylic dianhydride (BTDA) and 4,4'-Oxydianiline (ODA). Polyimide/modified nanodiamond hybrids were prepared by blending of poly(amic acid) and organically modified nanodiamond. The morphology of the Polyimide/ modified nanodiamond hybrids was characterized by scanning electron microscopy (SEM). Chemical structure of polyimide and Polyimide/modified nanodiamond hybrids was characterized by FTIR. FTIR results showed that the Polyimide/modified nanodiamond hybrids were successfully prepared. A thermal property of the Polyimide/modified nanodiamond hybrids was characterized by thermogravimetric analysis (TGA).Keywords: hybrid materials, nanodiamond, polyimide, polymer
Procedia PDF Downloads 243