Search results for: Above Grade Storage Tank
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3421

Search results for: Above Grade Storage Tank

2791 Technology of Electrokinetic Disintegration of Virginia Fanpetals (Sida hermaphrodita) Biomass in a Biogas Production System

Authors: Mirosław Krzemieniewski, Marcin Zieliński, Marcin Dębowski

Abstract:

Electrokinetic disintegration is one of the high-voltage electric methods. The design of systems is exceptionally simple. Biomass flows through a system of pipes with alongside mounted electrodes that generate an electric field. Discharges in the electric field deform cell walls and lead to their successive perforation, thereby making their contents easily available to bacteria. The spark-over occurs between electrode surface and pipe jacket which is the second pole and closes the circuit. The value of voltage ranges from 10 to 100kV. Electrodes are supplied by normal “power grid” monophase electric current (230V, 50Hz). Next, the electric current changes into direct current of 24V in modules serving for particular electrodes, and this current directly feeds the electrodes. The installation is completely safe because the value of generated current does not exceed 250mA and because conductors are grounded. Therefore, there is no risk of electric shock posed to the personnel, even in the case of failure or incorrect connection. Low values of the electric current mean small energy consumption by the electrode which is extremely low – only 35W per electrode – compared to other methods of disintegration. Pipes with electrodes with diameter of DN150 are made of acid-proof steel and connected from both sides with 90º elbows ended with flanges. The available S and U types of pipes enable very convenient fitting with system construction in the existing installations and rooms or facilitate space management in new applications. The system of pipes for electrokinetic disintegration may be installed horizontally, vertically, askew, on special stands or also directly on the wall of a room. The number of pipes and electrodes is determined by operating conditions as well as the quantity of substrate, type of biomass, content of dry matter, method of disintegration (single or circulatory), mounting site etc. The most effective method involves pre-treatment of substrate that may be pumped through the disintegration system on the way to the fermentation tank or recirculated in a buffered intermediate tank (substrate mixing tank). Biomass structure destruction in the process of electrokinetic disintegration causes shortening of substrate retention time in the tank and acceleration of biogas production. A significant intensification of the fermentation process was observed in the systems operating in the technical scale, with the greatest increase in biogas production reaching 18%. The secondary, but highly significant for the energetic balance, effect is a tangible decrease of energy input by agitators in tanks. It is due to reduced viscosity of the biomass after disintegration, and may result in energy savings reaching even 20-30% of the earlier noted consumption. Other observed phenomena include reduction in the layer of surface scum, reduced sewage capability for foaming and successive decrease in the quantity of bottom sludge banks. Considering the above, the system for electrokinetic disintegration seems a very interesting and valuable solutions meeting the offer of specialist equipment for the processing of plant biomass, including Virginia fanpetals, before the process of methane fermentation.

Keywords: electrokinetic disintegration, biomass, biogas production, fermentation, Virginia fanpetals

Procedia PDF Downloads 367
2790 Assessment of Cardioprotective Effect of Deferiprone on Doxorubicin-Induced Cardiac Toxicity in a Rat Model

Authors: Sadaf Kalhori

Abstract:

Introduction: Doxorubicin (DOX)-induced cardiotoxicity is widely known as the most severe complication of anthracycline-based chemotherapy in patients with cancer. It is unknown whether Deferiprone (DFP), could reduce the severity of DOX-induced cardiotoxicity by inhibiting free radical reactions. Thus, this study was performed to assess the protective effect of Deferiprone on DOX-induced cardiotoxicity in a rat model. Methods: The rats were divided into five groups. Group one was a control group. Group 2 was DOX (2 mg/kg/day, every other day for 12 days), and Group three to five which receiving DOX as in group 2 and DFP 75,100 and 150 mg/kg/day, for 19 days, respectively. DFP was starting 5 days prior to the first DOX injection and two days after the last DOX injection throughout the study. Electrocardiographic and hemodynamic studies, along with histopathological examination, were conducted. In addition, serum sample was taken and total cholesterol, Malone dialdehyde, triglyceride, albumin, AST, ALT, total protein, lactate dehydrogenase, total anti-oxidant and creatine kinase were assessed. Result: Our results showed the normal structure of endocardial, myocardial and pericardial in the control group. Pathologic data such as edema, hyperemia, bleeding, endocarditis, myocarditis and pericarditis, hyaline degeneration, cardiomyocyte necrosis, myofilament degeneration and nuclear chromatin changes were assessed in all groups. In the DOX group, all pathologic data was seen with mean grade of 2±1.25. In the DFP group with a dose of 75 and 100 mg, the mean grade was 1.41± 0.31 and 1±.23, respectively. In DFP group with a dose of 150, the pathologic data showed a milder change in comparison with other groups with e mean grade of 0.45 ±0.19. Most pathologic data in DFP groups showed significant changes in comparison with the DOX group (p < 0.001). Discussion: The results also showed that DFP treatment significantly improved DOX-induced heart damage, structural changes in the myocardium, and ventricular function. Our data confirm that DFP is protective against cardiovascular-related disorders induced by DOX. Clinical studies are needed to be involved to examine these findings in humans.

Keywords: cardiomyopathy, deferiprone, doxorubicin, rat

Procedia PDF Downloads 132
2789 The Effect of Nano-Silver Packaging on Quality Maintenance of Fresh Strawberry

Authors: Naser Valipour Motlagh, Majid Aliabadi, Elnaz Rahmani, Samira Ghorbanpour

Abstract:

Strawberry is one of the most favored fruits all along the world. But due to its vulnerability to microbial contamination and short life storage, there are lots of problems in industrial production and transportation of this fruit. Therefore, lots of ideas have tried to increase the storage life of strawberries especially through proper packaging. This paper works on efficient packaging as well. The primary material used is produced through simple mixing of low-density polyethylene (LDPE) and silver nanoparticles in different weight fractions of 0.5 and 1% in presence of dicumyl peroxide as a cross-linking agent. Final packages were made in a twin-screw extruder. Then, their effect on the quality maintenance of strawberry is evaluated. The SEM images of nano-silver packages show the distribution of silver nanoparticles in the packages. Total bacteria count, mold, yeast and E. coli are measured for microbial evaluation of all samples. Texture, color, appearance, odor, taste and total acceptance of various samples are evaluated by trained panelists and based on 9-point hedonic scale method. The results show a decrease in total bacteria count and mold in nano-silver packages compared to the samples packed in polyethylene packages for the same storage time. The optimum concentration of silver nanoparticles for the lowest bacteria count and mold is predicted to be around 0.5% which has attained the most acceptance from the panelist as well. Moreover, organoleptic properties of strawberry are preserved for a longer period in nano-silver packages. It can be concluded that using nano-silver particles in strawberry packages has improved the storage life and quality maintenance of the fruit.

Keywords: antimicrobial properties, polyethylene, silver nanoparticles, strawberry

Procedia PDF Downloads 149
2788 Numerical Investigation of Phase Change Materials (PCM) Solidification in a Finned Rectangular Heat Exchanger

Authors: Mounir Baccar, Imen Jmal

Abstract:

Because of the rise in energy costs, thermal storage systems designed for the heating and cooling of buildings are becoming increasingly important. Energy storage can not only reduce the time or rate mismatch between energy supply and demand but also plays an important role in energy conservation. One of the most preferable storage techniques is the Latent Heat Thermal Energy Storage (LHTES) by Phase Change Materials (PCM) due to its important energy storage density and isothermal storage process. This paper presents a numerical study of the solidification of a PCM (paraffin RT27) in a rectangular thermal storage exchanger for air conditioning systems taking into account the presence of natural convection. Resolution of continuity, momentum and thermal energy equations are treated by the finite volume method. The main objective of this numerical approach is to study the effect of natural convection on the PCM solidification time and the impact of fins number on heat transfer enhancement. It also aims at investigating the temporal evolution of PCM solidification, as well as the longitudinal profiles of the HTF circling in the duct. The present research undertakes the study of two cases: the first one treats the solidification of PCM in a PCM-air heat exchanger without fins, while the second focuses on the solidification of PCM in a heat exchanger of the same type with the addition of fins (3 fins, 5 fins, and 9 fins). Without fins, the stratification of the PCM from colder to hotter during the heat transfer process has been noted. This behavior prevents the formation of thermo-convective cells in PCM area and then makes transferring almost conductive. In the presence of fins, energy extraction from PCM to airflow occurs at a faster rate, which contributes to the reduction of the discharging time and the increase of the outlet air temperature (HTF). However, for a great number of fins (9 fins), the enhancement of the solidification process is not significant because of the effect of confinement of PCM liquid spaces for the development of thermo-convective flow. Hence, it can be concluded that the effect of natural convection is not very significant for a high number of fins. In the optimum case, using 3 fins, the increasing temperature of the HTF exceeds approximately 10°C during the first 30 minutes. When solidification progresses from the surfaces of the PCM-container and propagates to the central liquid phase, an insulating layer will be created in the vicinity of the container surfaces and the fins, causing a low heat exchange rate between PCM and air. As the solid PCM layer gets thicker, a progressive regression of the field of movements is induced in the liquid phase, thus leading to the inhibition of heat extraction process. After about 2 hours, 68% of the PCM became solid, and heat transfer was almost dominated by conduction mechanism.

Keywords: heat transfer enhancement, front solidification, PCM, natural convection

Procedia PDF Downloads 183
2787 Nutritional Potential and Functionality of Whey Powder Influenced by Different Processing Temperature and Storage

Authors: Zarmina Gillani, Nuzhat Huma, Aysha Sameen, Mulazim Hussain Bukhari

Abstract:

Whey is an excellent food ingredient owing to its high nutritive value and its functional properties. However, composition of whey varies depending on composition of milk, processing conditions, processing method, and its whey protein content. The aim of this study was to prepare a whey powder from raw whey and to determine the influence of different processing temperatures (160 and 180 °C) on the physicochemical, functional properties during storage of 180 days and on whey protein denaturation. Results have shown that temperature significantly (P < 0.05) affects the pH, acidity, non-protein nitrogen (NPN), protein total soluble solids, fat and lactose contents. Significantly (p < 0.05) higher foaming capacity (FC), foam stability (FS), whey protein nitrogen index (WPNI), and a lower turbidity and solubility index (SI) were observed in whey powder processed at 160 °C compared to whey powder processed at 180 °C. During storage of 180 days, slow but progressive changes were noticed on the physicochemical and functional properties of whey powder. Reverse phase-HPLC analysis revealed a significant (P < 0.05) effect of temperature on whey protein contents. Denaturation of β-Lactoglobulin is followed by α-lacalbumin, casein glycomacropeptide (CMP/GMP), and bovine serum albumin (BSA).

Keywords: whey powder, temperature, denaturation, reverse phase, HPLC

Procedia PDF Downloads 292
2786 Automatic Detection of Defects in Ornamental Limestone Using Wavelets

Authors: Maria C. Proença, Marco Aniceto, Pedro N. Santos, José C. Freitas

Abstract:

A methodology based on wavelets is proposed for the automatic location and delimitation of defects in limestone plates. Natural defects include dark colored spots, crystal zones trapped in the stone, areas of abnormal contrast colors, cracks or fracture lines, and fossil patterns. Although some of these may or may not be considered as defects according to the intended use of the plate, the goal is to pair each stone with a map of defects that can be overlaid on a computer display. These layers of defects constitute a database that will allow the preliminary selection of matching tiles of a particular variety, with specific dimensions, for a requirement of N square meters, to be done on a desktop computer rather than by a two-hour search in the storage park, with human operators manipulating stone plates as large as 3 m x 2 m, weighing about one ton. Accident risks and work times are reduced, with a consequent increase in productivity. The base for the algorithm is wavelet decomposition executed in two instances of the original image, to detect both hypotheses – dark and clear defects. The existence and/or size of these defects are the gauge to classify the quality grade of the stone products. The tuning of parameters that are possible in the framework of the wavelets corresponds to different levels of accuracy in the drawing of the contours and selection of the defects size, which allows for the use of the map of defects to cut a selected stone into tiles with minimum waste, according the dimension of defects allowed.

Keywords: automatic detection, defects, fracture lines, wavelets

Procedia PDF Downloads 244
2785 Children's Literature with Mathematical Dialogue for Teaching Mathematics at Elementary Level: An Exploratory First Phase about Students’ Difficulties and Teachers’ Needs in Third and Fourth Grade

Authors: Goulet Marie-Pier, Voyer Dominic, Simoneau Victoria

Abstract:

In a previous research project (2011-2019) funded by the Quebec Ministry of Education, an educational approach was developed based on the teaching and learning of place value through children's literature. Subsequently, the effect of this approach on the conceptual understanding of the concept among first graders (6-7 years old) was studied. The current project aims to create a series of children's literature to help older elementary school students (8-10 years old) in developing a conceptual understanding of complex mathematical concepts taught at their grade level rather than a more typical procedural understanding. Knowing that there are no educational material or children's books that exist to achieve our goals, four stories, accompanied by mathematical activities, will be created to support students, and their teachers, in the learning and teaching of mathematical concepts that can be challenging within their mathematic curriculum. The stories will also introduce a mathematical dialogue into the characters' discourse with the aim to address various mathematical foundations for which there are often erroneous statements among students and occasionally among teachers. In other words, the stories aim to empower students seeking a real understanding of difficult mathematical concepts, as well as teachers seeking a way to teach these difficult concepts in a way that goes beyond memorizing rules and procedures. In order to choose the concepts that will be part of the stories, it is essential to understand the current landscape regarding the main difficulties experienced by students in third and fourth grade (8-10 years old) and their teacher’s needs. From this perspective, the preliminary phase of the study, as discussed in the presentation, will provide critical insight into the mathematical concepts with which the target grade levels struggle the most. From this data, the research team will select the concepts and develop their stories in the second phase of the study. Two questions are preliminary to the implementation of our approach, namely (1) what mathematical concepts are considered the most “difficult to teach” by teachers in the third and fourth grades? and (2) according to teachers, what are the main difficulties encountered by their students in numeracy? Self-administered online questionnaires using the SimpleSondage software will be sent to all third and fourth-grade teachers in nine school service centers in the Quebec region, representing approximately 300 schools. The data that will be collected in the fall of 2022 will be used to compare the difficulties identified by the teachers with those prevalent in the scientific literature. Considering that this ensures consistency between the proposed approach and the true needs of the educational community, this preliminary phase is essential to the relevance of the rest of the project. It is also an essential first step in achieving the two ultimate goals of the research project, improving the learning of elementary school students in numeracy, and contributing to the professional development of elementary school teachers.

Keywords: children’s literature, conceptual understanding, elementary school, learning and teaching, mathematics

Procedia PDF Downloads 85
2784 Jabodebek Light Rail Transit with Grade of Automation (GoA) No.3 (Driverless) Technology towards Jakarta Net-Zero Emissions (NZE) 2050

Authors: Nadilla Saskia, Octoria Nur, Assegaf Zareeva

Abstract:

Mass transport infrastructures are essential to enhance the connectivity between regions and regional equity in Indonesia. Indonesia’s capital city, Jakarta, ranked the 10th highest congestion rate in the world based on the 2019 traffic index, contributing to air pollution and energy consumption. Other than that, the World Air Quality Report in 2019 depicted Jakarta’s air pollutant concentration at 49.4 mg, the 5th highest in the world. Issues of severe traffic congestion, lack of sufficient urban infrastructure in Jakarta, and greenhouse gas emissions have to be addressed through mass transportation. Indonesia’s government is currently constructing The Greater Jakarta LRT (Light Rapid Transit) as convenient, efficient, and environmentally friendly transportation connecting Jakarta with Bekasi and Cibubur areas and plans to serve the passengers in August 2023. Greater Jakarta LRT is operated with Grade of Automation (GoA) No.3, Driverless Train Operation (DTO). Hence, the automated technology used in rail infrastructure is anticipated to address these issues with greater results. The paper will be validated and establish the extent to which the automation system would increase energy efficiency, help reduce carbon emissions, and benefit the environment. Based on the calculated CO2 emissions and fuel consumption for the existing condition (2015) during the feasibility study of the LRT Project and the predicted condition in 2030, it is obtained that Greater Jakarta LRT with GoA3 operation will reduce the CO2 emissions and fuel consumption by more than 50% in 2030. In the bigger picture, Greater Jakarta LRT supports the government's goal of achieving Jakarta Net-Zero Emissions (NZE) 2050.

Keywords: LRT, Grade of Automation (GoA), energy efficiency, carbon emissions, railway infrastructure, DKI Jakarta

Procedia PDF Downloads 75
2783 A Review of the Handling and Disposal of Botulinum Toxin in a Maxillofacial Unit

Authors: Ashana Gupta

Abstract:

Aim: In the UK, Botulinum Toxin (botox) is authorised for treating chronic myofascial pain secondary to masseter muscle hypertrophy (Fedorowicz et al. 2013). This audit aimed to ensure the Maxillofacial Unit is meeting the trust guidelines for the safe storage and disposal of botox. Method: The trust upholds a strict policy for botox handling. The audit was designed to optimise several elements including Staff awareness of regulations around botox handling A questionnaire was designed to test knowledge of advised storage temperatures, reporting of adverse events, disposal procedures and regulatory authorities. Steps taken to safely delivertoxin and eliminate unused toxin. A checklist was completed. These include marks for storagetemperature, identification checks, disposal of sharps, deactivation of toxin, and disposal. Results: All staff correctly stated storage requirements for toxin. 75% staff (n=8) were unsure about reporting and regulations. Whilst all staff knew how to dispose of vials, 0% staff showed awareness for the crucial step of deactivating toxin. All checklists (n=20) scored 100% for adequate storage, ID checks, and toxin disposal. However, there were no steps taken to deactivate toxin in any cases. Staff training took place with revision to clinical protocols. In line with Trust guidelines, an additional clinical step has been introduced including use of 0.5% sodium hypochlorite to deactivate botox. Conclusion: Deactivation is crucial to ensure residual toxin is not misused. There are cases of stolen botox within South-Tees Hospital (Woodcock, 2014). This audit was successful in increasing compliance to safe handling and disposal of botox by 100% and ensured our hospitalmeets Trust guidance.

Keywords: botulinum toxin, aesthetics, handling, disposal

Procedia PDF Downloads 201
2782 Discussion as a Means to Improve Peer Assessment Accuracy

Authors: Jung Ae Park, Jooyong Park

Abstract:

Writing is an important learning activity that cultivates higher level thinking. Effective and immediate feedback is necessary to help improve students' writing skills. Peer assessment can be an effective method in writing tasks because it makes it possible for students not only to receive quick feedback on their writing but also to get a chance to examine different perspectives on the same topic. Peer assessment can be practiced frequently and has the advantage of immediate feedback. However, there is controversy about the accuracy of peer assessment. In this study, we tried to demonstrate experimentally how the accuracy of peer assessment could be improved. Participants (n=76) were randomly assigned to groups of 4 members. All the participant graded two sets of 4 essays on the same topic. They graded the first set twice, and the second set or the posttest once. After the first grading of the first set, each group in the experimental condition 1 (discussion group), were asked to discuss the results of the peer assessment and then to grade the essays again. Each group in the experimental condition 2 (reading group), were asked to read the assessment on each essay by an expert and then to grade the essays again. In the control group, the participants were asked to grade the 4 essays twice in different orders. Afterwards, all the participants graded the second set of 4 essays. The mean score from 4 participants was calculated for each essay. The accuracy of the peer assessment was measured by Pearson correlation with the scores of the expert. The results were analyzed by two-way repeated measure ANOVA. The main effect of grading was observed: Grading accuracy got better as the number of grading experience increased. Analysis of posttest accuracy revealed that the score variations within a group of 4 participants decreased in both discussion and reading conditions but not in the control condition. These results suggest that having students discuss their grading together can be an efficient means to improve peer assessment accuracy. By discussing, students can learn from others about what to consider in grading and whether their grading is too strict or lenient. Further research is needed to examine the exact cause of the grading accuracy.

Keywords: peer assessment, evaluation accuracy, discussion, score variations

Procedia PDF Downloads 265
2781 Microorganisms in Fresh and Stored Bee Pollen Originated from Slovakia

Authors: Vladimíra Kňazovická, Mária Dovičičová, Miroslava Kačániová, Margita Čanigová

Abstract:

The aim of the study was to test the storage of bee pollen at room temperature and in cold store, and to describe microorganisms originated from it. Fresh bee pollen originating in West Slovakia was collected in May 2010. It was tested for presence of particular microbial groups using dilution plating method, and divided into two parts with different storage (in cold store and at room temperature). Microbial analyses of pollen were repeated after one year of storage. Several bacterial strains were isolated and tested using Gram staining, for catalase and fructose-6-phosphate-phosphoketolase presence, and by rapid ID 32A (BioMérieux, France). Micromycetes were identified at genus level. Fresh pollen contained coliform bacteria, which were not detected after one year of storage in both ways. Total plate count (TPC) of aerobes and anaerobes and of yeasts in fresh bee pollen exceeded 5.00 log CFU/g. TPC of aerobes and anaerobes decreased below 2.00 log CFU/g after one year of storage in both ways. Count of yeasts decreased to 2.32 log CFU/g (at room temperature) and to 3.66 log CFU/g (in cold store). Microscopic filamentous fungi decreased from 3.41 log CFU/g (fresh bee pollen) to 1.13 log CFU/g (at room temperature) and to 1.89 log CFU/g (in cold store). In fresh bee pollen, 12 genera of micromycetes were identified in the following order according to their relative density: Penicillium > Mucor > Absidia > Cladosporium, Fusarium > Alternaria > Eurotium > Aspergillus, Rhizopus > Emericella > Arthrinium and Mycelium sterilium. After one year at room temperature, only three genera were detected in bee pollen (Penicillium > Aspergillus, Mucor) and after one year in cold store, seven genera were detected (Mucor > Penicillium, Emericella > Aspergillus, Absidia > Arthrinium, Eurotium). From the plates designated for anaerobes, eight colonies originating in fresh bee pollen were isolated. Among them, a single yeast isolate occurred. Other isolates were G+ bacteria, with a total of five rod shaped. In three out of these five, catalase was absent and fructose-6-phosphate-phosphoketolase was present. Bacterial isolates originating in fresh pollen belonged probably to genus Bifidobacterium or relative genera, but their identity was not confirmed unequivocally. In general, cold conditions are suitable for maintaining the natural properties of foodstuffs for a longer time. Slight decrease of microscopic fungal number and diversity was recorded in cold temperatures compared with storage at room temperature.

Keywords: bacteria, bee product, microscopic fungi, biosystems engineering

Procedia PDF Downloads 327
2780 Study on Preparation and Storage of Composite Vegetable Squash of Tomato, Pumpkin and Ginger

Authors: K. Premakumar, R. G. Lakmali, S. M. A. C. U. Senarathna

Abstract:

In the present world, production and consumption of fruit and vegetable beverages have increased owing to the healthy life style of the people. Therefore, a study was conducted to develop composite vegetable squash by incorporating nutritional, medicinal and organoleptic properties of tomato, pumpkin and ginger. Considering the finding of several preliminary studies, five formulations in different combinations tomato pumpkin were taken and their physico-chemical parameters such as pH, TSS, titrable acidity, ascorbic acid content and total sugar and organoleptic parameters such as colour, aroma, taste, nature, overall acceptability were analyzed. Then the best sample was improved by using 1 % ginger (50% tomato+ 50% pumpkin+ 1% ginger). Best three formulations were selected for storage studied. The formulations were stored at 30 °C room temperature and 70-75% of RH for 12 weeks. Physicochemical parameters , organoleptic and microbial activity (total plate count, yeast and mold, E-coil) were analyzed during storage periods and protein content, fat content, ash were also analysed%.The study on the comparison of physico-chemical and sensory qualities of stored Squashes was done up to 12 weeks storage periods. The nutritional analysis of freshly prepared tomato pumpkin vegetable squash formulations showed increasing trend in titratable acidity, pH, total sugar, non -reducing sugar, total soluble solids and decreasing trend in ascorbic acid and reducing sugar with storage periods. The results of chemical analysis showed that, there were the significant different difference (p < 0.05) between tested formulations. Also, sensory analysis also showed that there were significant differences (p < 0.05) for organoleptic character characters between squash formulations. The highest overall acceptability was observed in formulation with 50% tomato+ 50% pumpkin+1% ginger and all the all the formulations were microbiologically safe for consumption. Based on the result of physico-chemical characteristics, sensory attributes and microbial test, the Composite Vegetable squash with 50% tomato+50% pumpkin+1% ginger was selected as best formulation and could be stored for 12 weeks without any significant changes in quality characteristics.

Keywords: nutritional analysis, formulations, sensory attributes, squash

Procedia PDF Downloads 197
2779 Laser Writing on Vitroceramic Disks for Petabyte Data Storage

Authors: C. Busuioc, S. I. Jinga, E. Pavel

Abstract:

The continuous need of more non-volatile memories with a higher storage capacity, smaller dimensions and weight, as well as lower costs, has led to the exploration of optical lithography on active media, as well as patterned magnetic composites. In this context, optical lithography is a technique that can provide a significant decrease of the information bit size to the nanometric scale. However, there are some restrictions that arise from the need of breaking the optical diffraction limit. Major achievements have been obtained by employing a vitoceramic material as active medium and a laser beam operated at low power for the direct writing procedure. Thus, optical discs with ultra-high density were fabricated by a conventional melt-quenching method starting from analytical purity reagents. They were subsequently used for 3D recording based on their photosensitive features. Naturally, the next step consists in the elucidation of the composition and structure of the active centers, in correlation with the use of silver and rare-earth compounds for the synthesis of the optical supports. This has been accomplished by modern characterization methods, namely transmission electron microscopy coupled with selected area electron diffraction, scanning transmission electron microscopy and electron energy loss spectroscopy. The influence of laser diode parameters, silver concentration and fluorescent compounds formation on the writing process and final material properties was investigated. The results indicate performances in terms of capacity with two order of magnitude higher than other reported information storage systems. Moreover, the fluorescent photosensitive vitroceramics may be integrated in other applications which appeal to nanofabrication as the driving force in electronics and photonics fields.

Keywords: data storage, fluorescent compounds, laser writing, vitroceramics

Procedia PDF Downloads 224
2778 High School Students’ Seismic Risk Perception and Preparedness in Shavar, Dhaka

Authors: Mohammad Lutfur Rahman

Abstract:

School students of Dhaka are in extreme risk of natural disasters. However, the study on assessment of the real scenario of high school students about perceptions of earthquake is very little. The purpose of this cross-sectional study is to assess the seismic risk perception and preparedness levels about earthquake among high school students in Shavar, Dhaka. A questionnaire was developed, and data collection was done about a group of high school students in seven classrooms. The author uses a method of surveying high school students to identify and describe the factors that influence their knowledge and perceptions about earthquake. This study examines gender and grade differences in perceived risk and communication behavior in response to the earthquake. Female students’ preparation, participation, and communication with family are more frequent than that of male students. Female students have been found to be more likely to learn about a disaster than male students. Higher grade students have more awareness but less preparedness about earthquake than that of the younger one. This research concludes that irrespective of grades, high school students are vulnerable to earthquake due to the lack of a seismic education program.

Keywords: awareness, earthquake, risk perception, seismic

Procedia PDF Downloads 241
2777 Innate Immune Dysfunction in Niemann Pick Disease Type C

Authors: Stephanie Newman

Abstract:

Niemann-Pick Type C disease is a rare, usually fatal lysosomal storage disorder. Although clinically characterized by progressive neurodegeneration, there is also evidence of altered innate immune responses such as neuroinflammation that promote disease progression. We have initiated an investigation into whether phagocytosis, an important innate immune activity and the process by which particles are ingested is defective in NPC. Using an in vitro assay, we have shown that NPC macrophages have a deficiency in the phagocytosis of different particles. We plan to investigate the mechanistic basis for impaired phagocytosis, the contribution that this deficiency makes to disease pathology, and whether therapies that have shown in vivo benefit are able to restore phagocytic activity.

Keywords: Niemann Pick Disease C, phagocytosis, innate immunity, lysosomal storage disorder

Procedia PDF Downloads 382
2776 Oxidative Stability of an Iranian Ghee (Butter Fat) Versus Soybean Oil During Storage at Different Temperatures

Authors: Kooshan Nayebzadeh, Maryam Enteshari

Abstract:

In this study, the oxidative stability of soybean oil under different storage temperatures (4 and 25 ˚C) and during 6-month shelf-life was investigated by various analytical methods and headspace-liquid phase microextraction (HS-LPME) coupled to gas chromatography-mass spectrometry (GC-MS). Oxidation changes were monitored by analytical parameters consisted of acid value (AV), peroxide value (PV), p-Anisidine value (p-AV), thiobarbituric acid value (TBA), fatty acids profile, iodine value (IV) and oxidative stability index (OSI). In addition, concentrations of hexanal and heptanal as secondary volatile oxidation compounds were determined by HS-LPME/GC-MS technique. Rate of oxidation in soybean oil which stored at 25 ˚C was so higher. The AV, p-AV, and TBA were gradually increased during 6 months, while the amount of unsaturated fatty acids, IV, and OSI decreased. Other parameters included concentrations of both hexanal and heptanal, and PV exhibited increasing trend during primitive months of storage; then, at the end of third and fourth months a sudden decrement was understood for the concentrations of hexanal and heptanal and the amount of PV, simultaneously. The latter parameters increased again until the end of shelf-time. As a result, the temperature and time were effective factors in oxidative stability of soybean oil. Also intensive correlations were found for soybean oil at 4 ˚C between AV and TBA (r2=0.96), PV and p-AV (r2=0.9), IV and TBA (-r2=0.9), and for soybean oil stored at 4 ˚C between p-AV and TBA (r2=0.99).

Keywords: headspace-liquid phase microextraction, oxidation, shelf-life, soybean oil

Procedia PDF Downloads 392
2775 Heritage 3D Digitalization Combining High Definition Photogrammetry with Metrologic Grade Laser Scans

Authors: Sebastian Oportus, Fabrizio Alvarez

Abstract:

3D digitalization of heritage objects is widely used nowadays. However, the most advanced 3D scanners in the market that capture topology and texture at the same time, and are specifically made for this purpose, don’t deliver the accuracy that is needed for scientific research. In the last three years, we have developed a method that combines the use of Metrologic grade laser scans, that allows us to work with a high accuracy topology up to 15 times more precise and combine this mesh with a texture obtained from high definition photogrammetry with up to 100 times more pixel concentrations. The result is an accurate digitalization that promotes heritage preservation, scientific study, high detail reproduction, and digital restoration, among others. In Chile, we have already performed 478 digitalizations of high-value heritage pieces and compared the results with up to five different digitalization methods; the results obtained show a considerable better dimensional accuracy and texture resolution. We know the importance of high precision and resolution for academics and museology; that’s why our proposal is to set a worldwide standard using this open source methodology.

Keywords: 3D digitalization, digital heritage, heritage preservation, digital restauration, heritage reproduction

Procedia PDF Downloads 177
2774 Time Temperature Indicator for Monitoring Freshness of Packed Pasteurized Milk

Authors: Rajeshwar S. Matche, Subhash V. Pawde, Suraj P, Sachin R. Chaudhari

Abstract:

Time Temperature Indicator’s (TTI) are trending approach in a food packaging that will be insightful to have safe and hygienic food products. Currently, available TTI in the market are mostly a product specific and sometime even difficult to handle especially in supply chain as these are pre-activated and require specific storage conditions. In the present study, research focus is on the development of a cost-effective lactic acid based TTI that can work over a wide range of temperature and can be activated at time of packaging or on demand. The correlation between activation energies of colour change of the developed indicator and packed pasteurized milk spoilage with respect to time and temperature was established. Developed lactic acid based TTI strips have range of activation energy from 10.13 to 24.20 KJ/mol. We found that the developed TTI strip’s with activation energy 12.42, and 14.41KJ/mol can be correlated with spoilage activation energy of packed pasteurized milk which was 25.71 KJ/mol with factor of 2 at storage temperature 4°C. The implementation of these TTI on packed pasteurized milk allow us see visual colour change during the storage and can be fruitful to monitoring quality of the milk and understand its freshness especially in a cold supply chain, viz distributor and road vendor etc.

Keywords: pasteurised packed milk, time temperature indicator, spoilage, freshness

Procedia PDF Downloads 106
2773 Groundwater Treatment of Thailand's Mae Moh Lignite Mine

Authors: A. Laksanayothin, W. Ariyawong

Abstract:

Mae Moh Lignite Mine is the largest open-pit mine in Thailand. The mine serves coal to the power plant about 16 million tons per year. This amount of coal can produce electricity accounting for about 10% of Nation’s electric power generation. The mining area of Mae Moh Mine is about 28 km2. At present, the deepest area of the pit is about 280 m from ground level (+40 m. MSL) and in the future the depth of the pit can reach 520 m from ground level (-200 m.MSL). As the size of the pit is quite large, the stability of the pit is seriously important. Furthermore, the preliminary drilling and extended drilling in year 1989-1996 had found high pressure aquifer under the pit. As a result, the pressure of the underground water has to be released in order to control mine pit stability. The study by the consulting experts later found that 3-5 million m3 per year of the underground water is needed to be de-watered for the safety of mining. However, the quality of this discharged water should meet the standard. Therefore, the ground water treatment facility has been implemented, aiming to reduce the amount of naturally contaminated Arsenic (As) in discharged water lower than the standard limit of 10 ppb. The treatment system consists of coagulation and filtration process. The main components include rapid mixing tanks, slow mixing tanks, sedimentation tank, thickener tank and sludge drying bed. The treatment process uses 40% FeCl3 as a coagulant. The FeCl3 will adsorb with As(V), forming floc particles and separating from the water as precipitate. After that, the sludge is dried in the sand bed and then be disposed in the secured land fill. Since 2011, the treatment plant of 12,000 m3/day has been efficiently operated. The average removal efficiency of the process is about 95%.

Keywords: arsenic, coagulant, ferric chloride, groundwater, lignite, coal mine

Procedia PDF Downloads 307
2772 Ordinal Regression with Fenton-Wilkinson Order Statistics: A Case Study of an Orienteering Race

Authors: Joonas Pääkkönen

Abstract:

In sports, individuals and teams are typically interested in final rankings. Final results, such as times or distances, dictate these rankings, also known as places. Places can be further associated with ordered random variables, commonly referred to as order statistics. In this work, we introduce a simple, yet accurate order statistical ordinal regression function that predicts relay race places with changeover-times. We call this function the Fenton-Wilkinson Order Statistics model. This model is built on the following educated assumption: individual leg-times follow log-normal distributions. Moreover, our key idea is to utilize Fenton-Wilkinson approximations of changeover-times alongside an estimator for the total number of teams as in the notorious German tank problem. This original place regression function is sigmoidal and thus correctly predicts the existence of a small number of elite teams that significantly outperform the rest of the teams. Our model also describes how place increases linearly with changeover-time at the inflection point of the log-normal distribution function. With real-world data from Jukola 2019, a massive orienteering relay race, the model is shown to be highly accurate even when the size of the training set is only 5% of the whole data set. Numerical results also show that our model exhibits smaller place prediction root-mean-square-errors than linear regression, mord regression and Gaussian process regression.

Keywords: Fenton-Wilkinson approximation, German tank problem, log-normal distribution, order statistics, ordinal regression, orienteering, sports analytics, sports modeling

Procedia PDF Downloads 115
2771 Investigation of Heat Transfer Mechanism Inside Shell and Tube Latent Heat Thermal Energy Storage Systems

Authors: Saeid Seddegh, Xiaolin Wang, Alan D. Henderson, Dong Chen, Oliver Oims

Abstract:

The main objective of this research is to study the heat transfer processes and phase change behaviour of a phase change material (PCM) in shell and tube latent heat thermal energy storage (LHTES) systems. The thermal behaviour in a vertical and horizontal shell-and-tube heat energy storage system using a pure thermal conduction model and a combined conduction-convection heat transfer model is compared in this paper. The model is first validated using published experimental data available in literature and then used to study the temperature variation, solid-liquid interface, phase distribution, total melting and solidification time during melting and solidification processes of PCMs. The simulated results show that the combined convection and conduction model can better describe the energy transfer in PCMs during melting process. In contrast, heat transfer by conduction is more significant during the solidification process since the two models show little difference. Also, it was concluded that during the charging process for the horizontal orientation, convective heat transfer has a strong effect on melting of the upper part of the solid PCM and is less significant during melting of the lower half of the solid PCM. However, in the vertical orientation, convective heat transfer is the same active during the entire charging process. In the solidification process, the thermal behavior does not show any difference between horizontal and vertical systems.

Keywords: latent heat thermal energy storage, phase change material, natural convection, melting, shell and tube heat exchanger, melting, solidification

Procedia PDF Downloads 550
2770 The Effect of Adolescents’ Grit on Stem Creativity: The Mediation of Creative Self-Efficacy and the Moderation of Future Time Perspective

Authors: Han Kuikui

Abstract:

Adolescents, serving as the reserve force for technological innovation talents, possess STEM creativity that is not only pivotal to achieving STEM education goals but also provides a viable path for reforming science curricula in compulsory education and cultivating innovative talents in China. To investigate the relationship among adolescents' grit, creative self-efficacy, future time perspective, and STEM creativity, a survey was conducted in 2023 using stratified random sampling. A total of 1263 junior high school students from the main urban areas of Chongqing, from grade 7 to grade 9, were sampled. The results indicated that (1) Grit positively predicts adolescents' creative self-efficacy and STEM creativity significantly; (2) Creative self-efficacy mediates the positive relationship between grit and adolescents' STEM creativity; (3) The mediating role of creative self-efficacy is moderated by future time perspective, such that with a higher future time perspective, the positive predictive effect of grit on creative self-efficacy is more substantial, which in turn positively affects their STEM creativity.

Keywords: grit, stem creativity, creative self-efficacy, future time perspective

Procedia PDF Downloads 48
2769 Reactive Power Control with Plug-In Electric Vehicles

Authors: Mostafa Dastori, Sirus Mohammadi

Abstract:

While plug-in electric vehicles (PEVs) potentially have the capability to fulfill the energy storage needs of the electric grid, the degradation on the battery during this operation makes it less preferable by the auto manufacturers and consumers. On the other hand, the on-board chargers can also supply energy storage system applications such as reactive power compensation, voltage regulation, and power factor correction without the need of engaging the battery with the grid and thereby preserving its lifetime. It presents the design motives of single-phase on-board chargers in detail and makes a classification of the chargers based on their future vehicle-to-grid usage. The pros and cons of each different ac–dc topology are discussed to shed light on their suit- ability for reactive power support. This paper also presents and analyzes the differences between charging-only operation and capacitive reactive power operation that results in increased demand from the dc-link capacitor (more charge/discharge cycles and in- creased second harmonic ripple current). Moreover, battery state of charge is spared from losses during reactive power operation, but converter output power must be limited below its rated power rating to have the same stress on the dc-link capacitor.

Keywords: energy storage system, battery unit, cost, optimal sizing, plug-in electric vehicles (PEVs), smart grid

Procedia PDF Downloads 335
2768 Determination of Viscosity and Degree of Hydrogenation of Liquid Organic Hydrogen Carriers by Cavity Based Permittivity Measurement

Authors: I. Wiemann, N. Weiß, E. Schlücker, M. Wensing

Abstract:

A very promising alternative to compression or cryogenics is the chemical storage of hydrogen by liquid organic hydrogen carriers (LOHC). These carriers enable high energy density and allow, at the same time, efficient and safe storage under ambient conditions without leakage losses. Another benefit of this storage medium is the possibility of transporting it using already available infrastructure for the transport of fossil fuels. Efficient use of LOHC is related to precise process control, which requires a number of sensors in order to measure all relevant process parameters, for example, to measure the level of hydrogen loading of the carrier. The degree of loading is relevant for the energy content of the storage carrier and simultaneously represents the modification in the chemical structure of the carrier molecules. This variation can be detected in different physical properties like permittivity, viscosity, or density. E.g., each degree of loading corresponds to different viscosity values. Conventional measurements currently use invasive viscosity measurements or near-line measurements to obtain quantitative information. This study investigates permittivity changes resulting from changes in hydrogenation degree (chemical structure) and temperature. Based on calibration measurements, the degree of loading and temperature of LOHC can thus be determined by comparatively simple permittivity measurements in a cavity resonator. Subsequently, viscosity and density can be calculated. An experimental setup with a heating device and flow test bench was designed. By varying temperature in the range of 293,15 K -393,15 K and flow velocity up to 140 mm/s, corresponding changes in the resonation frequency were determined in the hundredths of the GHz range. This approach allows inline process monitoring of hydrogenation of the liquid organic hydrogen carrier (LOHC).

Keywords: hydrogen loading, LOHC, measurement, permittivity, viscosity

Procedia PDF Downloads 71
2767 Spelling Errors in Persian Children with Developmental Dyslexia

Authors: Mohammad Haghighi, Amineh Akhondi, Leila Jahangard, Mohammad Ahmadpanah, Masoud Ansari

Abstract:

Background: According to the recent estimation, approximately 4%-12% percent of Iranians have difficulty in learning to read and spell possibly as a result of developmental dyslexia. The study was planned to investigate spelling error patterns among Persian children with developmental dyslexia and compare that with the errors exhibited by control groups Participants: 90 students participated in this study. 30 students from Grade level five, diagnosed as dyslexics by professionals, 30 normal 5th Grade readers and 30 younger normal readers. There were 15 boys and 15 girls in each of the groups. Qualitative and quantitative methods for analysis of errors were used. Results and conclusion: results of this study indicate similar spelling error profiles among dyslexics and the reading level matched groups, and these profiles were different from age-matched group. However, performances of dyslexic group and reading level matched group were different and inconsistent in some cases.

Keywords: spelling, error types, developmental dyslexia, Persian, writing system, learning disabilities, processing

Procedia PDF Downloads 420
2766 The Proton Flow Battery for Storing Renewable Energy: A Theoretical Model of Electrochemical Hydrogen Storage in an Activated Carbon Electrode

Authors: Sh. Heidari, A. J. Andrews, A. Oberoi

Abstract:

Electrochemical storage of hydrogen in activated carbon electrodes as part of a reversible fuel cell offers a potentially attractive option for storing surplus electrical energy from inherently variable solar and wind energy resources. Such a system – which we have called a proton flow battery – promises to have a roundtrip energy efficiency comparable to lithium ion batteries, while having higher gravimetric and volumetric energy densities. In this paper, a theoretical model is presented of the process of H+ ion (proton) conduction through an acid electrolyte into a highly porous activated carbon electrode where it is neutralised and absorbed on the inner surfaces of pores. A Butler-Volmer type equation relates the rate of adsorption to the potential difference between the activated carbon surface and the electrolyte. This model for the hydrogen storage electrode is then incorporated into a more general computer model based on MATLAB software of the entire electrochemical cell including the oxygen electrode. Hence a theoretical voltage-current curve is generated for given input parameters for a particular activated carbon electrode. It is shown that theoretical VI curves produced by the model can be fitted accurately to experimental data from an actual electrochemical cell with the same characteristics. By obtaining the best-fit values of input parameters, such as the exchange current density and charge transfer coefficient for the hydrogen adsorption reaction, an improved understanding of the adsorption reaction is obtained. This new model will assist in designing improved proton flow batteries for storing solar and wind energy.

Keywords: electrochemical hydrogen storage, proton flow battery, butler-volmer equation, activated carbon

Procedia PDF Downloads 494
2765 Endocrine Therapy-Induced Alopecia in Patients with Breast Cancer in Tunisia

Authors: Aref Zribi, Sonia Ben Nasr, Sana Fendri, Mahdi Balti, Abderazzek Haddaoui

Abstract:

Background: Despite their benefit, Endocrine therapies (ET) are known to have substantial adverse events (AEs) such as hot flashes, mood disorders and osteoarticular pain. ET induced alopecia(EIA) is less frequently noted by patients and is less reported in the literature. The aim of our study was to report ET alopecia characteristics and their influence on patient and treatment observance. Method: We conducted a retrospective study including luminal BC patients treated in the oncology department of the military hospital of Tunis between January 2015 and December 2020. Patients treated with previous chemotherapy-inducing alopecia were excluded. Results: 145 female patients were included. The median age was 59 years. EIA was reported in 44% of cases. Alopecia was attributed to aromatase inhibitors in 53% and tamoxifen in 21%. Severity was grade 1 in 80% and grade 2 in the remaining cases. ET discontinuation because of alopecia was noted in 6.5 % of patients. Moderate improvement of alopecia was observed with topical minoxidil and Thallium metallicum 9CH homeopathy during ET in 60% of patients. Conclusions: EIA is frequent in BC patients and should be considered to improve treatment observance and patients’ quality of life.

Keywords: endocrine therapy, alopecia, breast cancer, Tunisia

Procedia PDF Downloads 118
2764 Transcription Skills and Written Composition in Chinese

Authors: Pui-sze Yeung, Connie Suk-han Ho, David Wai-ock Chan, Kevin Kien-hoa Chung

Abstract:

Background: Recent findings have shown that transcription skills play a unique and significant role in Chinese word reading and spelling (i.e. word dictation), and written composition development. The interrelationships among component skills of transcription, word reading, word spelling, and written composition in Chinese have rarely been examined in the literature. Is the contribution of component skills of transcription to Chinese written composition mediated by word level skills (i.e., word reading and spelling)? Methods: The participants in the study were 249 Chinese children in Grade 1, Grade 3, and Grade 5 in Hong Kong. They were administered measures of general reasoning ability, orthographic knowledge, stroke sequence knowledge, word spelling, handwriting fluency, word reading, and Chinese narrative writing. Orthographic knowledge- orthographic knowledge was assessed by a task modeled after the lexical decision subtest of the Hong Kong Test of Specific Learning Difficulties in Reading and Writing (HKT-SpLD). Stroke sequence knowledge: The participants’ performance in producing legitimate stroke sequences was measured by a stroke sequence knowledge task. Handwriting fluency- Handwriting fluency was assessed by a task modeled after the Chinese Handwriting Speed Test. Word spelling: The stimuli of the word spelling task consist of fourteen two-character Chinese words. Word reading: The stimuli of the word reading task consist of 120 two-character Chinese words. Written composition: A narrative writing task was used to assess the participants’ text writing skills. Results: Analysis of covariance results showed that there were significant between-grade differences in the performance of word reading, word spelling, handwriting fluency, and written composition. Preliminary hierarchical multiple regression analysis results showed that orthographic knowledge, word spelling, and handwriting fluency were unique predictors of Chinese written composition even after controlling for age, IQ, and word reading. The interaction effects between grade and each of these three skills (orthographic knowledge, word spelling, and handwriting fluency) were not significant. Path analysis results showed that orthographic knowledge contributed to written composition both directly and indirectly through word spelling, while handwriting fluency contributed to written composition directly and indirectly through both word reading and spelling. Stroke sequence knowledge only contributed to written composition indirectly through word spelling. Conclusions: Preliminary hierarchical regression results were consistent with previous findings about the significant role of transcription skills in Chinese word reading, spelling and written composition development. The fact that orthographic knowledge contributed both directly and indirectly to written composition through word reading and spelling may reflect the impact of the script-sound-meaning convergence of Chinese characters on the composing process. The significant contribution of word spelling and handwriting fluency to Chinese written composition across elementary grades highlighted the difficulty in attaining automaticity of transcription skills in Chinese, which limits the working memory resources available for other composing processes.

Keywords: orthographic knowledge, transcription skills, word reading, writing

Procedia PDF Downloads 418
2763 High Frequency Rotary Transformer Used in Synchronous Motor/Generator of Flywheel Energy Storage System

Authors: J. Lu, H. Li, F. Cole

Abstract:

This paper proposes a high-frequency rotary transformer (HFRT) for a separately excited synchronous machine (SESM) used in a flywheel energy storage system. The SESM can eliminate and reduce rare earth permanent magnet (REPM) usage and provide a better performance in renewable energy systems. However, the major drawback of such SESM is the necessity of brushes and slip rings to supply the field current, which increases the maintenance cost and operation reliability. To overcome these problems, an HFRT integrated with SiC semiconductor devices can replace brushes and slip rings in the SESM. The proposed HFRT features a high-frequency magnetic ferrite for both the stationary part as the transformer primary and the rotating part as the transformer secondary, as well as an air gap, allowing safe operation at high rotational speeds. Hence, this rotary transformer can enable the adoption of a wound rotor synchronous machine (WRSM). The HFRT, working at over 100kHz operating frequency, exhibits excellent performance of power efficiency and significant size reduction. The experimental validations to support the theoretical findings have been provided.

Keywords: brushes and slip rings, flywheel energy storage, high frequency rotary transformer, separately excited synchronous machine

Procedia PDF Downloads 24
2762 NSBS: Design of a Network Storage Backup System

Authors: Xinyan Zhang, Zhipeng Tan, Shan Fan

Abstract:

The first layer of defense against data loss is the backup data. This paper implements an agent-based network backup system used the backup, server-storage and server-backup agent these tripartite construction, and we realize the snapshot and hierarchical index in the NSBS. It realizes the control command and data flow separation, balances the system load, thereby improving the efficiency of the system backup and recovery. The test results show the agent-based network backup system can effectively improve the task-based concurrency, reasonably allocate network bandwidth, the system backup performance loss costs smaller and improves data recovery efficiency by 20%.

Keywords: agent, network backup system, three architecture model, NSBS

Procedia PDF Downloads 452