Search results for: homogenization temperature
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7080

Search results for: homogenization temperature

600 The Effects of Human Activities on Plant Diversity in Tropical Wetlands of Lake Tana (Ethiopia)

Authors: Abrehet Kahsay Mehari

Abstract:

Aquatic plants provide the physical structure of wetlands and increase their habitat complexity and heterogeneity, and as such, have a profound influence on other biotas. In this study, we investigated how human disturbance activities influenced the species richness and community composition of aquatic plants in the wetlands of Lake Tana, Ethiopia. Twelve wetlands were selected: four lacustrine, four river mouths, and four riverine papyrus swamps. Data on aquatic plants, environmental variables, and human activities were collected during the dry and wet seasons of 2018. A linear mixed effect model and a distance-based Redundancy Analysis (db-RDA) were used to relate aquatic plant species richness and community composition, respectively, to human activities and environmental variables. A total of 113 aquatic plant species, belonging to 38 families, were identified across all wetlands during the dry and wet seasons. Emergent species had the maximum area covered at 73.45 % and attained the highest relative abundance, followed by amphibious and other forms. The mean taxonomic richness of aquatic plants was significantly lower in wetlands with high overall human disturbance scores compared to wetlands with low overall human disturbance scores. Moreover, taxonomic richness showed a negative correlation with livestock grazing, tree plantation, and sand mining. The community composition also varied across wetlands with varying levels of human disturbance and was primarily driven by turnover (i.e., replacement of species) rather than nestedness resultant(i.e., loss of species). Distance-based redundancy analysis revealed that livestock grazing, tree plantation, sand mining, waste dumping, and crop cultivation were significant predictors of variation in aquatic plant communities’ composition in the wetlands. Linear mixed effect models and distance-based redundancy analysis also revealed that water depth, turbidity, conductivity, pH, sediment depth, and temperature were important drivers of variations in aquatic plant species richness and community composition. Papyrus swamps had the highest species richness and supported different plant communities. Conservation efforts should therefore focus on these habitats and measures should be taken to restore the highly disturbed and species poor wetlands near the river mouths.

Keywords: species richness, community composition, aquatic plants, wetlands, Lake Tana, human disturbance activities

Procedia PDF Downloads 123
599 Reconsidering the Palaeo-Environmental Reconstruction of the Wet Zone of Sri Lanka: A Zooarchaeological Perspective

Authors: Kelum N. Manamendra-Arachchi, Kalangi Rodrigo

Abstract:

Bones, teeth, and shells have been acknowledged over the last two centuries as evidence of chronology, Palaeo-environment, and human activity. Faunal traces are valid evidence of past situations because they have properties that have not changed over long periods of time. Sri Lanka has been known as an Island, which has a diverse variation of prehistoric occupation among ecological zones. Defining the Paleoecology of the past societies has been an archaeological thought developed in the 1960s. It is mainly concerned with the reconstruction from available geological and biological evidence of past biota, populations, communities, landscapes, environments, and ecosystems. Sri Lanka has dealt with this subject and considerable research has been already undertaken. The fossil and material record of Sri Lanka’s Wet Zone tropical forests continues from c. 38,000–34,000 ybp. This early and persistent human fossil, technical, and cultural florescence, as well as a collection of well-preserved tropical-forest rock shelters with associated ' on-site ' Palaeoenvironmental records, makes Sri Lanka a central and unusual case study to determine the extent and strength of early human tropical forest encounters. Excavations carried out in prehistoric caves in the low country wet zone has shown that in the last 50,000 years, the temperature in the lowland rainforests has not exceeded 5 degrees. Based on Semnopithecus Priam (Gray Langur) remains unearned from wet zone prehistoric caves, it has been argued that periods of momentous climate changes during the LGM and Terminal Pleistocene/Early Holocene boundary, with a recognizable preference for semi-open ‘Intermediate’ rainforest or edges. Continuous Genus Acavus and Oligospira occupation along with uninterrupted horizontal pervasive of Canarium sp. (‘kekuna’ nut) have proven that temperatures in the lowland rain forests have not changed by at least 5 oC over the last 50,000 years. Site Catchment or Territorial analysis cannot be no longer defensible, due to time-distance based factors as well as optimal foraging theory failed as a consequences of prehistoric people were aware of the decrease in cost-benefit ratio and located sites, and generally played out a settlement strategy that minimized the ratio of energy expanded to energy produced.

Keywords: palaeo-environment, prehistory, palaeo-ecology, zooarchaeology

Procedia PDF Downloads 122
598 Uncertainty Quantification of Fuel Compositions on Premixed Bio-Syngas Combustion at High-Pressure

Authors: Kai Zhang, Xi Jiang

Abstract:

Effect of fuel variabilities on premixed combustion of bio-syngas mixtures is of great importance in bio-syngas utilisation. The uncertainties of concentrations of fuel constituents such as H2, CO and CH4 may lead to unpredictable combustion performances, combustion instabilities and hot spots which may deteriorate and damage the combustion hardware. Numerical modelling and simulations can assist in understanding the behaviour of bio-syngas combustion with pre-defined species concentrations, while the evaluation of variabilities of concentrations is expensive. To be more specific, questions such as ‘what is the burning velocity of bio-syngas at specific equivalence ratio?’ have been answered either experimentally or numerically, while questions such as ‘what is the likelihood of burning velocity when precise concentrations of bio-syngas compositions are unknown, but the concentration ranges are pre-described?’ have not yet been answered. Uncertainty quantification (UQ) methods can be used to tackle such questions and assess the effects of fuel compositions. An efficient probabilistic UQ method based on Polynomial Chaos Expansion (PCE) techniques is employed in this study. The method relies on representing random variables (combustion performances) with orthogonal polynomials such as Legendre or Gaussian polynomials. The constructed PCE via Galerkin Projection provides easy access to global sensitivities such as main, joint and total Sobol indices. In this study, impacts of fuel compositions on combustion (adiabatic flame temperature and laminar flame speed) of bio-syngas fuel mixtures are presented invoking this PCE technique at several equivalence ratios. High-pressure effects on bio-syngas combustion instability are obtained using detailed chemical mechanism - the San Diego Mechanism. Guidance on reducing combustion instability from upstream biomass gasification process is provided by quantifying the significant contributions of composition variations to variance of physicochemical properties of bio-syngas combustion. It was found that flame speed is very sensitive to hydrogen variability in bio-syngas, and reducing hydrogen uncertainty from upstream biomass gasification processes can greatly reduce bio-syngas combustion instability. Variation of methane concentration, although thought to be important, has limited impacts on laminar flame instabilities especially for lean combustion. Further studies on the UQ of percentage concentration of hydrogen in bio-syngas can be conducted to guide the safer use of bio-syngas.

Keywords: bio-syngas combustion, clean energy utilisation, fuel variability, PCE, targeted uncertainty reduction, uncertainty quantification

Procedia PDF Downloads 275
597 Experimental Design in Extraction of Pseudomonas sp. Protease from Fermented Broth by Polyethylene Glycol/Citrate Aqueous Two-Phase System

Authors: Omar Pillaca-Pullo, Arturo Alejandro-Paredes, Carol Flores-Fernandez, Marijuly Sayuri Kina, Amparo Iris Zavaleta

Abstract:

Aqueous two-phase system (ATPS) is an interesting alternative for separating industrial enzymes due to it is easy to scale-up and low cost. Polyethylene glycol (PEG) mixed with potassium phosphate or magnesium sulfate is one of the most frequently polymer/salt ATPS used, but the consequences of its use is a high concentration of phosphates and sulfates in wastewater causing environmental issues. Citrate could replace these inorganic salts due to it is biodegradable and does not produce toxic compounds. On the other hand, statistical design of experiments is widely used for ATPS optimization and it allows to study the effects of the involved variables in the purification, and to estimate their significant effects on selected responses and interactions. The 24 factorial design with four central points (20 experiments) was employed to study the partition and purification of proteases produced by Pseudomonas sp. in PEG/citrate ATPS system. ATPS was prepared with different sodium citrate concentrations [14, 16 and 18% (w/w)], pH values (7, 8 and 9), PEG molecular weight (2,000; 4,000 and 6,000 g/mol) and PEG concentrations [18, 20 and 22 % (w/w)]. All system components were mixed with 15% (w/w) of the fermented broth and deionized water was added to a final weight of 12.5 g. Then, the systems were mixed and kept at room temperature until to reach two-phases separation. Volumes of the top and bottom phases were measured, and aliquots from both phases were collected for subsequent proteolytic activity and total protein determination. Influence of variables such as PEG molar mass (MPEG), PEG concentration (CPEG), citrate concentration (CSal) and pH were evaluated on the following responses: purification factor (PF), activity yield (Y), partition coefficient (K) and selectivity (S). STATISTICA program version 10 was used for the analysis. According to the obtained results, higher levels of CPEG and MPEG had a positive effect on extraction, while pH did not influence on the process. On the other hand, the CSal could be related with low values of Y because of the citrate ions have a negative effect on solubility and enzymatic structure. The optimum values of Y (66.4 %), PF (1.8), K (5.5) and S (4.3) were obtained at CSal (18%), MPEG (6,000 g/mol), CPEG (22%) and pH 9. These results indicated that the PEG/citrate system is accurate to purify these Pseudomonas sp. proteases from fermented broth as a first purification step.

Keywords: citrate, polyethylene glycol, protease, Pseudomonas sp

Procedia PDF Downloads 194
596 Characterisation of Meteorological Drought at Sub-Catchment Scale in Afghanistan Using Time-Series Climate Data

Authors: Yun Chen, David Penton, Fazlul Karim, Santosh Aryal, Shahriar Wahid, Peter Taylor, Susan M. Cuddy

Abstract:

Droughts have severely affected Afghanistan over the last four decades, leading to critical food shortages where two-thirds of the country’s population are in a food crisis. Long years of conflict have lowered the country’s ability to deal with hazards such as drought, which can rapidly escalate into disasters. Understanding the spatial and temporal distribution of droughts is needed to be able to respond effectively to disasters and plan for future occurrences. This study used Standardized Precipitation Evapotranspiration Index (SPEI) at monthly, seasonal, and annual temporal scales to map the spatiotemporal change dynamics of drought characteristics (distribution, frequency, duration, and severity) in Afghanistan. SPEI indices were mapped for river basins, disaggregated into 189 sub-catchments, using monthly precipitation and potential evapotranspiration derived from temperature station observations from 1980 to 2017. The results show these multi-dimensional drought characteristics vary along different years, change among sub-catchments, and differ across temporal scales. During the 38 years, the driest decade and period are the 2000s and 1999–2022, respectively. The 2000–01 water year is the driest, with the whole country experiencing ‘severe’ to ‘extreme’ drought, more than 53% (87 sub-catchments) suffering the worst drought in history, and about 58% (94 sub-catchments) having ‘very frequent’ drought (7 to 8 months) or ‘extremely frequent’ drought (9 to 10 months). The estimated seasonal duration and severity present significant variations across the study area and throughout the study period. The nation also suffered from recurring droughts with varying length and intensity in 2004, 2006, 2008, and, most recently, 2011. There is a trend towards increasing drought with longer duration and higher severity extending all over sub-catchments from southeast to north and central regions. These datasets and maps help to fill the knowledge gap on detailed sub-catchment scale meteorological drought characteristics in Afghanistan. The study findings improve our understanding of the influences of climate change on drought dynamics and can guide catchment planning for reliable adaptation to and mitigation against future droughts.

Keywords: SPEI, precipitation, evapotranspiration, climate extremes

Procedia PDF Downloads 92
595 A Case Report on Anesthetic Considerations in a Neonate with Isolated Oesophageal Atresia with Radiological Fallacy

Authors: T. Rakhi, Thrivikram Shenoy

Abstract:

Esophageal atresia is a disorder of maldevelopment of esophagus with or without a connection to the trachea. Radiological reviews are needed in consultation with the pediatric surgeon and neonatologist and we report a rare case of esophageal atresia associated with atrial septal defect-patent ductus arteriosus complex. A 2-day old female baby born at term, weighing 3.010kg, admitted to the Neonatal Intensive Care Unit with respiratory distress and excessive oral secretions. On examination, continuous murmur and cyanosis were seen. Esophageal atresia was suspected, after a failed attempt to pass a nasogastric tube. Chest radiograph showed coiling of the nasogastric tube and absent gas shadow in the abdomen. Echocardiography confirmed Patent Ductus Arteriosus with Atrial Septal Defect not in failure and was diagnosed with esophageal atresia with suspected fistula posted for surgical repair. After preliminary management with oxygenation, suctioning in prone position and antibiotics, investigations revealed Hb 17gms serum biochemistry, coagulation profile and C-Reactive Protein Test normal. The baby was premedicated with 5mcg of fentanyl and 100 mcg of midazolam and a rapid awake laryngoscopy was done to rule out difficult airway followed by induction with o2 air, sevo and atracurium 2 mg. Placement of a 3.5 tube was uneventful at first attempt and after confirming bilateral air entry positioned in the lateral position for Right thoracotomy. A pulse oximeter, Echocardiogram, Non-invasive Blood Pressure, temperature and a precordial stethoscope in left axilla were essential monitors. During thoracotomy, both the ends of the esophagus and the fistula could not be located after thorough search suggesting an on table finding of type A esophageal atresia. The baby was repositioned for gastrostomy, and cervical esophagostomy ventilated overnight and extubated uneventful. Absent gas shadow was overlooked and the purpose of this presentation is to create an awareness between the neonatologist, pediatric surgeons and anesthesiologist regarding variation of typing of Tracheoesophageal fistula pre and intraoperatively. A need for imaging modalities warranted for a definitive diagnosis in the presence of a gasless stomach.

Keywords: anesthetic, atrial septal defects, esophageal atresia, patent ductus arteriosus, perioperative, chest x-ray

Procedia PDF Downloads 178
594 Influence of Freeze-Thaw Cycles on Protein Integrity and Quality of Chicken Meat

Authors: Nafees Ahmed, Nur Izyani Kamaruzman, Saralla Nathan, Mohd Ezharul Hoque Chowdhury, Anuar Zaini Md Zain, Iekhsan Othman, Sharifah Binti Syed Hassan

Abstract:

Meat quality is always subject to consumer scrutiny when purchasing from retail markets on mislabeling as fresh meat. Various physiological and biochemical changes influence the quality of meat. As a major component of muscle tissue, proteins play a major role in muscle foods. In meat industry, freezing is the most common form of storage of meat products. Repeated cycles of freezing and thawing are common in restaurants, kitchen, and retail outlets and can also occur during transportation or storage. Temperature fluctuation is responsible for physical, chemical, and biochemical changes. Repeated cycles of ‘freeze-thaw’ degrade the quality of meat by stimulating the lipid oxidation and surface discoloration. The shelf life of meat is usually determined by its appearance, texture, color, flavor, microbial activity, and nutritive value and is influenced by frozen storage and subsequent thawing. The main deterioration of frozen meat during storage is due to protein. Due to the large price differences between fresh and frozen–thawed meat, it is of great interest to consumer to know whether a meat product is truly fresh or not. Researchers have mainly focused on the reduction of moisture loss due to freezing and thawing cycles of meat. The water holding capacity (WHC) of muscle proteins and reduced water content are key quality parameters of meat that ultimately changes color and texture. However, there has been limited progress towards understanding the actual mechanisms behind the meat quality changes under the freeze–thaw cycles. Furthermore, effect of freeze-thaw process on integrity of proteins is ignored. In this paper, we have studied the effect of ‘freeze-thawing’ on physicochemical changes of chicken meat protein. We have assessed the quality of meat by pH, spectroscopic measurements, Western Blot. Our results showed that increase in freeze-thaw cycles causes changes in pH. Measurements of absorbance (UV-visible and IR) indicated the degradation of proteins. The expression of various proteins (CREB, AKT, MAPK, GAPDH, and phosphorylated forms) were performed using Western Blot. These results indicated the repeated cycles of freeze-thaw is responsible for deterioration of protein, thus causing decrease in nutritious value of meat. It damges the use of these products in Islamic Sharia.

Keywords: chicken meat, freeze-thaw, halal, protein, western blot

Procedia PDF Downloads 410
593 Estimates of Freshwater Content from ICESat-2 Derived Dynamic Ocean Topography

Authors: Adan Valdez, Shawn Gallaher, James Morison, Jordan Aragon

Abstract:

Global climate change has impacted atmospheric temperatures contributing to rising sea levels, decreasing sea ice, and increased freshening of high latitude oceans. This freshening has contributed to increased stratification inhibiting local mixing and nutrient transport and modifying regional circulations in polar oceans. In recent years, the Western Arctic has seen an increase in freshwater volume at an average rate of 397+-116 km3/year. The majority of the freshwater volume resides in the Beaufort Gyre surface lens driven by anticyclonic wind forcing, sea ice melt, and Arctic river runoff. The total climatological freshwater content is typically defined as water fresher than 34.8. The near-isothermal nature of Arctic seawater and non-linearities in the equation of state for near-freezing waters result in a salinity driven pycnocline as opposed to the temperature driven density structure seen in the lower latitudes. In this study, we investigate the relationship between freshwater content and remotely sensed dynamic ocean topography (DOT). In-situ measurements of freshwater content are useful in providing information on the freshening rate of the Beaufort Gyre; however, their collection is costly and time consuming. NASA’s Advanced Topographic Laser Altimeter System (ATLAS) derived dynamic ocean topography (DOT), and Air Expendable CTD (AXCTD) derived Freshwater Content are used to develop a linear regression model. In-situ data for the regression model is collected across the 150° West meridian, which typically defines the centerline of the Beaufort Gyre. Two freshwater content models are determined by integrating the freshwater volume between the surface and an isopycnal corresponding to reference salinities of 28.7 and 34.8. These salinities correspond to those of the winter pycnocline and total climatological freshwater content, respectively. Using each model, we determine the strength of the linear relationship between freshwater content and satellite derived DOT. The result of this modeling study could provide a future predictive capability of freshwater volume changes in the Beaufort-Chukchi Sea using non in-situ methods. Successful employment of the ICESat-2’s DOT approximation of freshwater content could potentially reduce reliance on field deployment platforms to characterize physical ocean properties.

Keywords: ICESat-2, dynamic ocean topography, freshwater content, beaufort gyre

Procedia PDF Downloads 86
592 Investigation of the Historical Background of Monumental Mosques in Kocaeli, Turkey by IRT Techniques

Authors: Emre Kishalı, Neslihan TürkmenoğLu Bayraktar

Abstract:

Historical buildings may face various impacts throughout their life cycle. There have been environmental, structural, public works actions on old monuments influencing sustainability and maintenance issues. As a result, ancient monuments can have been undergone various changes in the context of restoration and repair. Currently, these buildings face integrated conditions including city planning macro solutions, old intervention methods, modifications in building envelope and artefacts in terms of conservation. Moreover, documentation of phases is an essential for assessing the historical building, yet it can result in highly complicated and interwoven issues. Herein, two monuments constructed in the 16th century are selected as case studies in Kocaeli, Turkey which are located in different micro climatic conditions and/or exposed to different interventions and which are important for the city as cultural property. Pertev Paşa Mosque (also known as Yenicuma Mosque) -constructed by Architect Sinan-; Gebze Çoban Mustafa Paşa Mosque -constructed in 1523 and known as the work of Architect Sinan but various names asserted as the architect of building according to resources. Active water infiltration and damages, recent material interventions, hidden niches, and foundation techniques of the mosque are investigated via Infrared Thermography under the project of 114K284, “Non-Destructive Test Applications, in the Context of Planned Conservation, through Historical Mosques of Kocaeli: Coban Mustafa Pasa Mosque, Fevziye Mosque and Pertev Pasa Mosque” funded by TUBITAK. It is aimed to reveal active deteriorations on building elements generated by unwanted effects of structural and climatic conditions, historical interventions, and modifications by monitoring the variation of surface temperature and humidity by IRT visualization method which is an important non- destructive process for investigation of monuments in the conservation field in the context of planned conservation. It is also concluded that in-situ monitoring process via IRT through different climatic conditions give substantial information on the behaviour of the envelope to the physical environmental conditions by observation of thermal performance, degradations. However, it is obvious that monitoring of historical buildings cannot be pursued by implementing a single non-destructive technique to have complete data of the structure.

Keywords: IRT, non-destructive test, planned conservation, mosque

Procedia PDF Downloads 352
591 Experimental Activity on the Photovoltaic Effect

Authors: Salomão Manuel Francisco, Manuel António Salgueiro Da Silva, Bento Filipe Barreiras Pinto Cavadas, Teresa Monteiro Seixas

Abstract:

In bachelor's degrees in Physics Education framework in Angola, and to a certain extent, within the community of Portuguese language countries (CPLP), teaching methodologies rely heavily on theoretical memorization and mathematical demonstrations. This approach often discourages students, particularly the female population, as the reliance on theoretical mathematical demonstrations generates the perception of Physics as an arduous, challenging discipline. To address this challenge and recognize the value of practical application as an evaluative criterion of material truth, we propose a practical activity in Environmental Physics that will be shared with Angolan higher education teachers, who will receive full scaffolding and support from the authors. These teachers, adopting and developing similar activities in a classroom setting, will contribute to the environmental education framework as well. Additionally, this work aligns with different goals of UNESCO's 2030 agenda, namely, specifically, goals 4, 5, 7, 11, 13, and 17. The experimental activity developed in this work is centered around the demonstration of the photovoltaic effect and its application for renewable energy production. The first objective of the activity is to study the variation of electrical power supplied by a photovoltaic system (PV) to an electrical circuit as the angle of light incidence changes. Students can observe that the power supplied to the circuit is greater when light rays fall perpendicularly on the PV. However, as the angle of incidence increases, resulting in a larger area covered by the light rays, the power supplied to the circuit decreases due to lower irradiance. The second objective is to demonstrate that the power output can be maximized by adjusting the circuit load resistance at each irradiance value. In these two parts of the activity, students can analyze experimental data taking into account the irradiance law and the equivalent circuit description of a PV cell. Through detailed data analysis, students are also expected to assess the effects of temperature on PV efficiency degradation and the efficiency enhancement provided by light concentration mechanisms. As a third objective, students can explore how the color of incident light affects the PV output power, considering the quantum nature of light and its interaction with the PV system.

Keywords: experiments, irradiation law, physic teaching, photovoltaic effect

Procedia PDF Downloads 83
590 Equilibrium, Kinetic and Thermodynamic Studies of the Biosorption of Textile Dye (Yellow Bemacid) onto Brahea edulis

Authors: G. Henini, Y. Laidani, F. Souahi, A. Labbaci, S. Hanini

Abstract:

Environmental contamination is a major problem being faced by the society today. Industrial, agricultural, and domestic wastes, due to the rapid development in the technology, are discharged in the several receivers. Generally, this discharge is directed to the nearest water sources such as rivers, lakes, and seas. While the rates of development and waste production are not likely to diminish, efforts to control and dispose of wastes are appropriately rising. Wastewaters from textile industries represent a serious problem all over the world. They contain different types of synthetic dyes which are known to be a major source of environmental pollution in terms of both the volume of dye discharged and the effluent composition. From an environmental point of view, the removal of synthetic dyes is of great concern. Among several chemical and physical methods, adsorption is a promising technique due to the ease of use and low cost compared to other applications in the process of discoloration, especially if the adsorbent is inexpensive and readily available. The focus of the present study was to assess the potentiality of Brahea edulis (BE) for the removal of synthetic dye Yellow bemacid (YB) from aqueous solutions. The results obtained here may transfer to other dyes with a similar chemical structure. Biosorption studies were carried out under various parameters such as mass adsorbent particle, pH, contact time, initial dye concentration, and temperature. The biosorption kinetic data of the material (BE) was tested by the pseudo first-order and the pseudo-second-order kinetic models. Thermodynamic parameters including the Gibbs free energy ΔG, enthalpy ΔH, and entropy ΔS have revealed that the adsorption of YB on the BE is feasible, spontaneous, and endothermic. The equilibrium data were analyzed by using Langmuir, Freundlich, Elovich, and Temkin isotherm models. The experimental results show that the percentage of biosorption increases with an increase in the biosorbent mass (0.25 g: 12 mg/g; 1.5 g: 47.44 mg/g). The maximum biosorption occurred at around pH value of 2 for the YB. The equilibrium uptake was increased with an increase in the initial dye concentration in solution (Co = 120 mg/l; q = 35.97 mg/g). Biosorption kinetic data were properly fitted with the pseudo-second-order kinetic model. The best fit was obtained by the Langmuir model with high correlation coefficient (R2 > 0.998) and a maximum monolayer adsorption capacity of 35.97 mg/g for YB.

Keywords: adsorption, Brahea edulis, isotherm, yellow Bemacid

Procedia PDF Downloads 177
589 On the Dwindling Supply of the Observable Cosmic Microwave Background Radiation

Authors: Jia-Chao Wang

Abstract:

The cosmic microwave background radiation (CMB) freed during the recombination era can be considered as a photon source of small duration; a one-time event happened everywhere in the universe simultaneously. If space is divided into concentric shells centered at an observer’s location, one can imagine that the CMB photons originated from the nearby shells would reach and pass the observer first, and those in shells farther away would follow as time goes forward. In the Big Bang model, space expands rapidly in a time-dependent manner as described by the scale factor. This expansion results in an event horizon coincident with one of the shells, and its radius can be calculated using cosmological calculators available online. Using Planck 2015 results, its value during the recombination era at cosmological time t = 0.379 million years (My) is calculated to be Revent = 56.95 million light-years (Mly). The event horizon sets a boundary beyond which the freed CMB photons will never reach the observer. The photons within the event horizon also exhibit a peculiar behavior. Calculated results show that the CMB observed today was freed in a shell located at 41.8 Mly away (inside the boundary set by Revent) at t = 0.379 My. These photons traveled 13.8 billion years (Gy) to reach here. Similarly, the CMB reaching the observer at t = 1, 5, 10, 20, 40, 60, 80, 100 and 120 Gy are calculated to be originated at shells of R = 16.98, 29.96, 37.79, 46.47, 53.66, 55.91, 56.62, 56.85 and 56.92 Mly, respectively. The results show that as time goes by, the R value approaches Revent = 56.95 Mly but never exceeds it, consistent with the earlier statement that beyond Revent the freed CMB photons will never reach the observer. The difference Revert - R can be used as a measure of the remaining observable CMB photons. Its value becomes smaller and smaller as R approaching Revent, indicating a dwindling supply of the observable CMB radiation. In this paper, detailed dwindling effects near the event horizon are analyzed with the help of online cosmological calculators based on the lambda cold dark matter (ΛCDM) model. It is demonstrated in the literature that assuming the CMB to be a blackbody at recombination (about 3000 K), then it will remain so over time under cosmological redshift and homogeneous expansion of space, but with the temperature lowered (2.725 K now). The present result suggests that the observable CMB photon density, besides changing with space expansion, can also be affected by the dwindling supply associated with the event horizon. This raises the question of whether the blackbody of CMB at recombination can remain so over time. Being able to explain the blackbody nature of the observed CMB is an import part of the success of the Big Bang model. The present results cast some doubts on that and suggest that the model may have an additional challenge to deal with.

Keywords: blackbody of CMB, CMB radiation, dwindling supply of CMB, event horizon

Procedia PDF Downloads 119
588 Individual Cylinder Ignition Advance Control Algorithms of the Aircraft Piston Engine

Authors: G. Barański, P. Kacejko, M. Wendeker

Abstract:

The impact of the ignition advance control algorithms of the ASz-62IR-16X aircraft piston engine on a combustion process has been presented in this paper. This aircraft engine is a nine-cylinder 1000 hp engine with a special electronic control ignition system. This engine has two spark plugs per cylinder with an ignition advance angle dependent on load and the rotational speed of the crankshaft. Accordingly, in most cases, these angles are not optimal for power generated. The scope of this paper is focused on developing algorithms to control the ignition advance angle in an electronic ignition control system of an engine. For this type of engine, i.e. radial engine, an ignition advance angle should be controlled independently for each cylinder because of the design of such an engine and its crankshaft system. The ignition advance angle is controlled in an open-loop way, which means that the control signal (i.e. ignition advance angle) is determined according to the previously developed maps, i.e. recorded tables of the correlation between the ignition advance angle and engine speed and load. Load can be measured by engine crankshaft speed or intake manifold pressure. Due to a limited memory of a controller, the impact of other independent variables (such as cylinder head temperature or knock) on the ignition advance angle is given as a series of one-dimensional arrays known as corrective characteristics. The value of the ignition advance angle specified combines the value calculated from the primary characteristics and several correction factors calculated from correction characteristics. Individual cylinder control can proceed in line with certain indicators determined from pressure registered in a combustion chamber. Control is assumed to be based on the following indicators: maximum pressure, maximum pressure angle, indicated mean effective pressure. Additionally, a knocking combustion indicator was defined. Individual control can be applied to a single set of spark plugs only, which results from two fundamental ideas behind designing a control system. Independent operation of two ignition control systems – if two control systems operate simultaneously. It is assumed that the entire individual control should be performed for a front spark plug only and a rear spark plug shall be controlled with a fixed (or specific) offset relative to the front one or from a reference map. The developed algorithms will be verified by simulation and engine test sand experiments. This work has been financed by the Polish National Centre for Research and Development, INNOLOT, under Grant Agreement No. INNOLOT/I/1/NCBR/2013.

Keywords: algorithm, combustion process, radial engine, spark plug

Procedia PDF Downloads 293
587 An Approach for the Capture of Carbon Dioxide via Polymerized Ionic Liquids

Authors: Ghassan Mohammad Alalawi, Abobakr Khidir Ziyada, Abdulmajeed Khan

Abstract:

A potential alternative or next-generation CO₂-selective separation medium that has lately been suggested is ionic liquids (ILs). It is more facile to "tune" the solubility and selectivity of CO₂ in ILs compared to organic solvents via modification of the cation and/or anion structures. Compared to ionic liquids at ambient temperature, polymerized ionic liquids exhibited increased CO₂ sorption capacities and accelerated sorption/desorption rates. This research aims to investigate the correlation between the CO₂ sorption rate and capacity of poly ionic liquids (pILs) and the chemical structure of these substances. The dependency of sorption on the ion conductivity of the pILs' cations and anions is one of the theories we offered to explain the attraction between CO₂ and pILs. This assumption was supported by the Monte Carlo molecular dynamics simulations results, which demonstrated that CO₂ molecules are localized around both cations and anions and that their sorption depends on the cations' and anions' ion conductivities. Polymerized ionic liquids are synthesized to investigate the impact of substituent alkyl chain length, cation, and anion on CO₂ sorption rate and capacity. Three stages are involved in synthesizing the pILs under study: first, trialkyl amine and vinyl benzyl chloride are directly quaternized to obtain the required cation. Next, anion exchange is performed, and finally, the obtained IL is polymerized to form the desired product (pILs). The synthesized pILs' structures were confirmed using elemental analysis and NMR. The synthesized pILs are characterized by examining their structure topology, chloride content, density, and thermal stability using SEM, ion chromatography (using a Metrohm Model 761 Compact IC apparatus), ultrapycnometer, and TGA. As determined by the CO₂ sorption results using a magnetic suspension balance (MSB) apparatus, the sorption capacity of pILs is dependent on the cation and anion ion conductivities. The anion's size also influences the CO₂ sorption rate and capacity. It was discovered that adding water to pILs caused a dramatic, systematic enlargement of pILs resulting in a significant increase in their capacity to absorb CO₂ under identical conditions, contingent on the type of gas, gas flow, applied gas pressure, and water content of the pILs. Along with its capacity to increase surface area through expansion, water also possesses highly high ion conductivity for cations and anions, enhancing its ability to absorb CO₂.

Keywords: polymerized ionic liquids, carbon dioxide, swelling, characterization

Procedia PDF Downloads 62
586 Measurements for Risk Analysis and Detecting Hazards by Active Wearables

Authors: Werner Grommes

Abstract:

Intelligent wearables (illuminated vests or hand and foot-bands, smart watches with a laser diode, Bluetooth smart glasses) overflow the market today. They are integrated with complex electronics and are worn very close to the body. Optical measurements and limitation of the maximum light density are needed. Smart watches are equipped with a laser diode or control different body currents. Special glasses generate readable text information that is received via radio transmission. Small high-performance batteries (lithium-ion/polymer) supply the electronics. All these products have been tested and evaluated for risk. These products must, for example, meet the requirements for electromagnetic compatibility as well as the requirements for electromagnetic fields affecting humans or implant wearers. Extensive analyses and measurements were carried out for this purpose. Many users are not aware of these risks. The result of this study should serve as a suggestion to do it better in the future or simply to point out these risks. Commercial LED warning vests, LED hand and foot-bands, illuminated surfaces with inverter (high voltage), flashlights, smart watches, and Bluetooth smart glasses were checked for risks. The luminance, the electromagnetic emissions in the low-frequency as well as in the high-frequency range, audible noises, and nervous flashing frequencies were checked by measurements and analyzed. Rechargeable lithium-ion or lithium-polymer batteries can burn or explode under special conditions like overheating, overcharging, deep discharge or using out of the temperature specification. Some risk analysis becomes necessary. The result of this study is that many smart wearables are worn very close to the body, and an extensive risk analysis becomes necessary. Wearers of active implants like a pacemaker or implantable cardiac defibrillator must be considered. If the wearable electronics include switching regulators or inverter circuits, active medical implants in the near field can be disturbed. A risk analysis is necessary.

Keywords: safety and hazards, electrical safety, EMC, EMF, active medical implants, optical radiation, illuminated warning vest, electric luminescent, hand and head lamps, LED, e-light, safety batteries, light density, optical glare effects

Procedia PDF Downloads 110
585 Environmental Related Mortality Rates through Artificial Intelligence Tools

Authors: Stamatis Zoras, Vasilis Evagelopoulos, Theodoros Staurakas

Abstract:

The association between elevated air pollution levels and extreme climate conditions (temperature, particulate matter, ozone levels, etc.) and mental consequences has been, recently, the focus of significant number of studies. It varies depending on the time of the year it occurs either during the hot period or cold periods but, specifically, when extreme air pollution and weather events are observed, e.g. air pollution episodes and persistent heatwaves. It also varies spatially due to different effects of air quality and climate extremes to human health when considering metropolitan or rural areas. An air pollutant concentration and a climate extreme are taking a different form of impact if the focus area is countryside or in the urban environment. In the built environment the climate extreme effects are driven through the formed microclimate which must be studied more efficiently. Variables such as biological, age groups etc may be implicated by different environmental factors such as increased air pollution/noise levels and overheating of buildings in comparison to rural areas. Gridded air quality and climate variables derived from the land surface observations network of West Macedonia in Greece will be analysed against mortality data in a spatial format in the region of West Macedonia. Artificial intelligence (AI) tools will be used for data correction and prediction of health deterioration with climatic conditions and air pollution at local scale. This would reveal the built environment implications against the countryside. The air pollution and climatic data have been collected from meteorological stations and span the period from 2000 to 2009. These will be projected against the mortality rates data in daily, monthly, seasonal and annual grids. The grids will be operated as AI-based warning models for decision makers in order to map the health conditions in rural and urban areas to ensure improved awareness of the healthcare system by taken into account the predicted changing climate conditions. Gridded data of climate conditions, air quality levels against mortality rates will be presented by AI-analysed gridded indicators of the implicated variables. An Al-based gridded warning platform at local scales is then developed for future system awareness platform for regional level.

Keywords: air quality, artificial inteligence, climatic conditions, mortality

Procedia PDF Downloads 113
584 Experimental Study on Bending and Torsional Strength of Bulk Molding Compound Seat Back Frame Part

Authors: Hee Yong Kang, Hyeon Ho Shin, Jung Cheol Yoo, Il Taek Lee, Sung Mo Yang

Abstract:

Lightweight technology using composites is being developed for vehicle seat structures, and its design must meet the safety requirements. According to the Federal Motor Vehicle Safety Standard (FMVSS) 207 seating systems test procedure, the back moment load is applied to the seat back frame structure for the safety evaluation of the vehicle seat. The seat back frame using the composites is divided into three parts: upper part frame, and left- and right-side frame parts following the manufacturing process. When a rear moment load is applied to the seat back frame, the side frame receives the bending load and the torsional load at the same time. This results in the largest loaded strength. Therefore, strength test of the component unit is required. In this study, a component test method based on the FMVSS 207 seating systems test procedure was proposed for the strength analysis of bending load and torsional load of the automotive Bulk Molding Compound (BMC) Seat Back Side Frame. Moreover, strength evaluation according to the carbon band reinforcement was performed. The back-side frame parts of the seat that are applied to the test were manufactured through BMC that is composed of vinyl ester Matrix and short carbon fiber. Then, two kinds of reinforced and non-reinforced parts of carbon band were formed through a high-temperature compression molding process. In addition, the structure that is applied to the component test was constructed by referring to the FMVSS 207. Then, the bending load and the torsional load were applied through the displacement control to perform the strength test for four load conditions. The results of each test are shown through the load-displacement curves of the specimen. The failure strength of the parts caused by the reinforcement of the carbon band was analyzed. Additionally, the fracture characteristics of the parts for four strength tests were evaluated, and the weakness structure of the back-side frame of the seat structure was confirmed according to the test conditions. Through the bending and torsional strength test methods, we confirmed the strength and fracture characteristics of BMC Seat Back Side Frame according to the carbon band reinforcement. And we proposed a method of testing the part strength of a seat back frame for vehicles that can meet the FMVSS 207.

Keywords: seat back frame, bending and torsional strength, BMC (Bulk Molding Compound), FMVSS 207 seating systems

Procedia PDF Downloads 210
583 Synthesis and Catalytic Activity of N-Heterocyclic Carbene Copper Catalysts Supported on Magnetic Nanoparticles

Authors: Iwona Misztalewska-Turkowicz, Agnieszka Z. Wilczewska, Karolina H. Markiewicz

Abstract:

Carbenes - species which possess neutral carbon atom with two shared and two unshared valence electrons, are known for their high reactivity and instability. Nevertheless, it is also known, that some carbenes i.e. N-heterocyclic carbenes (NHCs), can form stable crystals. The usability of NHCs in organic synthesis was studied. Due to their exceptional properties (high nucleophilicity) NHCs are commonly used as organocatalysts and also as ligands in transition metal complexes. NHC ligands possess better electron-donating properties than phosphines. Moreover, they exhibit lower toxicity. Due to these features, phosphines are frequently replaced by NHC ligands. In this research is discussed the synthesis of five-membered NHCs which are mainly obtained by deprotonation of azolium salts, e.g., imidazolium or imidazolinium salts. Some of them are immobilized on a solid support what leads to formation of heterogeneous, recyclable catalysts. Magnetic nanoparticles (MNPs) are often used as a solid support for catalysts. MNPs can be easily separated from the reaction mixture using an external magnetic field. Due to their low size and high surface to volume ratio, they are a good choice for immobilization of catalysts. Herein is presented synthesis of N-heterocyclic carbene copper complexes directly on the surface of magnetic nanoparticles. Formation of four different catalysts is discussed. They vary in copper oxidation state (Cu(I) and Cu(II)) and structure of NHC ligand. Catalysts were tested in Huisgen reaction, a type of copper catalyzed azide-alkyne cycloaddition (CuAAC) reaction. Huisgen reaction represents one of the few universal and highly efficient reactions in which 1,2,3-triazoles can be obtained. The catalytic activity of all synthesized catalysts was compared with activity of commercially available ones. Different reaction conditions (solvent, temperature, the addition of reductant) and reusability of the obtained catalysts were investigated and are discussed. The project was financially supported by National Science Centre, Poland, grant no. 2016/21/N/ST5/01316. Analyses were performed in Centre of Synthesis and Analyses BioNanoTechno of University of Bialystok. The equipment in the Centre of Synthesis and Analysis BioNanoTechno of University of Bialystok was funded by EU, as a part of the Operational Program Development of Eastern Poland 2007-2013, project: POPW.01.03.00-20-034/09-00 and POPW.01.03.00-20-004/11.

Keywords: N-heterocyclic carbenes, click reaction, magnetic nanoparticles, copper catalysts

Procedia PDF Downloads 157
582 Hepatoprotective Action of Emblica officinalis Linn. against Radiation and Lead Induced Changes in Swiss Albino Mice

Authors: R. K. Purohit

Abstract:

Ionizing radiation induces cellular damage through direct ionization of DNA and other cellular targets and indirectly via reactive oxygen species which may include effects from epigenetic changes. So there is a need of hour is to search for an ideal radioprotector which could minimize the deleterious and damaging effects caused by ionizing radiation. Radioprotectors are agents which reduce the radiation effects on cell when applied prior to exposure of radiation. The aim of this study was to access the efficacy of Emblica officinalis in reducing radiation and lead induced changes in mice liver. For the present experiment, healthy male Swiss albino mice (6-8 weeks) were selected and maintained under standard conditions of temperature and light. Fruit extract of Emblica was fed orally at the dose of 0.01 ml/animal/day. The animal were divided into seven groups according to the treatment i.e. lead acetate solution as drinking water (group-II) or exposed to 3.5 or 7.0 Gy gamma radiation (group-III) or combined treatment of radiation and lead acetate (group-IV). The animals of experimental groups were administered Emblica extract seven days prior to radiation or lead acetate treatment (group V, VI and VII) respectively. The animals from all the groups were sacrificed by cervical dislocation at each post-treatment intervals of 1, 2, 4, 7, 14 and 28 days. After sacrificing the animals pieces of liver were taken out and some of them were kept at -20°C for different biochemical parameters. The histopathological changes included cytoplasmic degranulation, vacuolation, hyperaemia, pycnotic and crenated nuclei. The changes observed in the control groups were compared with the respective experimental groups. An increase in the value of total proteins, glycogen, acid phosphtase, alkaline phosphatase activity and RNA was observed up to day-14 in the non drug treated group and day 7 in the Emblica treated groups, thereafter value declined up to day-28 without reaching to normal. The value of cholesterol and DNA showed a decreasing trend up to day -14 in non drug treated groups and day-7 in drug treated groups, thereafter value elevated up to day-28. The biochemical parameters were observed in the form of increase or decrease in the values. The changes were found dose dependent. After combined treatment of radiation and lead acetate synergistic effect were observed. The liver of Emblica treated animals exhibited less severe damage as compared to non-drug treated animals at all the corresponding intervals. An early and fast recovery was also noticed in Emblica pretreated animals. Thus, it appears that Emblica is potent enough to check lead and radiation induced heptic lesion in Swiss albino mice.

Keywords: radiation, lead , emblica, mice, liver

Procedia PDF Downloads 321
581 Simultaneous Detection of Cd⁺², Fe⁺², Co⁺², and Pb⁺² Heavy Metal Ions by Stripping Voltammetry Using Polyvinyl Chloride Modified Glassy Carbon Electrode

Authors: Sai Snehitha Yadavalli, K. Sruthi, Swati Ghosh Acharyya

Abstract:

Heavy metal ions are toxic to humans and all living species when exposed in large quantities or for long durations. Though Fe acts as a nutrient, when intake is in large quantities, it becomes toxic. These toxic heavy metal ions, when consumed through water, will cause many disorders and are harmful to all flora and fauna through biomagnification. Specifically, humans are prone to innumerable diseases ranging from skin to gastrointestinal, neurological, etc. In higher quantities, they even cause cancer in humans. Detection of these toxic heavy metal ions in water is thus important. Traditionally, the detection of heavy metal ions in water has been done by techniques like Inductively Coupled Plasma Mass Spectroscopy (ICPMS) and Atomic Absorption Spectroscopy (AAS). Though these methods offer accurate quantitative analysis, they require expensive equipment and cannot be used for on-site measurements. Anodic Stripping Voltammetry is a good alternative as the equipment is affordable, and measurements can be made at the river basins or lakes. In the current study, Square Wave Anodic Stripping Voltammetry (SWASV) was used to detect the heavy metal ions in water. Literature reports various electrodes on which deposition of heavy metal ions was carried out like Bismuth, Polymers, etc. The working electrode used in this study is a polyvinyl chloride (PVC) modified glassy carbon electrode (GCE). Ag/AgCl reference electrode and Platinum counter electrode were used. Biologic Potentiostat SP 300 was used for conducting the experiments. Through this work of simultaneous detection, four heavy metal ions were successfully detected at a time. The influence of modifying GCE with PVC was studied in comparison with unmodified GCE. The simultaneous detection of Cd⁺², Fe⁺², Co⁺², Pb⁺² heavy metal ions was done using PVC modified GCE by drop casting 1 wt.% of PVC dissolved in Tetra Hydro Furan (THF) solvent onto GCE. The concentration of all heavy metal ions was 0.2 mg/L, as shown in the figure. The scan rate was 0.1 V/s. Detection parameters like pH, scan rate, temperature, time of deposition, etc., were optimized. It was clearly understood that PVC helped in increasing the sensitivity and selectivity of detection as the current values are higher for PVC-modified GCE compared to unmodified GCE. The peaks were well defined when PVC-modified GCE was used.

Keywords: cadmium, cobalt, electrochemical sensing, glassy carbon electrodes, heavy metal Ions, Iron, lead, polyvinyl chloride, potentiostat, square wave anodic stripping voltammetry

Procedia PDF Downloads 103
580 TiO₂ Nanotube Array Based Selective Vapor Sensors for Breath Analysis

Authors: Arnab Hazra

Abstract:

Breath analysis is a quick, noninvasive and inexpensive technique for disease diagnosis can be used on people of all ages without any risk. Only a limited number of volatile organic compounds (VOCs) can be associated with the occurrence of specific diseases. These VOCs can be considered as disease markers or breath markers. Selective detection with specific concentration of breath marker in exhaled human breath is required to detect a particular disease. For example, acetone (C₃H₆O), ethanol (C₂H₅OH), ethane (C₂H₆) etc. are the breath markers and abnormal concentrations of these VOCs in exhaled human breath indicates the diseases like diabetes mellitus, renal failure, breast cancer respectively. Nanomaterial-based vapor sensors are inexpensive, small and potential candidate for the detection of breath markers. In practical measurement, selectivity is the most crucial issue where trace detection of breath marker is needed to identify accurately in the presence of several interfering vapors and gases. Current article concerns a novel technique for selective and lower ppb level detection of breath markers at very low temperature based on TiO₂ nanotube array based vapor sensor devices. Highly ordered and oriented TiO₂ nanotube array was synthesized by electrochemical anodization of high purity tatinium (Ti) foil. 0.5 wt% NH₄F, ethylene glycol and 10 vol% H₂O was used as the electrolyte and anodization was carried out for 90 min with 40 V DC potential. Au/TiO₂ Nanotube/Ti, sandwich type sensor device was fabricated for the selective detection of VOCs in low concentration range. Initially, sensor was characterized where resistive and capacitive change of the sensor was recorded within the valid concentration range for individual breath markers (or organic vapors). Sensor resistance was decreased and sensor capacitance was increased with the increase of vapor concentration. Now, the ratio of resistive slope (mR) and capacitive slope (mC) provided a concentration independent constant term (M) for a particular vapor. For the detection of unknown vapor, ratio of resistive change and capacitive change at any concentration was same to the previously calculated constant term (M). After successful identification of the target vapor, concentration was calculated from the straight line behavior of resistance as a function of concentration. Current technique is suitable for the detection of particular vapor from a mixture of other interfering vapors.

Keywords: breath marker, vapor sensors, selective detection, TiO₂ nanotube array

Procedia PDF Downloads 155
579 Synthesis and Characterization of Highly Oriented Bismuth Oxyiodide Thin Films for the Photocatalytical Degradation of Pharmaceuticals Compounds in Water

Authors: Juan C. Duran-Alvarez, Daniel Mejia, Rodolfo Zanella

Abstract:

Heterogeneous photocatalysis is a promising method to achieve the complete degradation and mineralization of organic pollutants in water via their exhaustive oxidation. In order to take this advanced oxidation process towards sustainability, it is necessary to reduce the energy consumption, referred as the light sources and the post-treatment operations. For this, the synthesis of new nanostructures of low band gap semiconductors in the form of thin films is in continuous development. In this work, thin films of the low band gap semiconductor bismuth oxyiodide (BiOI) were synthesized via the Successive Ionic Layer Adsorption and Reaction (SILAR) method. For this, Bi(NO3)3 and KI solutions were prepared, and glass supports were immersed in each solution under strict rate and time immersion conditions. Synthesis was performed at room temperature and a washing step was set prior to each immersion. Thin films with an average thickness below 100 nm were obtained upon a cycle of 30 immersions, as determined by AFM and profilometry measurements. Cubic BiOI nanocrystals with average size of 17 nm and a high orientation to the 001 plane were observed by XRD. In order to optimize the synthesis method, several Bi/I ratios were tested, namely 1/1, 1/5, 1/10, 1/20 and 1/50. The highest crystallinity of the BiOI films was observed when the 1/5 ratio was used in the synthesis. Non-stoichiometric conditions also resulted in the highest uniformity of the thin layers. PVP was used as an additive to improve the adherence of the BiOI thin films to the support. The addition of 0.1 mg/mL of PVP during the washing step resulted in the highest adherence of the thin films. In photocatalysis tests, degradation rate of the antibiotic ciprofloxacin as high as 75% was achieved using visible light (380 to 700 nm) irradiation for 5 h in batch tests. Mineralization of the antibiotic was also observed, although in a lower extent; ~ 30% of the total organic carbon was removed upon 5 h of visible light irradiation. Some ciprofloxacin by-products were identified throughout the reaction; and some of these molecules displayed residual antibiotic activity. In conclusion, it is possible to obtain highly oriented BiOI thin films under ambient conditions via the SILAR method. Non-stoichiometric conditions using PVP additive are necessary to increase the crystallinity and adherence of the films, which are photocatalytically active to remove recalcitrant organic pollutants under visible light irradiation.

Keywords: bismuth oxyhalides, photocatalysis, thin films, water treatment

Procedia PDF Downloads 120
578 Application of Carbon Nanotubes as Cathodic Corrosion Protection of Steel Reinforcement

Authors: M. F. Perez, Ysmael Verde, B. Escobar, R. Barbosa, J. C. Cruz

Abstract:

Reinforced concrete is one of the most important materials in the construction industry. However, in recent years the durability of concrete structures has been a worrying problem, mainly due to corrosion of reinforcing steel; the consequences of corrosion in all cases lead to shortening of the life of the structure and decrease in quality of service. Since the emergence of this problem, they have implemented different methods or techniques to reduce damage by corrosion of reinforcing steel in concrete structures; as the use of polymeric materials as coatings for the steel rod, spiked inhibitors of concrete during mixing, among others, presenting different limitations in the application of these methods. Because of this, it has been used a method that has proved effective, cathodic protection. That is why due to the properties attributed to carbon nanotubes (CNT), these could act as cathodic corrosion protection. Mounting a three-electrode electrochemical cell, carbon steel as working electrode, saturated calomel electrode (SCE) as the reference electrode, and a graphite rod as a counter electrode to close the system is performed. Samples made were subjected to a cycling process in order to compare the results in the corrosion performance of a coating composed of CNT and the others based on an anticorrosive commercial painting. The samples were tested at room temperature using an electrolyte consisting NaCl and NaOH simulating the typical pH of concrete, ranging from 12.6 to 13.9. Three test samples were made of steel rod, white, with commercial anticorrosive paint and CNT based coating; delimiting the work area to a section of 0.71 cm2. Tests cyclic voltammetry and linear voltammetry electrochemical spectroscopy each impedance of the three samples were made with a window of potential vs SCE 0.7 -1.7 a scan rate of 50 mV / s and 100 mV / s. The impedance values were obtained by applying a sine wave of amplitude 50 mV in a frequency range of 100 kHz to 100 MHz. The results obtained in this study show that the CNT based coating applied to the steel rod considerably decreased the corrosion rate compared to the commercial coating of anticorrosive paint, because the Ecorr was passed increase as the cycling process. The samples tested in all three cases were observed by light microscopy throughout the cycling process and micrographic analysis was performed using scanning electron microscopy (SEM). Results from electrochemical measurements show that the application of the coating containing carbon nanotubes on the surface of the steel rod greatly increases the corrosion resistance, compared to commercial anticorrosive coating.

Keywords: anticorrosive, carbon nanotubes, corrosion, steel

Procedia PDF Downloads 477
577 The Emergence of Memory at the Nanoscale

Authors: Victor Lopez-Richard, Rafael Schio Wengenroth Silva, Fabian Hartmann

Abstract:

Memcomputing is a computational paradigm that combines information processing and storage on the same physical platform. Key elements for this topic are devices with an inherent memory, such as memristors, memcapacitors, and meminductors. Despite the widespread emergence of memory effects in various solid systems, a clear understanding of the basic microscopic mechanisms that trigger them is still a puzzling task. We report basic ingredients of the theory of solid-state transport, intrinsic to a wide range of mechanisms, as sufficient conditions for a memristive response that points to the natural emergence of memory. This emergence should be discernible under an adequate set of driving inputs, as highlighted by our theoretical prediction and general common trends can be thus listed that become a rule and not the exception, with contrasting signatures according to symmetry constraints, either built-in or induced by external factors at the microscopic level. Explicit analytical figures of merit for the memory modulation of the conductance are presented, unveiling very concise and accessible correlations between general intrinsic microscopic parameters such as relaxation times, activation energies, and efficiencies (encountered throughout various fields in Physics) with external drives: voltage pulses, temperature, illumination, etc. These building blocks of memory can be extended to a vast universe of materials and devices, with combinations of parallel and independent transport channels, providing an efficient and unified physical explanation for a wide class of resistive memory devices that have emerged in recent years. Its simplicity and practicality have also allowed a direct correlation with reported experimental observations with the potential of pointing out the optimal driving configurations. The main methodological tools used to combine three quantum transport approaches, Drude-like model, Landauer-Buttiker formalism, and field-effect transistor emulators, with the microscopic characterization of nonequilibrium dynamics. Both qualitative and quantitative agreements with available experimental responses are provided for validating the main hypothesis. This analysis also shades light on the basic universality of complex natural impedances of systems out of equilibrium and might help pave the way for new trends in the area of memory formation as well as in its technological applications.

Keywords: memories, memdevices, memristors, nonequilibrium states

Procedia PDF Downloads 97
576 Analytical and Numerical Studies on the Behavior of a Freezing Soil Layer

Authors: X. Li, Y. Liu, H. Wong, B. Pardoen, A. Fabbri, F. McGregor, E. Liu

Abstract:

The target of this paper is to investigate how saturated poroelastic soils subject to freezing temperatures behave and how different boundary conditions can intervene and affect the thermo-hydro-mechanical (THM) responses, based on a particular but classical configuration of a finite homogeneous soil layer studied by Terzaghi. The essential relations on the constitutive behavior of a freezing soil are firstly recalled: ice crystal - liquid water thermodynamic equilibrium, hydromechanical constitutive equations, momentum balance, water mass balance, and the thermal diffusion equation, in general, non-linear case where material parameters are state-dependent. The system of equations is firstly linearized, assuming all material parameters to be constants, particularly the permeability of liquid water, which should depend on the ice content. Two analytical solutions solved by the classic Laplace transform are then developed, accounting for two different sets of boundary conditions. Afterward, the general non-linear equations with state-dependent parameters are solved using a commercial code COMSOL based on finite elements method to obtain numerical results. The validity of this numerical modeling is partially verified using the analytical solution in the limiting case of state-independent parameters. Comparison between the results given by the linearized analytical solutions and the non-linear numerical model reveals that the above-mentioned linear computation will always underestimate the liquid pore pressure and displacement, whatever the hydraulic boundary conditions are. In the nonlinear model, the faster growth of ice crystals, accompanying the subsequent reduction of permeability of freezing soil layer, makes a longer duration for the depressurization of water liquid and slower settlement in the case where the ground surface is swiftly covered by a thin layer of ice, as well as a bigger global liquid pressure and swelling in the case of the impermeable ground surface. Nonetheless, the analytical solutions based on linearized equations give a correct order-of-magnitude estimate, especially at moderate temperature variations, and remain a useful tool for preliminary design checks.

Keywords: chemical potential, cryosuction, Laplace transform, multiphysics coupling, phase transformation, thermodynamic equilibrium

Procedia PDF Downloads 80
575 Nanoparticles Modification by Grafting Strategies for the Development of Hybrid Nanocomposites

Authors: Irati Barandiaran, Xabier Velasco-Iza, Galder Kortaberria

Abstract:

Hybrid inorganic/organic nanostructured materials based on block copolymers are of considerable interest in the field of Nanotechnology, taking into account that these nanocomposites combine the properties of polymer matrix and the unique properties of the added nanoparticles. The use of block copolymers as templates offers the opportunity to control the size and the distribution of inorganic nanoparticles. This research is focused on the surface modification of inorganic nanoparticles to reach a good interface between nanoparticles and polymer matrices which hinders the nanoparticle aggregation. The aim of this work is to obtain a good and selective dispersion of Fe3O4 magnetic nanoparticles into different types of block copolymers such us, poly(styrene-b-methyl methacrylate) (PS-b-PMMA), poly(styrene-b-ε-caprolactone) (PS-b-PCL) poly(isoprene-b-methyl methacrylate) (PI-b-PMMA) or poly(styrene-b-butadiene-b-methyl methacrylate) (SBM) by using different grafting strategies. Fe3O4 magnetic nanoparticles have been surface-modified with polymer or block copolymer brushes following different grafting methods (grafting to, grafting from and grafting through) to achieve a selective location of nanoparticles into desired domains of the block copolymers. Morphology of fabricated hybrid nanocomposites was studied by means of atomic force microscopy (AFM) and with the aim to reach well-ordered nanostructured composites different annealing methods were used. Additionally, nanoparticle amount has been also varied in order to investigate the effect of the nanoparticle content in the morphology of the block copolymer. Nowadays different characterization methods were using in order to investigate magnetic properties of nanometer-scale electronic devices. Particularly, two different techniques have been used with the aim of characterizing synthesized nanocomposites. First, magnetic force microscopy (MFM) was used to investigate qualitatively the magnetic properties taking into account that this technique allows distinguishing magnetic domains on the sample surface. On the other hand, magnetic characterization by vibrating sample magnetometer and superconducting quantum interference device. This technique demonstrated that magnetic properties of nanoparticles have been transferred to the nanocomposites, exhibiting superparamagnetic behavior similar to that of the maghemite nanoparticles at room temperature. Obtained advanced nanostructured materials could found possible applications in the field of dye-sensitized solar cells and electronic nanodevices.

Keywords: atomic force microscopy, block copolymers, grafting techniques, iron oxide nanoparticles

Procedia PDF Downloads 262
574 Experimental Analysis of Supersonic Combustion Induced by Shock Wave at the Combustion Chamber of the 14-X Scramjet Model

Authors: Ronaldo de Lima Cardoso, Thiago V. C. Marcos, Felipe J. da Costa, Antonio C. da Oliveira, Paulo G. P. Toro

Abstract:

The 14-X is a strategic project of the Brazil Air Force Command to develop a technological demonstrator of a hypersonic air-breathing propulsion system based on supersonic combustion programmed to flight in the Earth's atmosphere at 30 km of altitude and Mach number 10. The 14-X is under development at the Laboratory of Aerothermodynamics and Hypersonic Prof. Henry T. Nagamatsu of the Institute of Advanced Studies. The program began in 2007 and was planned to have three stages: development of the wave rider configuration, development of the scramjet configuration and finally the ground tests in the hypersonic shock tunnel T3. The install configuration of the model based in the scramjet of the 14-X in the test section of the hypersonic shock tunnel was made to proportionate and test the flight conditions in the inlet of the combustion chamber. Experimental studies with hypersonic shock tunnel require special techniques to data acquisition. To measure the pressure along the experimental model geometry tested we used 30 pressure transducers model 122A22 of PCB®. The piezoeletronic crystals of a piezoelectric transducer pressure when to suffer pressure variation produces electric current (PCB® PIEZOTRONIC, 2016). The reading of the signal of the pressure transducers was made by oscilloscope. After the studies had begun we observed that the pressure inside in the combustion chamber was lower than expected. One solution to improve the pressure inside the combustion chamber was install an obstacle to providing high temperature and pressure. To confirm if the combustion occurs was selected the spectroscopy emission technique. The region analyzed for the spectroscopy emission system is the edge of the obstacle installed inside the combustion chamber. The emission spectroscopy technique was used to observe the emission of the OH*, confirming or not the combustion of the mixture between atmospheric air in supersonic speed and the hydrogen fuel inside of the combustion chamber of the model. This paper shows the results of experimental studies of the supersonic combustion induced by shock wave performed at the Hypersonic Shock Tunnel T3 using the scramjet 14-X model. Also, this paper provides important data about the combustion studies using the model based on the engine of 14-X (second stage of the 14-X Program). Informing the possibility of necessaries corrections to be made in the next stages of the program or in other models to experimental study.

Keywords: 14-X, experimental study, ground tests, scramjet, supersonic combustion

Procedia PDF Downloads 387
573 Isotope Effects on Inhibitors Binding to HIV Reverse Transcriptase

Authors: Agnieszka Krzemińska, Katarzyna Świderek, Vicente Molinier, Piotr Paneth

Abstract:

In order to understand in details the interactions between ligands and the enzyme isotope effects were studied between clinically used drugs that bind in the active site of Human Immunodeficiency Virus Reverse Transcriptase, HIV-1 RT, as well as triazole-based inhibitor that binds in the allosteric pocket of this enzyme. The magnitudes and origins of the resulting binding isotope effects were analyzed. Subsequently, binding isotope effect of the same triazole-based inhibitor bound in the active site were analyzed and compared. Together, these results show differences in binding origins in two sites of the enzyme and allow to analyze binding mode and place of newly synthesized inhibitors. Typical protocol is described below on the example of triazole ligand in the allosteric pocket. Triazole was docked into allosteric cavity of HIV-1 RT with Glide using extra-precision mode as implemented in Schroedinger software. The structure of HIV-1 RT was obtained from Protein Data Bank as structure of PDB ID 2RKI. The pKa for titratable amino acids was calculated using PROPKA software, and in order to neutralize the system 15 Cl- were added using tLEaP package implemented in AMBERTools ver.1.5. Also N-terminals and C-terminals were build using tLEaP. The system was placed in 144x160x144Å3 orthorhombic box of water molecules using NAMD program. Missing parameters for triazole were obtained at the AM1 level using Antechamber software implemented in AMBERTools. The energy minimizations were carried out by means of a conjugate gradient algorithm using NAMD. Then system was heated from 0 to 300 K with temperature increment 0.001 K. Subsequently 2 ns Langevin−Verlet (NVT) MM MD simulation with AMBER force field implemented in NAMD was carried out. Periodic Boundary Conditions and cut-offs for the nonbonding interactions, range radius from 14.5 to 16 Å, are used. After 2 ns relaxation 200 ps of QM/MM MD at 300 K were simulated. The triazole was treated quantum mechanically at the AM1 level, protein was described using AMBER and water molecules were described using TIP3P, as implemented in fDynamo library. Molecules 20 Å apart from the triazole were kept frozen, with cut-offs established on range radius from 14.5 to 16 Å. In order to describe interactions between triazole and RT free energy of binding using Free Energy Perturbation method was done. The change in frequencies from ligand in solution to ligand bounded in enzyme was used to calculate binding isotope effects.

Keywords: binding isotope effects, molecular dynamics, HIV, reverse transcriptase

Procedia PDF Downloads 431
572 Optimization of Mechanical Properties of Alginate Hydrogel for 3D Bio-Printing Self-Standing Scaffold Architecture for Tissue Engineering Applications

Authors: Ibtisam A. Abbas Al-Darkazly

Abstract:

In this study, the mechanical properties of alginate hydrogel material for self-standing 3D scaffold architecture with proper shape fidelity are investigated. In-lab built 3D bio-printer extrusion-based technology is utilized to fabricate 3D alginate scaffold constructs. The pressure, needle speed and stage speed are varied using a computer-controlled system. The experimental result indicates that the concentration of alginate solution, calcium chloride (CaCl2) cross-linking concentration and cross-linking ratios lead to the formation of alginate hydrogel with various gelation states. Besides, the gelling conditions, such as cross-linking reaction time and temperature also have a significant effect on the mechanical properties of alginate hydrogel. Various experimental tests such as the material gelation, the material spreading and the printability test for filament collapse as well as the swelling test were conducted to evaluate the fabricated 3D scaffold constructs. The result indicates that the fabricated 3D scaffold from composition of 3.5% wt alginate solution, that is prepared in DI water and 1% wt CaCl2 solution with cross-linking ratios of 7:3 show good printability and sustain good shape fidelity for more than 20 days, compared to alginate hydrogel that is prepared in a phosphate buffered saline (PBS). The fabricated self-standing 3D scaffold constructs measured 30 mm × 30 mm and consisted of 4 layers (n = 4) show good pore geometry and clear grid structure after printing. In addition, the percentage change of swelling degree exhibits high swelling capability with respect to time. The swelling test shows that the geometry of 3D alginate-scaffold construct and of the macro-pore are rarely changed, which indicates the capability of holding the shape fidelity during the incubation period. This study demonstrated that the mechanical and physical properties of alginate hydrogel could be tuned for a 3D bio-printing extrusion-based system to fabricate self-standing 3D scaffold soft structures. This 3D bioengineered scaffold provides a natural microenvironment present in the extracellular matrix of the tissue, which could be seeded with the biological cells to generate the desired 3D live tissue model for in vitro and in vivo tissue engineering applications.

Keywords: biomaterial, calcium chloride, 3D bio-printing, extrusion, scaffold, sodium alginate, tissue engineering

Procedia PDF Downloads 111
571 Kinetic Modelling of Fermented Probiotic Beverage from Enzymatically Extracted Annona Muricata Fruit

Authors: Calister Wingang Makebe, Wilson Ambindei Agwanande, Emmanuel Jong Nso, P. Nisha

Abstract:

Traditional liquid-state fermentation processes of Annona muricata L. juice can result in fluctuating product quality and quantity due to difficulties in control and scale up. This work describes a laboratory-scale batch fermentation process to produce a probiotic Annona muricata L. enzymatically extracted juice, which was modeled using the Doehlert design with independent extraction factors being incubation time, temperature, and enzyme concentration. It aimed at a better understanding of the traditional process as an initial step for future optimization. Annona muricata L. juice was fermented with L. acidophilus (NCDC 291) (LA), L. casei (NCDC 17) (LC), and a blend of LA and LC (LCA) for 72 h at 37 °C. Experimental data were fitted into mathematical models (Monod, Logistic and Luedeking and Piret models) using MATLAB software, to describe biomass growth, sugar utilization, and organic acid production. The optimal fermentation time was obtained based on cell viability, which was 24 h for LC and 36 h for LA and LCA. The model was particularly effective in estimating biomass growth, reducing sugar consumption, and lactic acid production. The values of the determination coefficient, R2, were 0.9946, 0.9913 and 0.9946, while the residual sum of square error, SSE, was 0.2876, 0.1738 and 0.1589 for LC, LA and LCA, respectively. The growth kinetic parameters included the maximum specific growth rate, µm, which was 0.2876 h-1, 0.1738 h-1 and 0.1589 h-1 as well as the substrate saturation, Ks, with 9.0680 g/L, 9.9337 g/L and 9.0709 g/L respectively for LC, LA and LCA. For the stoichiometric parameters, the yield of biomass based on utilized substrate (YXS) was 50.7932, 3.3940 and 61.0202, and the yield of product based on utilized substrate (YPS) was 2.4524, 0.2307 and 0.7415 for LC, LA, and LCA, respectively. In addition, the maintenance energy parameter (ms) was 0.0128, 0.0001 and 0.0004 with respect to LC, LA and LCA. With the kinetic model proposed by Luedeking and Piret for lactic acid production rate, the growth associated, and non-growth associated coefficients were determined as 1.0028 and 0.0109, respectively. The model was demonstrated for batch growth of LA, LC, and LCA in Annona muricata L. juice. The present investigation validates the potential of Annona muricata L. based medium for heightened economical production of a probiotic medium.

Keywords: L. acidophilus, L. casei, fermentation, modelling, kinetics

Procedia PDF Downloads 80