Search results for: EEG signals
361 Dual-Channel Multi-Band Spectral Subtraction Algorithm Dedicated to a Bilateral Cochlear Implant
Authors: Fathi Kallel, Ahmed Ben Hamida, Christian Berger-Vachon
Abstract:
In this paper, a Speech Enhancement Algorithm based on Multi-Band Spectral Subtraction (MBSS) principle is evaluated for Bilateral Cochlear Implant (BCI) users. Specifically, dual-channel noise power spectral estimation algorithm using Power Spectral Densities (PSD) and Cross Power Spectral Densities (CPSD) of the observed signals is studied. The enhanced speech signal is obtained using Dual-Channel Multi-Band Spectral Subtraction ‘DC-MBSS’ algorithm. For performance evaluation, objective speech assessment test relying on Perceptual Evaluation of Speech Quality (PESQ) score is performed to fix the optimal number of frequency bands needed in DC-MBSS algorithm. In order to evaluate the speech intelligibility, subjective listening tests are assessed with 3 deafened BCI patients. Experimental results obtained using French Lafon database corrupted by an additive babble noise at different Signal-to-Noise Ratios (SNR) showed that DC-MBSS algorithm improves speech understanding for single and multiple interfering noise sources.Keywords: speech enhancement, spectral substracion, noise estimation, cochlear impalnt
Procedia PDF Downloads 549360 Importance of Access to Public Information on Modern Slavery for Brazil's Livestock Sector
Authors: Juliana Brandao, Holly Gibbs, Lisa Naughton, Lisa Rausch
Abstract:
The Brazilian Amazon continues to be plagued by modern day slave labor, specifically within the cattle production industry. In response to this issue, modern day anti-slavery activists have implemented additional regulations designed to combat slave labor associated with cattle. These regulations have been incorporated into existing agreements designed to control deforestation. The goal of these rules is to prevent the trade of beef contaminated with modern slave labor between supplier farms and slaughterhouses. In this study, we identify farms that make use of modern slave labor, and we use cattle transaction data to track the sale of cattle between farms and slaughterhouses. Our analysis reveals that slaughterhouses, which have signed cattle agreements that include requirements to refuse cattle associated with modern slave labor, have avoided buying cattle from suppliers that were on the dirty list. This trend is especially evident when the "dirty lists" that identify modern-day slave labor users are made publicly accessible online. We conclude that the "dirty list" of modern-day slave labor users should be maintained on publicly available websites to allow slaughterhouses, retailers, and consumers to send powerful market signals that discourage the use of modern-day slave labor.Keywords: cattle ranchers, modern slave labor, deforestation, brazilian amazon
Procedia PDF Downloads 116359 A Robust and Adaptive Unscented Kalman Filter for the Air Fine Alignment of the Strapdown Inertial Navigation System/GPS
Authors: Jian Shi, Baoguo Yu, Haonan Jia, Meng Liu, Ping Huang
Abstract:
Adapting to the flexibility of war, a large number of guided weapons launch from aircraft. Therefore, the inertial navigation system loaded in the weapon needs to undergo an alignment process in the air. This article proposes the following methods to the problem of inaccurate modeling of the system under large misalignment angles, the accuracy reduction of filtering caused by outliers, and the noise changes in GPS signals: first, considering the large misalignment errors of Strapdown Inertial Navigation System (SINS)/GPS, a more accurate model is made rather than to make a small-angle approximation, and the Unscented Kalman Filter (UKF) algorithms are used to estimate the state; then, taking into account the impact of GPS noise changes on the fine alignment algorithm, the innovation adaptive filtering algorithm is introduced to estimate the GPS’s noise in real-time; at the same time, in order to improve the anti-interference ability of the air fine alignment algorithm, a robust filtering algorithm based on outlier detection is combined with the air fine alignment algorithm to improve the robustness of the algorithm. The algorithm can improve the alignment accuracy and robustness under interference conditions, which is verified by simulation.Keywords: air alignment, fine alignment, inertial navigation system, integrated navigation system, UKF
Procedia PDF Downloads 166358 EEG-Based Classification of Psychiatric Disorders: Bipolar Mood Disorder vs. Schizophrenia
Authors: Han-Jeong Hwang, Jae-Hyun Jo, Fatemeh Alimardani
Abstract:
An accurate diagnosis of psychiatric diseases is a challenging issue, in particular when distinct symptoms for different diseases are overlapped, such as delusions appeared in bipolar mood disorder (BMD) and schizophrenia (SCH). In the present study, we propose a useful way to discriminate BMD and SCH using electroencephalography (EEG). A total of thirty BMD and SCH patients (15 vs. 15) took part in our experiment. EEG signals were measured with nineteen electrodes attached on the scalp using the international 10-20 system, while they were exposed to a visual stimulus flickering at 16 Hz for 95 s. The flickering visual stimulus induces a certain brain signal, known as steady-state visual evoked potential (SSVEP), which is differently observed in patients with BMD and SCH, respectively, in terms of SSVEP amplitude because they process the same visual information in own unique way. For classifying BDM and SCH patients, machine learning technique was employed in which leave-one-out-cross validation was performed. The SSVEPs induced at the fundamental (16 Hz) and second harmonic (32 Hz) stimulation frequencies were extracted using fast Fourier transformation (FFT), and they were used as features. The most discriminative feature was selected using the Fisher score, and support vector machine (SVM) was used as a classifier. From the analysis, we could obtain a classification accuracy of 83.33 %, showing the feasibility of discriminating patients with BMD and SCH using EEG. We expect that our approach can be utilized for psychiatrists to more accurately diagnose the psychiatric disorders, BMD and SCH.Keywords: bipolar mood disorder, electroencephalography, schizophrenia, machine learning
Procedia PDF Downloads 419357 Attentional Engagement for Movie
Authors: Wuon-Shik Kim, Hyoung-Min Choi, Jeonggeon Woo, Sun Jung Kwon, SeungHee Lee
Abstract:
The research on attentional engagement (AE) in movies using physiological signals is rare and controversial. Therefore, whether physiological responses can be applied to evaluate AE in actual movies is unclear. To clarify this, we measured electrocardiogram and electroencephalogram (EEG) of 16 Japanese university students as they watched the American movie Iron Man. After the viewing, we evaluated the subjective AE and affection levels for 11 film content segments in Iron Man. Based on self-reports for AE, we selected two film content segments as stimuli: Film Content 9 describing Tony Stark (the main character) flying through the night sky (with the highest AE score) and Film Content 1, describing Tony Stark and his colleagues telling indecent jokes (with the lowest score). We divided these two content segments into two time intervals, respectively. Results indicated that the Film Content by Interval interaction for HR was significant, at F (1, 11)=35.64, p<.001, η2=.76; while HR in Film Content 1 decreased, that of in Film Content 9 increased. In Film Content 9, the main effects of the Interval for respiratory sinus arrhythmia (RSA) (F (1, 11)=5.91, p<.05, η2=.35) and for the attention index of EEG (F (1, 11)=5.23, p<.05, η2=.37) were significant. The increase in the RSA was significant (p<.05) as well, whereas that of the EEG attention index was nearly significant (p=.069). In conclusion, while RSA increases, HR decreases when people direct their attention toward normal films. However, while paying attention to a film evoking excitement, HR as well as RSA can increase.Keywords: attentional engagement, electroencephalogram, movie, respiratory sinus arrhythmia
Procedia PDF Downloads 363356 Design of Transmit Beamspace and DOA Estimation in MIMO Radar
Authors: S. Ilakkiya, A. Merline
Abstract:
A multiple-input multiple-output (MIMO) radar systems use modulated waveforms and directive antennas to transmit electromagnetic energy into a specific volume in space to search for targets. This paper deals with the design of transmit beamspace matrix and DOA estimation for multiple-input multiple-output (MIMO) radar with collocated antennas.The design of transmit beamspace matrix is based on minimizing the difference between a desired transmit beampattern and the actual one while enforcing the constraint of uniform power distribution across the transmit array elements. Rotational invariance property is established at the transmit array by imposing a specific structure on the beamspace matrix. Semidefinite programming and spatial-division based design (SDD) are also designed separately. In MIMO radar systems, DOA estimation is an essential process to determine the direction of incoming signals and thus to direct the beam of the antenna array towards the estimated direction. This estimation deals with non-adaptive spectral estimation and adaptive spectral estimation techniques. The design of the transmit beamspace matrix and spectral estimation techniques are studied through simulation.Keywords: adaptive and non-adaptive spectral estimation, direction of arrival estimation, MIMO radar, rotational invariance property, transmit, receive beamforming
Procedia PDF Downloads 519355 Contactless Heart Rate Measurement System based on FMCW Radar and LSTM for Automotive Applications
Authors: Asma Omri, Iheb Sifaoui, Sofiane Sayahi, Hichem Besbes
Abstract:
Future vehicle systems demand advanced capabilities, notably in-cabin life detection and driver monitoring systems, with a particular emphasis on drowsiness detection. To meet these requirements, several techniques employ artificial intelligence methods based on real-time vital sign measurements. In parallel, Frequency-Modulated Continuous-Wave (FMCW) radar technology has garnered considerable attention in the domains of healthcare and biomedical engineering for non-invasive vital sign monitoring. FMCW radar offers a multitude of advantages, including its non-intrusive nature, continuous monitoring capacity, and its ability to penetrate through clothing. In this paper, we propose a system utilizing the AWR6843AOP radar from Texas Instruments (TI) to extract precise vital sign information. The radar allows us to estimate Ballistocardiogram (BCG) signals, which capture the mechanical movements of the body, particularly the ballistic forces generated by heartbeats and respiration. These signals are rich sources of information about the cardiac cycle, rendering them suitable for heart rate estimation. The process begins with real-time subject positioning, followed by clutter removal, computation of Doppler phase differences, and the use of various filtering methods to accurately capture subtle physiological movements. To address the challenges associated with FMCW radar-based vital sign monitoring, including motion artifacts due to subjects' movement or radar micro-vibrations, Long Short-Term Memory (LSTM) networks are implemented. LSTM's adaptability to different heart rate patterns and ability to handle real-time data make it suitable for continuous monitoring applications. Several crucial steps were taken, including feature extraction (involving amplitude, time intervals, and signal morphology), sequence modeling, heart rate estimation through the analysis of detected cardiac cycles and their temporal relationships, and performance evaluation using metrics such as Root Mean Square Error (RMSE) and correlation with reference heart rate measurements. For dataset construction and LSTM training, a comprehensive data collection system was established, integrating the AWR6843AOP radar, a Heart Rate Belt, and a smart watch for ground truth measurements. Rigorous synchronization of these devices ensured data accuracy. Twenty participants engaged in various scenarios, encompassing indoor and real-world conditions within a moving vehicle equipped with the radar system. Static and dynamic subject’s conditions were considered. The heart rate estimation through LSTM outperforms traditional signal processing techniques that rely on filtering, Fast Fourier Transform (FFT), and thresholding. It delivers an average accuracy of approximately 91% with an RMSE of 1.01 beat per minute (bpm). In conclusion, this paper underscores the promising potential of FMCW radar technology integrated with artificial intelligence algorithms in the context of automotive applications. This innovation not only enhances road safety but also paves the way for its integration into the automotive ecosystem to improve driver well-being and overall vehicular safety.Keywords: ballistocardiogram, FMCW Radar, vital sign monitoring, LSTM
Procedia PDF Downloads 72354 Implementation of Real-Time Multiple Sound Source Localization and Separation
Authors: Jeng-Shin Sheu, Qi-Xun Zheng
Abstract:
This paper mainly discusses a method of separating speech when using a microphone array without knowing the number and direction of sound sources. In recent years, there have been many studies on the method of separating signals by using masking, but most of the separation methods must be operated under the condition of a known number of sound sources. Such methods cannot be used for real-time applications. In our method, this paper uses Circular-Integrated-Cross-Spectrum to estimate the statistical histogram distribution of the direction of arrival (DOA) to obtain the number of sound sources and sound in the mixed-signal Source direction. In calculating the relevant parameters of the ring integrated cross-spectrum, the phase (Phase of the Cross-Power Spectrum) and phase rotation factors (Phase Rotation Factors) calculated by the cross power spectrum of each microphone pair are used. In the part of separating speech, it uses the DOA weighting and shielding separation method to calculate the sound source direction (DOA) according to each T-F unit (time-frequency point). The weight corresponding to each T-F unit can be used to strengthen the intensity of each sound source from the T-F unit and reduce the influence of the remaining sound sources, thereby achieving voice separation.Keywords: real-time, spectrum analysis, sound source localization, sound source separation
Procedia PDF Downloads 155353 Application of Simulated Annealing to Threshold Optimization in Distributed OS-CFAR System
Authors: L. Abdou, O. Taibaoui, A. Moumen, A. Talib Ahmed
Abstract:
This paper proposes an application of the simulated annealing to optimize the detection threshold in an ordered statistics constant false alarm rate (OS-CFAR) system. Using conventional optimization methods, such as the conjugate gradient, can lead to a local optimum and lose the global optimum. Also for a system with a number of sensors that is greater than or equal to three, it is difficult or impossible to find this optimum; Hence, the need to use other methods, such as meta-heuristics. From a variety of meta-heuristic techniques, we can find the simulated annealing (SA) method, inspired from a process used in metallurgy. This technique is based on the selection of an initial solution and the generation of a near solution randomly, in order to improve the criterion to optimize. In this work, two parameters will be subject to such optimisation and which are the statistical order (k) and the scaling factor (T). Two fusion rules; “AND” and “OR” were considered in the case where the signals are independent from sensor to sensor. The results showed that the application of the proposed method to the problem of optimisation in a distributed system is efficiency to resolve such problems. The advantage of this method is that it allows to browse the entire solutions space and to avoid theoretically the stagnation of the optimization process in an area of local minimum.Keywords: distributed system, OS-CFAR system, independent sensors, simulating annealing
Procedia PDF Downloads 497352 Performance Analysis of PAPR Reduction in OFDM Systems based on Partial Transmit Sequence (PTS) Technique
Authors: Alcardo Alex Barakabitze, Tan Xiaoheng
Abstract:
Orthogonal Frequency Division Multiplexing (OFDM) is a special case of Multi-Carrier Modulation (MCM) technique which transmits a stream of data over a number of lower data rate subcarriers. OFDM splits the total transmission bandwidth into a number of orthogonal and non-overlapping subcarriers and transmit the collection of bits called symbols in parallel using these subcarriers. This paper explores the Peak to Average Power Reduction (PAPR) using the Partial Transmit Sequence technique. We provide the distribution analysis and the basics of OFDM signals and then show how the PAPR increases as the number of subcarriers increases. We provide the performance analysis of CCDF and PAPR expressed in decibels through MATLAB simulations. The simulation results show that, in PTS technique, the performance of PAPR reduction in OFDM systems improves significantly as the number of sub-blocks increases. However, by keeping the same number of sub-blocks variation, oversampling factor and the number of OFDM blocks’ iteration for generating the CCDF, the OFDM systems with 128 subcarriers have an improved performance in PAPR reduction compared to OFDM systems with 256, 512 or >512 subcarriers.Keywords: OFDM, peak to average power reduction (PAPR), bit error rate (BER), subcarriers, wireless communications
Procedia PDF Downloads 514351 An MrPPG Method for Face Anti-Spoofing
Authors: Lan Zhang, Cailing Zhang
Abstract:
In recent years, many face anti-spoofing algorithms have high detection accuracy when detecting 2D face anti-spoofing or 3D mask face anti-spoofing alone in the field of face anti-spoofing, but their detection performance is greatly reduced in multidimensional and cross-datasets tests. The rPPG method used for face anti-spoofing uses the unique vital information of real face to judge real faces and face anti-spoofing, so rPPG method has strong stability compared with other methods, but its detection rate of 2D face anti-spoofing needs to be improved. Therefore, in this paper, we improve an rPPG(Remote Photoplethysmography) method(MrPPG) for face anti-spoofing which through color space fusion, using the correlation of pulse signals between real face regions and background regions, and introducing the cyclic neural network (LSTM) method to improve accuracy in 2D face anti-spoofing. Meanwhile, the MrPPG also has high accuracy and good stability in face anti-spoofing of multi-dimensional and cross-data datasets. The improved method was validated on Replay-Attack, CASIA-FASD, Siw and HKBU_MARs_V2 datasets, the experimental results show that the performance and stability of the improved algorithm proposed in this paper is superior to many advanced algorithms.Keywords: face anti-spoofing, face presentation attack detection, remote photoplethysmography, MrPPG
Procedia PDF Downloads 178350 Frequency Modulation Continuous Wave Radar Human Fall Detection Based on Time-Varying Range-Doppler Features
Authors: Xiang Yu, Chuntao Feng, Lu Yang, Meiyang Song, Wenhao Zhou
Abstract:
The existing two-dimensional micro-Doppler features extraction ignores the correlation information between the spatial and temporal dimension features. For the range-Doppler map, the time dimension is introduced, and a frequency modulation continuous wave (FMCW) radar human fall detection algorithm based on time-varying range-Doppler features is proposed. Firstly, the range-Doppler sequence maps are generated from the echo signals of the continuous motion of the human body collected by the radar. Then the three-dimensional data cube composed of multiple frames of range-Doppler maps is input into the three-dimensional Convolutional Neural Network (3D CNN). The spatial and temporal features of time-varying range-Doppler are extracted by the convolution layer and pool layer at the same time. Finally, the extracted spatial and temporal features are input into the fully connected layer for classification. The experimental results show that the proposed fall detection algorithm has a detection accuracy of 95.66%.Keywords: FMCW radar, fall detection, 3D CNN, time-varying range-doppler features
Procedia PDF Downloads 122349 Reliability and Cost Focused Optimization Approach for a Communication Satellite Payload Redundancy Allocation Problem
Authors: Mehmet Nefes, Selman Demirel, Hasan H. Ertok, Cenk Sen
Abstract:
A typical reliability engineering problem regarding communication satellites has been considered to determine redundancy allocation scheme of power amplifiers within payload transponder module, whose dominant function is to amplify power levels of the received signals from the Earth, through maximizing reliability against mass, power, and other technical limitations. Adding each redundant power amplifier component increases not only reliability but also hardware, testing, and launch cost of a satellite. This study investigates a multi-objective approach used in order to solve Redundancy Allocation Problem (RAP) for a communication satellite payload transponder, focusing on design cost due to redundancy and reliability factors. The main purpose is to find the optimum power amplifier redundancy configuration satisfying reliability and capacity thresholds simultaneously instead of analyzing respectively or independently. A mathematical model and calculation approach are instituted including objective function definitions, and then, the problem is solved analytically with different input parameters in MATLAB environment. Example results showed that payload capacity and failure rate of power amplifiers have remarkable effects on the solution and also processing time.Keywords: communication satellite payload, multi-objective optimization, redundancy allocation problem, reliability, transponder
Procedia PDF Downloads 261348 Ignition Interlock Device for Motorcycles
Authors: Luisito L. Lacatan, Zacha Valerie G. Ancheta, Michelangelo A. Dorado, Lester Joseph M. Ochoa, Anthony Mark G. Tayabas
Abstract:
Ignition Interlock Device or IID is a mechanism installed inside a vehicle which requires the driver to breathe into the device before starting the vehicle. If the IID detects that the alcohol level or blood alcohol content (BAC) is higher than the accepted value, the engine will not start. If the driver is not able to provide a clean breath sample, the IID will log the event, warn the driver, and then start up an alarm. The purpose of the IID is to prevent accidents due to driving under the influence (DUI). With the rise of the two-wheeled vehicle in the Philippines due to its mobility and purchasing power, IIDs are still mainly installed on four-wheeled vehicles. Even though riding the motorcycle when drunk is more dangerous, there are only a small number of installed devices on motorcycles and scooters. The general objective of this study was to develop a system with hardware and software components that would implement IID on motorcycles. The study employed a descriptive method of research. The study also concluded the following: the infrared must have a point-to-point communication, the breathalyzer on the helmet should react to ethanol, the microcontroller on the motorcycle should accept all IR signals from the helmet and interpret it and the GPS shield should have an unobstructed line-of-sight communication with the GPS satellites.Keywords: blood alcohol content, breathalyser, driving under the influence, global positioning system, global system for mobile communication
Procedia PDF Downloads 325347 Model Predictive Control with Unscented Kalman Filter for Nonlinear Implicit Systems
Authors: Takashi Shimizu, Tomoaki Hashimoto
Abstract:
A class of implicit systems is known as a more generalized class of systems than a class of explicit systems. To establish a control method for such a generalized class of systems, we adopt model predictive control method which is a kind of optimal feedback control with a performance index that has a moving initial time and terminal time. However, model predictive control method is inapplicable to systems whose all state variables are not exactly known. In other words, model predictive control method is inapplicable to systems with limited measurable states. In fact, it is usual that the state variables of systems are measured through outputs, hence, only limited parts of them can be used directly. It is also usual that output signals are disturbed by process and sensor noises. Hence, it is important to establish a state estimation method for nonlinear implicit systems with taking the process noise and sensor noise into consideration. To this purpose, we apply the model predictive control method and unscented Kalman filter for solving the optimization and estimation problems of nonlinear implicit systems, respectively. The objective of this study is to establish a model predictive control with unscented Kalman filter for nonlinear implicit systems.Keywords: optimal control, nonlinear systems, state estimation, Kalman filter
Procedia PDF Downloads 202346 Tool Wear Monitoring of High Speed Milling Based on Vibratory Signal Processing
Authors: Hadjadj Abdechafik, Kious Mecheri, Ameur Aissa
Abstract:
The objective of this study is to develop a process of treatment of the vibratory signals generated during a horizontal high speed milling process without applying any coolant in order to establish a monitoring system able to improve the machining performance. Thus, many tests were carried out on the horizontal high speed centre (PCI Météor 10), in given cutting conditions, by using a milling cutter with only one insert and measured its frontal wear from its new state that is considered as a reference state until a worn state that is considered as unsuitable for the tool to be used. The results obtained show that the first harmonic follow well the evolution of frontal wear, on another hand a wavelet transform is used for signal processing and is found to be useful for observing the evolution of the wavelet approximations through the cutting tool life. The power and the Root Mean Square (RMS) values of the wavelet transformed signal gave the best results and can be used for tool wear estimation. All this features can constitute the suitable indicators for an effective detection of tool wear and then used for the input parameters of an online monitoring system. Although we noted the remarkable influence of the machining cycle on the quality of measurements by the introduction of a bias on the signal, this phenomenon appears in particular in horizontal milling and in the majority of studies is ignored.Keywords: flank wear, vibration, milling, signal processing, monitoring
Procedia PDF Downloads 598345 Number Variation of the Personal Pronoun we Used by Chinese English Learners
Abstract:
Language variation signals the newest usage of language community, which might become the developmental trend of that language. However, language textbooks cannot keep up with these emergent usages. Most Chinese English learners nowadays are still exposed to traditional grammar prescribed in the textbook so that some variational usages cannot be acquired. The personal pronoun we is prescribed as a plural pronoun in the textbook grammar, but its number value is more flexible in actual use. Based on the Chinese Learner English Corpus (CLEC), and with the homemade Friends corpus as reference, the present research explores the number value of the first person pronoun we used by Chinese English learners. With consideration of the subjectivity of we, this paper annotated the number value of all the wes in “we+ PCU (Perception-cognation-utterance) verbs” collocations. Results show that though exposed to traditional textbooks which prescribe the plural reference of we, there still exists some unconventional usage (singular or vague in reference) in the writings of Chinese English learners, which is less frequent than that of the native speeches. Corpus data and results from manual semantic annotation show that this could be due to the impact of formulaic sequence on the learners and the positive transfer from their native language. An improved SLA model of native language, target language and interlanguage is put forward to recognize the existence of variation in second language acquisition, which should be given more attention during teaching.Keywords: Chinese English learners, number, PCU verbs, Personal pronoun we
Procedia PDF Downloads 355344 Quality Evaluation of Backfill Grout in Tunnel Boring Machine Tail Void Using Impact-Echo (IE): Short-Time Fourier Transform (STFT) Numerical Analysis
Authors: Ju-Young Choi, Ki-Il Song, Kyoung-Yul Kim
Abstract:
During Tunnel Boring Machine (TBM) tunnel excavation, backfill grout should be injected after the installation of segment lining to ensure the stability of the tunnel and to minimize ground deformation. If grouting is not sufficient to fill the gap between the segments and rock mass, hydraulic pressures occur in the void, which can negatively influence the stability of the tunnel. Recently the tendency to use TBM tunnelling method to replace the drill and blast(NATM) method is increasing. However, there are only a few studies of evaluation of backfill grout. This study evaluates the TBM tunnel backfill state using Impact-Echo(IE). 3-layers, segment-grout-rock mass, are simulated by FLAC 2D, FDM-based software. The signals obtained from numerical analysis and IE test are analyzed by Short-Time Fourier Transform(STFT) in time domain, frequency domain, and time-frequency domain. The result of this study can be used to evaluate the quality of backfill grouting in tail void.Keywords: tunnel boring machine, backfill grout, impact-echo method, time-frequency domain analysis, finite difference method
Procedia PDF Downloads 266343 Suicide in Late-Life Major Depressive Disorder: A Review of Structural and Functional Neuroimaging Studies
Authors: Wenqiu Cao
Abstract:
Suicide prevention is a global problem that needs to be taken seriously. Investigating the mechanisms of suicide in major depressive disorder (MDD) separately through neuroimaging technology is essential for effective suicide prevention. And it’s particularly urgent in geriatric depressive patients since older adults are more likely to use rapidly deadly means, and suicidal behavior is more lethal for older adults. The current study reviews five studies related to suicide in geriatric MDD that uses neuroimaging methodology in order to analyze the relevant neurobiological mechanisms. The majority of the studies found significant white matter and grey matter reduction or lesion widespread in multiple brain regions, including the frontal and parietal regions, the midbrain, the external capsule, and the cerebellum. Regarding the cognitive impairment in geriatric MDD, the reward signals were found weakened in the paralimbic cortex. The functional magnetic resonance imaging (fMRI) studies also found hemodynamic changes in the right dorsolateral prefrontal cortex (DLPFC), orbitofrontal cortex (OFC), and right frontopolar cortex (FPC) regions in late-life MDD patients with suicidal ideation. Future studies should consider the age of depression onset, more accurate measurements of suicide, larger sample size, and longitudinal design.Keywords: brain imaging, geriatric major depressive disorder, suicidality, suicide
Procedia PDF Downloads 135342 Reed: An Approach Towards Quickly Bootstrapping Multilingual Acoustic Models
Authors: Bipasha Sen, Aditya Agarwal
Abstract:
Multilingual automatic speech recognition (ASR) system is a single entity capable of transcribing multiple languages sharing a common phone space. Performance of such a system is highly dependent on the compatibility of the languages. State of the art speech recognition systems are built using sequential architectures based on recurrent neural networks (RNN) limiting the computational parallelization in training. This poses a significant challenge in terms of time taken to bootstrap and validate the compatibility of multiple languages for building a robust multilingual system. Complex architectural choices based on self-attention networks are made to improve the parallelization thereby reducing the training time. In this work, we propose Reed, a simple system based on 1D convolutions which uses very short context to improve the training time. To improve the performance of our system, we use raw time-domain speech signals directly as input. This enables the convolutional layers to learn feature representations rather than relying on handcrafted features such as MFCC. We report improvement on training and inference times by atleast a factor of 4x and 7.4x respectively with comparable WERs against standard RNN based baseline systems on SpeechOcean's multilingual low resource dataset.Keywords: convolutional neural networks, language compatibility, low resource languages, multilingual automatic speech recognition
Procedia PDF Downloads 123341 Selection of Wind Farms to Add Virtual Inertia Control to Assist the Power System Frequency Regulation
Authors: W. Du, X. Wang, Jun Cao, H. F. Wang
Abstract:
Due to the randomness and uncertainty of wind energy, modern power systems integrating large-scale wind generation will be significantly impacted in terms of system performance and technical challenges. System inertia with high wind penetration is decreasing when conventional thermal generators are gradually replaced by wind turbines, which do not naturally contribute to inertia response. The power imbalance caused by wind power or demand fluctuations leads to the instability of system frequency. Accordingly, the need to attach the supplementary virtual inertia control to wind farms (WFs) strongly arises. When multi-wind farms are connected to the grid simultaneously, the selection of which critical WFs to install the virtual inertia control is greatly important to enhance the stability of system frequency. By building the small signal model of wind power systems considering frequency regulation, the installation locations are identified by the geometric measures of the mode observability of WFs. In addition, this paper takes the impacts of grid topology and selection of feedback control signals into consideration. Finally, simulations are conducted on a multi-wind farms power system and the results demonstrate that the designed virtual inertia control method can effectively assist the frequency regulation.Keywords: frequency regulation, virtual inertia control, installation locations, observability, wind farms
Procedia PDF Downloads 397340 Fusion Models for Cyber Threat Defense: Integrating Clustering, Random Forests, and Support Vector Machines to Against Windows Malware
Authors: Azita Ramezani, Atousa Ramezani
Abstract:
In the ever-escalating landscape of windows malware the necessity for pioneering defense strategies turns into undeniable this study introduces an avant-garde approach fusing the capabilities of clustering random forests and support vector machines SVM to combat the intricate web of cyber threats our fusion model triumphs with a staggering accuracy of 98.67 and an equally formidable f1 score of 98.68 a testament to its effectiveness in the realm of windows malware defense by deciphering the intricate patterns within malicious code our model not only raises the bar for detection precision but also redefines the paradigm of cybersecurity preparedness this breakthrough underscores the potential embedded in the fusion of diverse analytical methodologies and signals a paradigm shift in fortifying against the relentless evolution of windows malicious threats as we traverse through the dynamic cybersecurity terrain this research serves as a beacon illuminating the path toward a resilient future where innovative fusion models stand at the forefront of cyber threat defense.Keywords: fusion models, cyber threat defense, windows malware, clustering, random forests, support vector machines (SVM), accuracy, f1-score, cybersecurity, malicious code detection
Procedia PDF Downloads 71339 Signal Processing of Barkhausen Noise Signal for Assessment of Increasing Down Feed in Surface Ground Components with Poor Micro-Magnetic Response
Authors: Tanmaya Kumar Dash, Tarun Karamshetty, Soumitra Paul
Abstract:
The Barkhausen Noise Analysis (BNA) technique has been utilized to assess surface integrity of steels. But the BNA technique is not very successful in evaluating surface integrity of ground steels that exhibit poor micro-magnetic response. A new approach has been proposed for the processing of BN signal with Fast Fourier transforms while Wavelet transforms has been used to remove noise from the BN signal, with judicious choice of the ‘threshold’ value, when the micro-magnetic response of the work material is poor. In the present study, the effect of down feed induced upon conventional plunge surface grinding of hardened bearing steel has been investigated along with an ultrasonically cleaned, wet polished and a sample ground with spark out technique for benchmarking. Moreover, the FFT analysis has been established, at different sets of applied voltages and applied frequency and the pattern of the BN signal in the frequency domain is analyzed. The study also depicts the wavelet transforms technique with different levels of decomposition and different mother wavelets, which has been used to reduce the noise value in BN signal of materials with poor micro-magnetic response, in order to standardize the procedure for all BN signals depending on the frequency of the applied voltage.Keywords: barkhausen noise analysis, grinding, magnetic properties, signal processing, micro-magnetic response
Procedia PDF Downloads 667338 Authenticity of Ecuadorian Commercial Honeys
Authors: Elisabetta Schievano, Valentina Zuccato, Claudia Finotello, Patricia Vit
Abstract:
Control of honey frauds is needed in Ecuador to protect bee keepers and consumers because simple syrups and new syrups with eucalyptus are sold as genuine honeys. Authenticity of Ecuadorian commercial honeys was tested with a vortex emulsion consisting on one volume of honey:water (1:1) dilution, and two volumes of diethyl ether. This method allows a separation of phases in one minute to discriminate genuine honeys that form three phase and fake honeys that form two phases; 34 of the 42 honeys analyzed from five provinces of Ecuador were genuine. This was confirmed with 1H NMR spectra of honey dilutions in deuterated water with an enhanced aminoacid region with signals for proline, phenylalanine and tyrosine. Classic quality indicators were also tested with this method (sugars, HMF), indicators of fermentation (ethanol, acetic acid), and residues of citric acid used in the syrup manufacture. One of the honeys gave a false positive for genuine, being an admixture of genuine honey with added syrup, evident for the high sucrose. Sensory analysis was the final confirmation to recognize the honey groups studied here, namely honey produced in combs by Apis mellifera, fake honey, and honey produced in cerumen pots by Geotrigona, Melipona, and Scaptotrigona. This is a valuable contribution to protect honey consumers, and to develop the beekeeping industry in Ecuador.Keywords: fake, genuine, honey, 1H NMR, Ecuador
Procedia PDF Downloads 385337 Low Power Glitch Free Dual Output Coarse Digitally Controlled Delay Lines
Authors: K. Shaji Mon, P. R. John Sreenidhi
Abstract:
In deep-submicrometer CMOS processes, time-domain resolution of a digital signal is becoming higher than voltage resolution of analog signals. This claim is nowadays pushing toward a new circuit design paradigm in which the traditional analog signal processing is expected to be progressively substituted by the processing of times in the digital domain. Within this novel paradigm, digitally controlled delay lines (DCDL) should play the role of digital-to-analog converters in traditional, analog-intensive, circuits. Digital delay locked loops are highly prevalent in integrated systems.The proposed paper addresses the glitches present in delay circuits along with area,power dissipation and signal integrity.The digitally controlled delay lines(DCDL) under study have been designed in a 90 nm CMOS technology 6 layer metal Copper Strained SiGe Low K Dielectric. Simulation and synthesis results show that the novel circuits exhibit no glitches for dual output coarse DCDL with less power dissipation and consumes less area compared to the glitch free NAND based DCDL.Keywords: glitch free, NAND-based DCDL, CMOS, deep-submicrometer
Procedia PDF Downloads 245336 Narrating 1968: Felipe Cazals’ Canoa (1976) and Images of Massacre
Authors: Nancy Elizabeth Naranjo Garcia
Abstract:
Canoa (1976) by Felipe Cazals is a film that exposes the consequences of power that the Mexican State exercised over the 1968 student movement. The film, in this particular way, approaches the Tlatelolco Massacre from a point of view that takes into consideration the events that led up to it. Nonetheless, the reference to the political tension in Canoa remains ambiguous. Thus, the cinematographic representation refers to an event that leaves space for reflection, and as a consequence leaves evidence of an image that signals the notion of survival as Georges Didi-Huberman points out. In addition to denouncing the oppressive force by the Mexican State, the images in Canoa also emphasize what did not happen in Tlatelolco and its condensation with the student activists. To observe the images that Canoa offers in a new light, this work proposes further exploration with the following questions; How do the images in Canoa narrate? How are the images inserted in the film? In this fashion, a more profound comprehension of the objective and the essence of the images becomes feasible. As a result, it is possible to analyze the images of Canoa with the real killing at San Miguel Canoa in literature. The film visualizes a testimony of the event that once seemed unimaginable, an image that anticipates and structures the proceeding event. Therefore, this study takes a second look at how Canoa considers not only the killing at San Miguel Canoa and the Tlatlelolco Massacre, but goes further on contextualize an unimaginable image.Keywords: cinematographic representation, student movement, Tlatelolco Massacre, unimaginable image
Procedia PDF Downloads 220335 Space Vector Pulse Width Modulation Based Design and Simulation of a Three-Phase Voltage Source Converter Systems
Authors: Farhan Beg
Abstract:
A space vector based pulse width modulation control technique for the three-phase PWM converter is proposed in this paper. The proposed control scheme is based on a synchronous reference frame model. High performance and efficiency is obtained with regards to the DC bus voltage and the power factor considerations of the PWM rectifier thus leading to low losses. MATLAB/SIMULINK are used as a platform for the simulations and a SIMULINK model is presented in the paper. The results show that the proposed model demonstrates better performance and properties compared to the traditional SPWM method and the method improves the dynamic performance of the closed loop drastically. For the space vector based pulse width modulation, sine signal is the reference waveform and triangle waveform is the carrier waveform. When the value of sine signal is larger than triangle signal, the pulse will start producing to high; and then when the triangular signals higher than sine signal, the pulse will come to low. SPWM output will change by changing the value of the modulation index and frequency used in this system to produce more pulse width. When more pulse width is produced, the output voltage will have lower harmonics contents and the resolution will increase.Keywords: power factor, SVPWM, PWM rectifier, SPWM
Procedia PDF Downloads 334334 Study of Structure and Properties of Polyester/Carbon Blends for Technical Applications
Authors: Manisha A. Hira, Arup Rakshit
Abstract:
Textile substrates are endowed with flexibility and ease of making–up, but are non-conductors of electricity. Conductive materials like carbon can be incorporated into textile structures to make flexible conductive materials. Such conductive textiles find applications as electrostatic discharge materials, electromagnetic shielding materials and flexible materials to carry current or signals. This work focuses on use of carbon fiber as conductor of electricity. Carbon fibers in staple or tow form can be incorporated in textile yarn structure to conduct electricity. The paper highlights the process for development of these conductive yarns of polyester/carbon using Friction spinning (DREF) as well as ring spinning. The optimized process parameters for processing hybrid structure of polyester with carbon tow on DREF spinning and polyester with carbon staple fiber using ring spinning have been presented. The studies have been linked to highlight the electrical conductivity of the developed yarns. Further, the developed yarns have been incorporated as weft in fabric and their electrical conductivity has been evaluated. The paper demonstrates the structure and properties of fabrics developed from such polyester/carbon blend yarns and their suitability as electrically dissipative fabrics.Keywords: carbon fiber, conductive textiles, electrostatic dissipative materials, hybrid yarns
Procedia PDF Downloads 303333 Wind Power Forecasting Using Echo State Networks Optimized by Big Bang-Big Crunch Algorithm
Authors: Amir Hossein Hejazi, Nima Amjady
Abstract:
In recent years, due to environmental issues traditional energy sources had been replaced by renewable ones. Wind energy as the fastest growing renewable energy shares a considerable percent of energy in power electricity markets. With this fast growth of wind energy worldwide, owners and operators of wind farms, transmission system operators, and energy traders need reliable and secure forecasts of wind energy production. In this paper, a new forecasting strategy is proposed for short-term wind power prediction based on Echo State Networks (ESN). The forecast engine utilizes state-of-the-art training process including dynamical reservoir with high capability to learn complex dynamics of wind power or wind vector signals. The study becomes more interesting by incorporating prediction of wind direction into forecast strategy. The Big Bang-Big Crunch (BB-BC) evolutionary optimization algorithm is adopted for adjusting free parameters of ESN-based forecaster. The proposed method is tested by real-world hourly data to show the efficiency of the forecasting engine for prediction of both wind vector and wind power output of aggregated wind power production.Keywords: wind power forecasting, echo state network, big bang-big crunch, evolutionary optimization algorithm
Procedia PDF Downloads 572332 Multicasting Characteristics of All-Optical Triode Based on Negative Feedback Semiconductor Optical Amplifiers
Authors: S. Aisyah Azizan, M. Syafiq Azmi, Yuki Harada, Yoshinobu Maeda, Takaomi Matsutani
Abstract:
We introduced an all-optical multi-casting characteristics with wavelength conversion based on a novel all-optical triode using negative feedback semiconductor optical amplifier. This study was demonstrated with a transfer speed of 10 Gb/s to a non-return zero 231-1 pseudorandom bit sequence system. This multi-wavelength converter device can simultaneously provide three channels of output signal with the support of non-inverted and inverted conversion. We studied that an all-optical multi-casting and wavelength conversion accomplishing cross gain modulation is effective in a semiconductor optical amplifier which is effective to provide an inverted conversion thus negative feedback. The relationship of received power of back to back signal and output signals with wavelength 1535 nm, 1540 nm, 1545 nm, 1550 nm, and 1555 nm with bit error rate was investigated. It was reported that the output signal wavelengths were successfully converted and modulated with a power penalty of less than 8.7 dB, which the highest is 8.6 dB while the lowest is 4.4 dB. It was proved that all-optical multi-casting and wavelength conversion using an optical triode with a negative feedback by three channels at the same time at a speed of 10 Gb/s is a promising device for the new wavelength conversion technology.Keywords: cross gain modulation, multicasting, negative feedback optical amplifier, semiconductor optical amplifier
Procedia PDF Downloads 684