Search results for: engineering applications
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8852

Search results for: engineering applications

2462 Exploring the Energy Saving Benefits of Solar Power and Hot Water Systems: A Case Study of a Hospital in Central Taiwan

Authors: Ming-Chan Chung, Wen-Ming Huang, Yi-Chu Liu, Li-Hui Yang, Ming-Jyh Chen

Abstract:

introduction: Hospital buildings require considerable energy, including air conditioning, lighting, elevators, heating, and medical equipment. Energy consumption in hospitals is expected to increase significantly due to innovative equipment and continuous development plans. Consequently, the environment and climate will be adversely affected. Hospitals should therefore consider transforming from their traditional role of saving lives to being at the forefront of global efforts to reduce carbon dioxide emissions. As healthcare providers, it is our responsibility to provide a high-quality environment while using as little energy as possible. Purpose / Methods: Compare the energy-saving benefits of solar photovoltaic systems and solar hot water systems. The proportion of electricity consumption effectively reduced after the installation of solar photovoltaic systems. To comprehensively assess the potential benefits of utilizing solar energy for both photovoltaic (PV) and solar thermal applications in hospitals, a solar PV system was installed covering a total area of 28.95 square meters in 2021. Approval was obtained from the Taiwan Power Company to integrate the system into the hospital's electrical infrastructure for self-use. To measure the performance of the system, a dedicated meter was installed to track monthly power generation, which was then converted into area output using an electric energy conversion factor. This research aims to compare the energy efficiency of solar PV systems and solar thermal systems. Results: Using the conversion formula between electrical and thermal energy, we can compare the energy output of solar heating systems and solar photovoltaic systems. The comparative study draws upon data from February 2021 to February 2023, wherein the solar heating system generated an average of 2.54 kWh of energy per panel per day, while the solar photovoltaic system produced 1.17 kWh of energy per panel per day, resulting in a difference of approximately 2.17 times between the two systems. Conclusions: After conducting statistical analysis and comparisons, it was found that solar thermal heating systems offer higher energy and greater benefits than solar photovoltaic systems. Furthermore, an examination of literature data and simulations of the energy and economic benefits of solar thermal water systems and solar-assisted heat pump systems revealed that solar thermal water systems have higher energy density values, shorter recovery periods, and lower power consumption than solar-assisted heat pump systems. Through monitoring and empirical research in this study, it has been concluded that a heat pump-assisted solar thermal water system represents a relatively superior energy-saving and carbon-reducing solution for medical institutions. Not only can this system help reduce overall electricity consumption and the use of fossil fuels, but it can also provide more effective heating solutions.

Keywords: sustainable development, energy conservation, carbon reduction, renewable energy, heat pump system

Procedia PDF Downloads 81
2461 Developing Granular Sludge and Maintaining High Nitrite Accumulation for Anammox to Treat Municipal Wastewater High-efficiently in a Flexible Two-stage Process

Authors: Zhihao Peng, Qiong Zhang, Xiyao Li, Yongzhen Peng

Abstract:

Nowadays, conventional nitrogen removal process (nitrification and denitrification) was adopted in most wastewater treatment plants, but many problems have occurred, such as: high aeration energy consumption, extra carbon sources dosage and high sludge treatment costs. The emergence of anammox has bring about the great revolution to the nitrogen removal technology, and only the ammonia and nitrite were required to remove nitrogen autotrophically, no demand for aeration and sludge treatment. However, there existed many challenges in anammox applications: difficulty of biomass retention, insufficiency of nitrite substrate, damage from complex organic etc. Much effort was put into the research in overcoming the above challenges, and the payment was rewarded. It was also imperative to establish an innovative process that can settle the above problems synchronously, after all any obstacle above mentioned can cause the collapse of anammox system. Therefore, in this study, a two-stage process was established that the sequencing batch reactor (SBR) and upflow anaerobic sludge blanket (UASB) were used in the pre-stage and post-stage, respectively. The domestic wastewater entered into the SBR first and went through anaerobic/aerobic/anoxic (An/O/A) mode, and the draining at the aerobic end of SBR was mixed with domestic wastewater, the mixture then entering to the UASB. In the long term, organic and nitrogen removal performance was evaluated. All along the operation, most COD was removed in pre-stage (COD removal efficiency > 64.1%), including some macromolecular organic matter, like: tryptophan, tyrosinase and fulvic acid, which could weaken the damage of organic matter to anammox. And the An/O/A operating mode of SBR was beneficial to the achievement and maintenance of partial nitrification (PN). Hence, sufficient and steady nitrite supply was another favorable condition to anammox enhancement. Besides, the flexible mixing ratio helped to gain a substrate ratio appropriate to anammox (1.32-1.46), which further enhance the anammox. Further, the UASB was used and gas recirculation strategy was adopted in the post-stage, aiming to achieve granulation by the selection pressure. As expected, the granules formed rapidly during 38 days, which increased from 153.3 to 354.3 μm. Based on bioactivity and gene measurement, the anammox metabolism and abundance level rose evidently, by 2.35 mgN/gVss·h and 5.3 x109. The anammox bacteria mainly distributed in the large granules (>1000 μm), while the biomass in the flocs (<200 μm) and microgranules (200-500 μm) barely displayed anammox bioactivity. Enhanced anammox promoted the advanced autotrophic nitrogen removal, which increased from 71.9% to 93.4%, even when the temperature was only 12.9 ℃. Therefore, it was feasible to enhance anammox in the multiple favorable conditions created, and the strategy extended the application of anammox to the full-scale mainstream, enhanced the understanding of anammox in the aspects of culturing conditions.

Keywords: anammox, granules, nitrite accumulation, nitrogen removal efficiency

Procedia PDF Downloads 47
2460 Assessment of Commercial Antimicrobials Incorporated into Gelatin Coatings and Applied to Conventional Heat-Shrinking Material for the Prevention of Blown Pack Spoilage in Vacuum Packaged Beef Cuts

Authors: Andrey A. Tyuftin, Rachael Reid, Paula Bourke, Patrick J. Cullen, Seamus Fanning, Paul Whyte, Declan Bolton , Joe P. Kerry

Abstract:

One of the primary spoilage issues associated with vacuum-packed beef products is blown pack spoilage (BPS) caused by the psychrophilic spore-forming strain of Clostridium spp. Spores derived from this organism can be activated after heat-shrinking (eg. 90°C for 3 seconds). To date, research into the control of Clostridium spp in beef packaging is limited. Active packaging in the form of antimicrobially-active coatings may be one approach to its control. Antimicrobial compounds may be incorporated into packaging films or coated onto the internal surfaces of packaging films using a carrier matrix. Three naturally-sourced, commercially-available antimicrobials, namely; Auranta FV (AFV) (bitter oranges extract) from Envirotech Innovative Products Ltd, Ireland; Inbac-MDA (IMDA) from Chemital LLC, Spain, mixture of different organic acids and sodium octanoate (SO) from Sigma-Aldrich, UK, were added into gelatin solutions at 2 concentrations: 2.5 and 3.5 times their minimum inhibition concentration (MIC) against Clostridium estertheticum (DSMZ 8809). These gelatin solutions were coated onto the internal polyethylene layer of cold plasma treated, heat-shrinkable laminates conventionally used for meat packaging applications. Atmospheric plasma was used in order to enhance adhesion between packaging films and gelatin coatings. Pouches were formed from these coated packaging materials, and beef cuts which had been inoculated with C. estertheticum were vacuum packaged. Inoculated beef was vacuum packaged without employing active films and this treatment served as the control. All pouches were heat-sealed and then heat-shrunk at 90°C for 3 seconds and incubated at 2°C for 100 days. During this storage period, packs were monitored for the indicators of blown pack spoilage as follows; gas bubbles in drip, loss of vacuum (onset of BPS), blown, the presence of sufficient gas inside the packs to produce pack distension and tightly stretched, “overblown” packs/ packs leaking. Following storage and assessment of indicator date, it was concluded that AFV- and SO-containing packaging inhibited the growth of C. estertheticum, significantly delaying the blown pack spoilage of beef primals. IMDA did not inhibit the growth of C. estertheticum. This may be attributed to differences in release rates and possible reactions with gelatin. Overall, active films were successfully produced following plasma surface treatment, and experimental data demonstrated clearly that the use of antimicrobially-active films could significantly prolong the storage stability of beef primals through the effective control of BPS.

Keywords: active packaging, blown pack spoilage, Clostridium, antimicrobials, edible coatings, food packaging, gelatin films, meat science

Procedia PDF Downloads 265
2459 The Influence of Gender and Sexual Orientation on Police Decisions in Intimate Partner Violence Cases

Authors: Brenda Russell

Abstract:

Police officers spend a great deal of time responding to domestic violence calls. Recent research has found that men and women in heterosexual and same-sex relationships are equally likely to initiate intimate partner violence IPV) and likewise susceptible to victimization, yet police training tends to focus primarily on male perpetration and female victimization. Criminal justice studies have found that male perpetrators of IPV are blamed more than female perpetrators who commit the same offense. While previous research has examined officer’s response in IPV cases with male and female heterosexual offenders, research has yet to investigate police response in same-sex relationships. This study examined officers’ decisions to arrest, perceptions of blame, perceived danger to others, disrespect, and beliefs in prosecution, guilt and sentencing. Officers in the U.S. (N = 248) were recruited using word of mouth and access to police association websites where a link to an online study was made available. Officers were provided with one of 4 experimentally manipulated scenarios depicting a male or female perpetrator (heterosexual or same-sex) in a clear domestic assault situation. Officer age, experience with IPV and IPV training were examined as possible covariates. Training in IPV was not correlated to any dependent variable of interest. Age was correlated with perpetrator arrest and blame (.14 and .16, respectively) and years of experience was correlated to arrest, offering informal advice, and mediating the incident (.14 to -.17). A 2(perpetrator gender) X 2 (victim gender) factorial design was conducted. Results revealed that officers were more likely to provide informal advice and mediate in gay male relationships, and were less likely to arrest perpetrators in same-sex relationships. When officer age and years of experience with domestic violence were statistically controlled, effects for perpetrator arrest and providing informal advice were no longer significant. Officers perceived heterosexual male perpetrators as more dangerous, blameworthy, disrespectful, and believed they would receive significantly longer sentences than all other conditions. When officer age and experience were included as covariates in the analyses perpetrator blame was no longer statistically significant. Age, experience and training in IPV were not related to perceptions of victims. Police perceived victims as more truthful and believable when the perpetrator was a male. Police also believed victims of female perpetrators were more responsible for their own victimization. Victims were more likely to be perceived as a danger to their family when the perpetrator was female. Female perpetrators in same-sex relationships and heterosexual males were considered to experience more mental illness than heterosexual female or gay male perpetrators. These results replicate previous research suggesting male perpetrators are more blameworthy and responsible for their own victimization, yet expands upon previous research by identifying potential biases in police response to IPV in same-sex relationships. This study brings to the forefront the importance of evidence-based officer training in IPV and provides insight into the need for a gender inclusive approach as well as addressing the necessity of the practical applications for police.

Keywords: domestic violence, heterosexual, intimate partner violence, officer response, police officer, same-sex

Procedia PDF Downloads 347
2458 Time Travel Testing: A Mechanism for Improving Renewal Experience

Authors: Aritra Majumdar

Abstract:

While organizations strive to expand their new customer base, retaining existing relationships is a key aspect of improving overall profitability and also showcasing how successful an organization is in holding on to its customers. It is an experimentally proven fact that the lion’s share of profit always comes from existing customers. Hence seamless management of renewal journeys across different channels goes a long way in improving trust in the brand. From a quality assurance standpoint, time travel testing provides an approach to both business and technology teams to enhance the customer experience when they look to extend their partnership with the organization for a defined phase of time. This whitepaper will focus on key pillars of time travel testing: time travel planning, time travel data preparation, and enterprise automation. Along with that, it will call out some of the best practices and common accelerator implementation ideas which are generic across verticals like healthcare, insurance, etc. In this abstract document, a high-level snapshot of these pillars will be provided. Time Travel Planning: The first step of setting up a time travel testing roadmap is appropriate planning. Planning will include identifying the impacted systems that need to be time traveled backward or forward depending on the business requirement, aligning time travel with other releases, frequency of time travel testing, preparedness for handling renewal issues in production after time travel testing is done and most importantly planning for test automation testing during time travel testing. Time Travel Data Preparation: One of the most complex areas in time travel testing is test data coverage. Aligning test data to cover required customer segments and narrowing it down to multiple offer sequencing based on defined parameters are keys for successful time travel testing. Another aspect is the availability of sufficient data for similar combinations to support activities like defect retesting, regression testing, post-production testing (if required), etc. This section will talk about the necessary steps for suitable data coverage and sufficient data availability from a time travel testing perspective. Enterprise Automation: Time travel testing is never restricted to a single application. The workflow needs to be validated in the downstream applications to ensure consistency across the board. Along with that, the correctness of offers across different digital channels needs to be checked in order to ensure a smooth customer experience. This section will talk about the focus areas of enterprise automation and how automation testing can be leveraged to improve the overall quality without compromising on the project schedule. Along with the above-mentioned items, the white paper will elaborate on the best practices that need to be followed during time travel testing and some ideas pertaining to accelerator implementation. To sum it up, this paper will be written based on the real-time experience author had on time travel testing. While actual customer names and program-related details will not be disclosed, the paper will highlight the key learnings which will help other teams to implement time travel testing successfully.

Keywords: time travel planning, time travel data preparation, enterprise automation, best practices, accelerator implementation ideas

Procedia PDF Downloads 159
2457 Complex Learning Tasks and Their Impact on Cognitive Engagement for Undergraduate Engineering Students

Authors: Anastassis Kozanitis, Diane Leduc, Alain Stockless

Abstract:

This paper presents preliminary results from a two-year funded research program looking to analyze and understand the relationship between high cognitive engagement, higher order cognitive processes employed in situations of complex learning tasks, and the use of active learning pedagogies in engineering undergraduate programs. A mixed method approach was used to gauge student engagement and their cognitive processes when accomplishing complex tasks. Quantitative data collected from the self-report cognitive engagement scale shows that deep learning approach is positively correlated with high levels of complex learning tasks and the level of student engagement, in the context of classroom active learning pedagogies. Qualitative analyses of in depth face-to-face interviews reveal insights into the mechanisms influencing students’ cognitive processes when confronted with open-ended problem resolution. Findings also support evidence that students will adjust their level of cognitive engagement according to the specific didactic environment.

Keywords: cognitive engagement, deep and shallow strategies, engineering programs, higher order cognitive processes

Procedia PDF Downloads 324
2456 Monitoring of Rice Phenology and Agricultural Practices from Sentinel 2 Images

Authors: D. Courault, L. Hossard, V. Demarez, E. Ndikumana, D. Ho Tong Minh, N. Baghdadi, F. Ruget

Abstract:

In the global change context, efficient management of the available resources has become one of the most important topics, particularly for sustainable crop development. Timely assessment with high precision is crucial for water resource and pest management. Rice cultivated in Southern France in the Camargue region must face a challenge, reduction of the soil salinity by flooding and at the same time reduce the number of herbicides impacting negatively the environment. This context has lead farmers to diversify crop rotation and their agricultural practices. The objective of this study was to evaluate this crop diversity both in crop systems and in agricultural practices applied to rice paddy in order to quantify the impact on the environment and on the crop production. The proposed method is based on the combined use of crop models and multispectral data acquired from the recent Sentinel 2 satellite sensors launched by the European Space Agency (ESA) within the homework of the Copernicus program. More than 40 images at fine spatial resolution (10m in the optical range) were processed for 2016 and 2017 (with a revisit time of 5 days) to map crop types using random forest method and to estimate biophysical variables (LAI) retrieved by inversion of the PROSAIL canopy radiative transfer model. Thanks to the high revisit time of Sentinel 2 data, it was possible to monitor the soil labor before flooding and the second sowing made by some farmers to better control weeds. The temporal trajectories of remote sensing data were analyzed for various rice cultivars for defining the main parameters describing the phenological stages useful to calibrate two crop models (STICS and SAFY). Results were compared to surveys conducted with 10 farms. A large variability of LAI has been observed at farm scale (up to 2-3m²/m²) which induced a significant variability in the yields simulated (up to 2 ton/ha). Observations on more than 300 fields have also been collected on land use. Various maps were elaborated, land use, LAI, flooding and sowing, and harvest dates. All these maps allow proposing a new typology to classify these paddy crop systems. Key phenological dates can be estimated from inverse procedures and were validated against ground surveys. The proposed approach allowed to compare the years and to detect anomalies. The methods proposed here can be applied at different crops in various contexts and confirm the potential of remote sensing acquired at fine resolution such as the Sentinel2 system for agriculture applications and environment monitoring. This study was supported by the French national center of spatial studies (CNES, funded by the TOSCA).

Keywords: agricultural practices, remote sensing, rice, yield

Procedia PDF Downloads 274
2455 Contribution to the Study of Automatic Epileptiform Pattern Recognition in Long Term EEG Signals

Authors: Christine F. Boos, Fernando M. Azevedo

Abstract:

Electroencephalogram (EEG) is a record of the electrical activity of the brain that has many applications, such as monitoring alertness, coma and brain death; locating damaged areas of the brain after head injury, stroke and tumor; monitoring anesthesia depth; researching physiology and sleep disorders; researching epilepsy and localizing the seizure focus. Epilepsy is a chronic condition, or a group of diseases of high prevalence, still poorly explained by science and whose diagnosis is still predominantly clinical. The EEG recording is considered an important test for epilepsy investigation and its visual analysis is very often applied for clinical confirmation of epilepsy diagnosis. Moreover, this EEG analysis can also be used to help define the types of epileptic syndrome, determine epileptiform zone, assist in the planning of drug treatment and provide additional information about the feasibility of surgical intervention. In the context of diagnosis confirmation the analysis is made using long term EEG recordings with at least 24 hours long and acquired by a minimum of 24 electrodes in which the neurophysiologists perform a thorough visual evaluation of EEG screens in search of specific electrographic patterns called epileptiform discharges. Considering that the EEG screens usually display 10 seconds of the recording, the neurophysiologist has to evaluate 360 screens per hour of EEG or a minimum of 8,640 screens per long term EEG recording. Analyzing thousands of EEG screens in search patterns that have a maximum duration of 200 ms is a very time consuming, complex and exhaustive task. Because of this, over the years several studies have proposed automated methodologies that could facilitate the neurophysiologists’ task of identifying epileptiform discharges and a large number of methodologies used neural networks for the pattern classification. One of the differences between all of these methodologies is the type of input stimuli presented to the networks, i.e., how the EEG signal is introduced in the network. Five types of input stimuli have been commonly found in literature: raw EEG signal, morphological descriptors (i.e. parameters related to the signal’s morphology), Fast Fourier Transform (FFT) spectrum, Short-Time Fourier Transform (STFT) spectrograms and Wavelet Transform features. This study evaluates the application of these five types of input stimuli and compares the classification results of neural networks that were implemented using each of these inputs. The performance of using raw signal varied between 43 and 84% efficiency. The results of FFT spectrum and STFT spectrograms were quite similar with average efficiency being 73 and 77%, respectively. The efficiency of Wavelet Transform features varied between 57 and 81% while the descriptors presented efficiency values between 62 and 93%. After simulations we could observe that the best results were achieved when either morphological descriptors or Wavelet features were used as input stimuli.

Keywords: Artificial neural network, electroencephalogram signal, pattern recognition, signal processing

Procedia PDF Downloads 528
2454 Synthesis of Carbon Nanotubes from Coconut Oil and Fabrication of a Non Enzymatic Cholesterol Biosensor

Authors: Mitali Saha, Soma Das

Abstract:

The fabrication of nanoscale materials for use in chemical sensing, biosensing and biological analyses has proven a promising avenue in the last few years. Cholesterol has aroused considerable interest in recent years on account of its being an important parameter in clinical diagnosis. There is a strong positive correlation between high serum cholesterol level and arteriosclerosis, hypertension, and myocardial infarction. Enzyme-based electrochemical biosensors have shown high selectivity and excellent sensitivity, but the enzyme is easily denatured during its immobilization procedure and its activity is also affected by temperature, pH, and toxic chemicals. Besides, the reproducibility of enzyme-based sensors is not very good which further restrict the application of cholesterol biosensor. It has been demonstrated that carbon nanotubes could promote electron transfer with various redox active proteins, ranging from cytochrome c to glucose oxidase with a deeply embedded redox center. In continuation of our earlier work on the synthesis and applications of carbon and metal based nanoparticles, we have reported here the synthesis of carbon nanotubes (CCNT) by burning coconut oil under insufficient flow of air using an oil lamp. The soot was collected from the top portion of the flame, where the temperature was around 6500C which was purified, functionalized and then characterized by SEM, p-XRD and Raman spectroscopy. The SEM micrographs showed the formation of tubular structure of CCNT having diameter below 100 nm. The XRD pattern indicated the presence of two predominant peaks at 25.20 and 43.80, which corresponded to (002) and (100) planes of CCNT respectively. The Raman spectrum (514 nm excitation) showed the presence of 1600 cm-1 (G-band) related to the vibration of sp2-bonded carbon and at 1350 cm-1 (D-band) responsible for the vibrations of sp3-bonded carbon. A nonenzymatic cholesterol biosensor was then fabricated on an insulating Teflon material containing three silver wires at the surface, covered by CCNT, obtained from coconut oil. Here, CCNTs worked as working as well as counter electrodes whereas reference electrode and electric contacts were made of silver. The dimensions of the electrode was 3.5 cm×1.0 cm×0.5 cm (length× width × height) and it is ideal for working with 50 µL volume like the standard screen printed electrodes. The voltammetric behavior of cholesterol at CCNT electrode was investigated by cyclic voltammeter and differential pulse voltammeter using 0.001 M H2SO4 as electrolyte. The influence of the experimental parameters on the peak currents of cholesterol like pH, accumulation time, and scan rates were optimized. Under optimum conditions, the peak current was found to be linear in the cholesterol concentration range from 1 µM to 50 µM with a sensitivity of ~15.31 μAμM−1cm−2 with lower detection limit of 0.017 µM and response time of about 6s. The long-term storage stability of the sensor was tested for 30 days and the current response was found to be ~85% of its initial response after 30 days.

Keywords: coconut oil, CCNT, cholesterol, biosensor

Procedia PDF Downloads 282
2453 Rheological Characterization of Polysaccharide Extracted from Camelina Meal as a New Source of Thickening Agent

Authors: Mohammad Anvari, Helen S. Joyner (Melito)

Abstract:

Camelina sativa (L.) Crantz is an oilseed crop currently used for the production of biofuels. However, the low price of diesel and gasoline has made camelina an unprofitable crop for farmers, leading to declining camelina production in the US. Hence, the ability to utilize camelina byproduct (defatted meal) after oil extraction would be a pivotal factor for promoting the economic value of the plant. Camelina defatted meal is rich in proteins and polysaccharides. The great diversity in the polysaccharide structural features provides a unique opportunity for use in food formulations as thickeners, gelling agents, emulsifiers, and stabilizers. There is currently a great degree of interest in the study of novel plant polysaccharides, as they can be derived from readily accessible sources and have potential application in a wide range of food formulations. However, there are no published studies on the polysaccharide extracted from camelina meal, and its potential industrial applications remain largely underexploited. Rheological properties are a key functional feature of polysaccharides and are highly dependent on the material composition and molecular structure. Therefore, the objective of this study was to evaluate the rheological properties of the polysaccharide extracted from camelina meal at different conditions to obtain insight on the molecular characteristics of the polysaccharide. Flow and dynamic mechanical behaviors were determined under different temperatures (5-50°C) and concentrations (1-6% w/v). Additionally, the zeta potential of the polysaccharide dispersion was measured at different pHs (2-11) and a biopolymer concentration of 0.05% (w/v). Shear rate sweep data revealed that the camelina polysaccharide displayed shear thinning (pseudoplastic) behavior, which is typical of polymer systems. The polysaccharide dispersion (1% w/v) showed no significant changes in viscosity with temperature, which makes it a promising ingredient in products requiring texture stability over a range of temperatures. However, the viscosity increased significantly with increased concentration, indicating that camelina polysaccharide can be used in food products at different concentrations to produce a range of textures. Dynamic mechanical spectra showed similar trends. The temperature had little effect on viscoelastic moduli. However, moduli were strongly affected by concentration: samples exhibited concentrated solution behavior at low concentrations (1-2% w/v) and weak gel behavior at higher concentrations (4-6% w/v). These rheological properties can be used for designing and modeling of liquid and semisolid products. Zeta potential affects the intensity of molecular interactions and molecular conformation and can alter solubility, stability, and eventually, the functionality of the materials as their environment changes. In this study, the zeta potential value significantly decreased from 0.0 to -62.5 as pH increased from 2 to 11, indicating that pH may affect the functional properties of the polysaccharide. The results obtained in the current study showed that camelina polysaccharide has significant potential for application in various food systems and can be introduced as a novel anionic thickening agent with unique properties.

Keywords: Camelina meal, polysaccharide, rheology, zeta potential

Procedia PDF Downloads 245
2452 Statistical Variability of Soil Parameters within the Copper Belt Region of the Democratic Republic of the Congo

Authors: Stephan P. Barkhuizen, Deon Greyling, Ryan J. Miller

Abstract:

The accurate determination of the engineering parameters of soil is necessary for the design of geotechnical structures, such as Tailings Storage Facilities. The shear strength and saturated permeability of soil and tailings samples obtained from 14 sites located in the copper belt in the Democratic Republic of the Congo have been tested at six commercial soil laboratories in South Africa. This study compiles a database of the test results proved by the soil laboratories. The samples have been categorised into clay, silt, and sand, based on the Unified Soil Classification System, with tailings kept separate. The effective friction angle (Φ’) and cohesion (c’) were interpreted from the stress paths, in s’:t space, obtained from triaxial tests. The minimum, lower quartile, median, upper quartile, and maximum values for Φ’,c’, and saturated hydraulic conductivity (k) have been determined for the soil sample. The objective is to provide statistics of the measured values of the engineering properties for the TSF borrow material, foundation soils and tailings of this region.

Keywords: Democratic Republic of the Congo, laboratory test work, soil engineering parameter variation, tailings storage facilities

Procedia PDF Downloads 64
2451 A development of Innovator Teachers Training Curriculum to Create Instructional Innovation According to Active Learning Approach to Enhance learning Achievement of Private School in Phayao Province

Authors: Palita Sooksamran, Katcharin Mahawong

Abstract:

This research aims to offer the development of innovator teachers training curriculum to create instructional innovation according to active learning approach to enhance learning achievement. The research and development process is carried out in 3 steps: Step 1 The study of the needs necessary to develop a training curriculum: the inquiry was conducted by a sample of teachers in private schools in Phayao province that provide basic education at the level of education. Using a questionnaire of 176 people, the sample was defined using a table of random numbers and stratified samples, using the school as a random layer. Step 2 Training curriculum development: the tools used are developed training curriculum and curriculum assessments, with nine experts checking the appropriateness of the draft curriculum. The statistic used in data analysis is the average ( ) and standard deviation (S.D.) Step 3 study on effectiveness of training curriculum: one group pretest/posttest design applied in this study. The sample consisted of 35 teachers from private schools in Phayao province. The participants volunteered to attend on their own. The results of the research showed that: 1.The essential demand index needed with the list of essential needs in descending order is the choice and create of multimedia media, videos, application for learning management at the highest level ,Developed of multimedia, video and applications for learning management and selection of innovative learning management techniques and methods of solve the problem Learning , respectively. 2. The components of the training curriculum include principles, aims, scope of content, training activities, learning materials and resources, supervision evaluation. The scope of the curriculum consists of basic knowledge about learning management innovation, active learning, lesson plan design, learning materials and resources, learning measurement and evaluation, implementation of lesson plans into classroom and supervision and motoring. The results of the evaluation of quality of the draft training curriculum at the highest level. The Experts suggestion is that the purpose of the course should be used words that convey the results. 3. The effectiveness of training curriculum 1) Cognitive outcomes of the teachers in creating innovative learning management was at a high level of relative gain score. 2) The assessment results of learning management ability according to the active learning approach to enhance learning achievement by assessing from 2 education supervisor as a whole were very high , 3) Quality of innovation learning management based on active learning approach to enhance learning achievement of the teachers, 7 instructional Innovations were evaluated as outstanding works and 26 instructional Innovations passed the standard 4) Overall learning achievement of students who learned from 35 the sample teachers was at a high level of relative gain score 5) teachers' satisfaction towards the training curriculum was at the highest level.

Keywords: training curriculum, innovator teachers, active learning approach, learning achievement

Procedia PDF Downloads 55
2450 The Effect of Emotional Intelligence on Physiological Stress of Managers

Authors: Mikko Salminen, Simo Järvelä, Niklas Ravaja

Abstract:

One of the central models of emotional intelligence (EI) is that of Mayer and Salovey’s, which includes ability to monitor own feelings and emotions and those of others, ability to discriminate different emotions, and to use this information to guide thinking and actions. There is vast amount of previous research where positive links between EI and, for example, leadership successfulness, work outcomes, work wellbeing and organizational climate have been reported. EI has also a role in the effectiveness of work teams, and the effects of EI are especially prominent in jobs requiring emotional labor. Thus, also the organizational context must be taken into account when considering the effects of EI on work outcomes. Based on previous research, it is suggested that EI can also protect managers from the negative consequences of stress. Stress may have many detrimental effects on the manager’s performance in essential work tasks. Previous studies have highlighted the effects of stress on, not only health, but also, for example, on cognitive tasks such as decision-making, which is important in managerial work. The motivation for the current study came from the notion that, unfortunately, many stressed individuals may not be aware of the circumstance; periods of stress-induced physiological arousal may be prolonged if there is not enough time for recovery. To tackle this problem, physiological stress levels of managers were collected using recording of heart rate variability (HRV). The goal was to use this data to provide the managers with feedback on their stress levels. The managers could access this feedback using a www-based learning environment. In the learning environment, in addition to the feedback on stress level and other collected data, also developmental tasks were provided. For example, those with high stress levels were sent instructions for mindfulness exercises. The current study focuses on the relation between the measured physiological stress levels and EI of the managers. In a pilot study, 33 managers from various fields wore the Firstbeat Bodyguard HRV measurement devices for three consecutive days and nights. From the collected HRV data periods (minutes) of stress and recovery were detected using dedicated software. The effects of EI on HRV-calculated stress indexes were studied using Linear Mixed Models procedure in SPSS. There was a statistically significant effect of total EI, defined as an average score of Schutte’s emotional intelligence test, on the percentage of stress minutes during the whole measurement period (p=.025). More stress minutes were detected on those managers who had lower emotional intelligence. It is suggested, that high EI provided managers with better tools to cope with stress. Managing of own emotions helps the manager in controlling possible negative emotions evoked by, e.g., critical feedback or increasing workload. High EI managers may also be more competent in detecting emotions of others, which would lead to smoother interactions and less conflicts. Given the recent trend to different quantified-self applications, it is suggested that monitoring of bio-signals would prove to be a fruitful direction to further develop new tools for managerial and leadership coaching.

Keywords: emotional intelligence, leadership, heart rate variability, personality, stress

Procedia PDF Downloads 226
2449 Highly Automated Trucks In Intermodal Logistics: Findings From a Field Test in Railport and Container Depot Operations in Germany

Authors: Dustin Schöder

Abstract:

The potential benefits of the utilization of highly automated and autonomous trucks in logistics operations are the subject of interest to the entire logistics industry. The benefits of the use of these new technologies were scientifically investigated and implemented in roadmaps. So far, reliable data and experiences from real life use cases are still limited. A German research consortium of both academics and industry developed a highly automated (SAE level 4) vehicle for yard operations at railports and container depots. After development and testing, a several month field test at the DUSS Terminal in Ulm-Dornstadt (Germany) and the nearby DB Intermodal Services Container Depot in Ulm-Dornstadt was conducted. The truck was piloted in a shuttle service between both sites. In a holistic automation approach, the vehicle was integrated into a digital communication platform so that the truck could move autonomously without a driver and his manual interactions with a wide variety of stakeholders. The main goal is to investigate the effects of highly automated trucks in the key processes of container loading, unloading and container relocation on holistic railport yard operation. The field test data were used to investigate changes in process efficiency of key processes of railport and container yard operations. Moreover, effects on the capacity utilization and potentials for smothering peak workloads were analyzed. The results state that process efficiency in the piloted use case was significantly higher. The reason for that could be found in the digitalized data exchange and automated dispatch. However, the field test has shown that the effect is greatly varying depending on the ratio of highly automated and manual trucks in the yard as well as on the congestion level in the loading area. Furthermore, the data confirmed that under the right conditions, the capacity utilization of highly automated trucks could be increased. In regard to the potential for smothering peak workloads, no significant findings could be made based on the limited requirements and regulations of railway operation in Germany. In addition, an empirical survey among railport managers, operational supervisors, innovation managers and strategists (n=15) within the logistics industry in Germany was conducted. The goal was to identify key characteristics of future railports and terminals as well as requirements that railports will have to meet in the future. Furthermore, the railport processes where automation and autonomization make the greatest impact, as well as hurdles and challenges in the introduction of new technologies, have been surveyed. Hence, further potential use cases of highly automated and autonomous applications could be identified, and expectations have been mapped. As a result, a highly detailed and practice-based roadmap towards a ‘terminal 4.0’ was developed.

Keywords: highly automated driving, autonomous driving, SAE level 4, railport operations, container depot, intermodal logistics, potentials of autonomization

Procedia PDF Downloads 79
2448 Earthquake Risk Assessment Using Out-of-Sequence Thrust Movement

Authors: Rajkumar Ghosh

Abstract:

Earthquakes are natural disasters that pose a significant risk to human life and infrastructure. Effective earthquake mitigation measures require a thorough understanding of the dynamics of seismic occurrences, including thrust movement. Traditionally, estimating thrust movement has relied on typical techniques that may not capture the full complexity of these events. Therefore, investigating alternative approaches, such as incorporating out-of-sequence thrust movement data, could enhance earthquake mitigation strategies. This review aims to provide an overview of the applications of out-of-sequence thrust movement in earthquake mitigation. By examining existing research and studies, the objective is to understand how precise estimation of thrust movement can contribute to improving structural design, analyzing infrastructure risk, and developing early warning systems. The study demonstrates how to estimate out-of-sequence thrust movement using multiple data sources, including GPS measurements, satellite imagery, and seismic recordings. By analyzing and synthesizing these diverse datasets, researchers can gain a more comprehensive understanding of thrust movement dynamics during seismic occurrences. The review identifies potential advantages of incorporating out-of-sequence data in earthquake mitigation techniques. These include improving the efficiency of structural design, enhancing infrastructure risk analysis, and developing more accurate early warning systems. By considering out-of-sequence thrust movement estimates, researchers and policymakers can make informed decisions to mitigate the impact of earthquakes. This study contributes to the field of seismic monitoring and earthquake risk assessment by highlighting the benefits of incorporating out-of-sequence thrust movement data. By broadening the scope of analysis beyond traditional techniques, researchers can enhance their knowledge of earthquake dynamics and improve the effectiveness of mitigation measures. The study collects data from various sources, including GPS measurements, satellite imagery, and seismic recordings. These datasets are then analyzed using appropriate statistical and computational techniques to estimate out-of-sequence thrust movement. The review integrates findings from multiple studies to provide a comprehensive assessment of the topic. The study concludes that incorporating out-of-sequence thrust movement data can significantly enhance earthquake mitigation measures. By utilizing diverse data sources, researchers and policymakers can gain a more comprehensive understanding of seismic dynamics and make informed decisions. However, challenges exist, such as data quality difficulties, modelling uncertainties, and computational complications. To address these obstacles and improve the accuracy of estimates, further research and advancements in methodology are recommended. Overall, this review serves as a valuable resource for researchers, engineers, and policymakers involved in earthquake mitigation, as it encourages the development of innovative strategies based on a better understanding of thrust movement dynamics.

Keywords: earthquake, out-of-sequence thrust, disaster, human life

Procedia PDF Downloads 77
2447 Impact of Displacements Durations and Monetary Costs on the Labour Market within a City Consisting on Four Areas a Theoretical Approach

Authors: Aboulkacem El Mehdi

Abstract:

We develop a theoretical model at the crossroads of labour and urban economics, used for explaining the mechanism through which the duration of home-workplace trips and their monetary costs impact the labour demand and supply in a spatially scattered labour market and how they are impacted by a change in passenger transport infrastructures and services. The spatial disconnection between home and job opportunities is referred to as the spatial mismatch hypothesis (SMH). Its harmful impact on employment has been subject to numerous theoretical propositions. However, all the theoretical models proposed so far are patterned around the American context, which is particular as it is marked by racial discrimination against blacks in the housing and the labour markets. Therefore, it is only natural that most of these models are developed in order to reproduce a steady state characterized by agents carrying out their economic activities in a mono-centric city in which most unskilled jobs being created in the suburbs, far from the Blacks who dwell in the city-centre, generating a high unemployment rates for blacks, while the White population resides in the suburbs and has a low unemployment rate. Our model doesn't rely on any racial discrimination and doesn't aim at reproducing a steady state in which these stylized facts are replicated; it takes the main principle of the SMH -the spatial disconnection between homes and workplaces- as a starting point. One of the innovative aspects of the model consists in dealing with a SMH related issue at an aggregate level. We link the parameters of the passengers transport system to employment in the whole area of a city. We consider here a city that consists of four areas: two of them are residential areas with unemployed workers, the other two host firms looking for labour force. The workers compare the indirect utility of working in each area with the utility of unemployment and choose between submitting an application for the job that generate the highest indirect utility or not submitting. This arbitration takes account of the monetary and the time expenditures generated by the trips between the residency areas and the working areas. Each of these expenditures is clearly and explicitly formulated so that the impact of each of them can be studied separately than the impact of the other. The first findings show that the unemployed workers living in an area benefiting from good transport infrastructures and services have a better chance to prefer activity to unemployment and are more likely to supply a higher 'quantity' of labour than those who live in an area where the transport infrastructures and services are poorer. We also show that the firms located in the most accessible area receive much more applications and are more likely to hire the workers who provide the highest quantity of labour than the firms located in the less accessible area. Currently, we are working on the matching process between firms and job seekers and on how the equilibrium between the labour demand and supply occurs.

Keywords: labour market, passenger transport infrastructure, spatial mismatch hypothesis, urban economics

Procedia PDF Downloads 292
2446 A Smart Sensor Network Approach Using Affordable River Water Level Sensors

Authors: Dian Zhang, Brendan Heery, Maria O’Neill, Ciprian Briciu-Burghina, Noel E. O’Connor, Fiona Regan

Abstract:

Recent developments in sensors, wireless data communication and the cloud computing have brought the sensor web to a whole new generation. The introduction of the concept of ‘Internet of Thing (IoT)’ has brought the sensor research into a new level, which involves the developing of long lasting, low cost, environment friendly and smart sensors; new wireless data communication technologies; big data analytics algorithms and cloud based solutions that are tailored to large scale smart sensor network. The next generation of smart sensor network consists of several layers: physical layer, where all the smart sensors resident and data pre-processes occur, either on the sensor itself or field gateway; data transmission layer, where data and instructions exchanges happen; the data process layer, where meaningful information is extracted and organized from the pre-process data stream. There are many definitions of smart sensor, however, to summarize all these definitions, a smart sensor must be Intelligent and Adaptable. In future large scale sensor network, collected data are far too large for traditional applications to send, store or process. The sensor unit must be intelligent that pre-processes collected data locally on board (this process may occur on field gateway depends on the sensor network structure). In this case study, three smart sensing methods, corresponding to simple thresholding, statistical model and machine learning based MoPBAS method, are introduced and their strength and weakness are discussed as an introduction to the smart sensing concept. Data fusion, the integration of data and knowledge from multiple sources, are key components of the next generation smart sensor network. For example, in the water level monitoring system, weather forecast can be extracted from external sources and if a heavy rainfall is expected, the server can send instructions to the sensor notes to, for instance, increase the sampling rate or switch on the sleeping mode vice versa. In this paper, we describe the deployment of 11 affordable water level sensors in the Dublin catchment. The objective of this paper is to use the deployed river level sensor network at the Dodder catchment in Dublin, Ireland as a case study to give a vision of the next generation of a smart sensor network for flood monitoring to assist agencies in making decisions about deploying resources in the case of a severe flood event. Some of the deployed sensors are located alongside traditional water level sensors for validation purposes. Using the 11 deployed river level sensors in a network as a case study, a vision of the next generation of smart sensor network is proposed. Each key component of the smart sensor network is discussed, which hopefully inspires the researchers who are working in the sensor research domain.

Keywords: smart sensing, internet of things, water level sensor, flooding

Procedia PDF Downloads 381
2445 Geovisualisation for Defense Based on a Deep Learning Monocular Depth Reconstruction Approach

Authors: Daniel R. dos Santos, Mateus S. Maldonado, Estevão J. R. Batista

Abstract:

The military commanders increasingly dependent on spatial awareness, as knowing where enemy are, understanding how war battle scenarios change over time, and visualizing these trends in ways that offer insights for decision-making. Thanks to advancements in geospatial technologies and artificial intelligence algorithms, the commanders are now able to modernize military operations on a universal scale. Thus, geovisualisation has become an essential asset in the defense sector. It has become indispensable for better decisionmaking in dynamic/temporal scenarios, operation planning and management for the war field, situational awareness, effective planning, monitoring, and others. For example, a 3D visualization of war field data contributes to intelligence analysis, evaluation of postmission outcomes, and creation of predictive models to enhance decision-making and strategic planning capabilities. However, old-school visualization methods are slow, expensive, and unscalable. Despite modern technologies in generating 3D point clouds, such as LIDAR and stereo sensors, monocular depth values based on deep learning can offer a faster and more detailed view of the environment, transforming single images into visual information for valuable insights. We propose a dedicated monocular depth reconstruction approach via deep learning techniques for 3D geovisualisation of satellite images. It introduces scalability in terrain reconstruction and data visualization. First, a dataset with more than 7,000 satellite images and associated digital elevation model (DEM) is created. It is based on high resolution optical and radar imageries collected from Planet and Copernicus, on which we fuse highresolution topographic data obtained using technologies such as LiDAR and the associated geographic coordinates. Second, we developed an imagery-DEM fusion strategy that combine feature maps from two encoder-decoder networks. One network is trained with radar and optical bands, while the other is trained with DEM features to compute dense 3D depth. Finally, we constructed a benchmark with sparse depth annotations to facilitate future research. To demonstrate the proposed method's versatility, we evaluated its performance on no annotated satellite images and implemented an enclosed environment useful for Geovisualisation applications. The algorithms were developed in Python 3.0, employing open-source computing libraries, i.e., Open3D, TensorFlow, and Pythorch3D. The proposed method provides fast and accurate decision-making with GIS for localization of troops, position of the enemy, terrain and climate conditions. This analysis enhances situational consciousness, enabling commanders to fine-tune the strategies and distribute the resources proficiently.

Keywords: depth, deep learning, geovisualisation, satellite images

Procedia PDF Downloads 10
2444 A Framework for Teaching Distributed Requirements Engineering in Latin American Universities

Authors: G. Sevilla, S. Zapata, F. Giraldo, E. Torres, C. Collazos

Abstract:

This work describes a framework for teaching of global software engineering (GSE) in university undergraduate programs. This framework proposes a method of teaching that incorporates adequate techniques of software requirements elicitation and validated tools of communication, critical aspects to global software development scenarios. The use of proposed framework allows teachers to simulate small software development companies formed by Latin American students, which build information systems. Students from three Latin American universities played the roles of engineers by applying an iterative development of a requirements specification in a global software project. The proposed framework involves the use of a specific purpose Wiki for asynchronous communication between the participants of the process. It is also a practice to improve the quality of software requirements that are formulated by the students. The additional motivation of students to participate in these practices, in conjunction with peers from other countries, is a significant additional factor that positively contributes to the learning process. The framework promotes skills for communication, negotiation, and other complementary competencies that are useful for working on GSE scenarios.

Keywords: requirements analysis, distributed requirements engineering, practical experiences, collaborative support

Procedia PDF Downloads 204
2443 Automated System: Managing the Production and Distribution of Radiopharmaceuticals

Authors: Shayma Mohammed, Adel Trabelsi

Abstract:

Radiopharmacy is the art of preparing high-quality, radioactive, medicinal products for use in diagnosis and therapy. Radiopharmaceuticals unlike normal medicines, this dual aspect (radioactive, medical) makes their management highly critical. One of the most convincing applications of modern technologies is the ability to delegate the execution of repetitive tasks to programming scripts. Automation has found its way to the most skilled jobs, to improve the company's overall performance by allowing human workers to focus on more important tasks than document filling. This project aims to contribute to implement a comprehensive system to insure rigorous management of radiopharmaceuticals through the use of a platform that links the Nuclear Medicine Service Management System to the Nuclear Radio-pharmacy Management System in accordance with the recommendations of World Health Organization (WHO) and International Atomic Energy Agency (IAEA). In this project we attempt to build a web application that targets radiopharmacies, the platform is built atop the inherently compatible web stack which allows it to work in virtually any environment. Different technologies are used in this project (PHP, Symfony, MySQL Workbench, Bootstrap, Angular 7, Visual Studio Code and TypeScript). The operating principle of the platform is mainly based on two parts: Radiopharmaceutical Backoffice for the Radiopharmacian, who is responsible for the realization of radiopharmaceutical preparations and their delivery and Medical Backoffice for the Doctor, who holds the authorization for the possession and use of radionuclides and he/she is responsible for ordering radioactive products. The application consists of sven modules: Production, Quality Control/Quality Assurance, Release, General Management, References, Transport and Stock Management. It allows 8 classes of users: The Production Manager (PM), Quality Control Manager (QCM), Stock Manager (SM), General Manager (GM), Client (Doctor), Parking and Transport Manager (PTM), Qualified Person (QP) and Technical and Production Staff. Digital platform bringing together all players involved in the use of radiopharmaceuticals and integrating the stages of preparation, production and distribution, Web technologies, in particular, promise to offer all the benefits of automation while requiring no more than a web browser to act as a user client, which is a strength because the web stack is by nature multi-platform. This platform will provide a traceability system for radiopharmaceuticals products to ensure the safety and radioprotection of actors and of patients. The new integrated platform is an alternative to write all the boilerplate paperwork manually, which is a tedious and error-prone task. It would minimize manual human manipulation, which has proven to be the main source of error in nuclear medicine. A codified electronic transfer of information from radiopharmaceutical preparation to delivery will further reduce the risk of maladministration.

Keywords: automated system, management, radiopharmacy, technical papers

Procedia PDF Downloads 156
2442 Understanding the Lithiation/Delithiation Mechanism of Si₁₋ₓGeₓ Alloys

Authors: Laura C. Loaiza, Elodie Salager, Nicolas Louvain, Athmane Boulaoued, Antonella Iadecola, Patrik Johansson, Lorenzo Stievano, Vincent Seznec, Laure Monconduit

Abstract:

Lithium-ion batteries (LIBs) have an important place among energy storage devices due to their high capacity and good cyclability. However, the advancements in portable and transportation applications have extended the research towards new horizons, and today the development is hampered, e.g., by the capacity of the electrodes employed. Silicon and germanium are among the considered modern anode materials as they can undergo alloying reactions with lithium while delivering high capacities. It has been demonstrated that silicon in its highest lithiated state can deliver up to ten times more capacity than graphite (372 mAh/g): 4200 mAh/g for Li₂₂Si₅ and 3579 mAh/g for Li₁₅Si₄, respectively. On the other hand, germanium presents a capacity of 1384 mAh/g for Li₁₅Ge₄, and a better electronic conductivity and Li ion diffusivity as compared to Si. Nonetheless, the commercialization potential of Ge is limited by its cost. The synergetic effect of Si₁₋ₓGeₓ alloys has been proven, the capacity is increased compared to Ge-rich electrodes and the capacity retention is increased compared to Si-rich electrodes, but the exact performance of this type of electrodes will depend on factors like specific capacity, C-rates, cost, etc. There are several reports on various formulations of Si₁₋ₓGeₓ alloys with promising LIB anode performance with most work performed on complex nanostructures resulting from synthesis efforts implying high cost. In the present work, we studied the electrochemical mechanism of the Si₀.₅Ge₀.₅ alloy as a realistic micron-sized electrode formulation using carboxymethyl cellulose (CMC) as the binder. A combination of a large set of in situ and operando techniques were employed to investigate the structural evolution of Si₀.₅Ge₀.₅ during lithiation and delithiation processes: powder X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), Raman spectroscopy, and 7Li solid state nuclear magnetic resonance spectroscopy (NMR). The results have presented a whole view of the structural modifications induced by the lithiation/delithiation processes. The Si₀.₅Ge₀.₅ amorphization was observed at the beginning of discharge. Further lithiation induces the formation of a-Liₓ(Si/Ge) intermediates and the crystallization of Li₁₅(Si₀.₅Ge₀.₅)₄ at the end of the discharge. At really low voltages a reversible process of overlithiation and formation of Li₁₅₊δ(Si₀.₅Ge₀.₅)₄ was identified and related with a structural evolution of Li₁₅(Si₀.₅Ge₀.₅)₄. Upon charge, the c-Li₁₅(Si₀.₅Ge₀.₅)₄ was transformed into a-Liₓ(Si/Ge) intermediates. At the end of the process an amorphous phase assigned to a-SiₓGey was recovered. Thereby, it was demonstrated that Si and Ge are collectively active along the cycling process, upon discharge with the formation of a ternary Li₁₅(Si₀.₅Ge₀.₅)₄ phase (with a step of overlithiation) and upon charge with the rebuilding of the a-Si-Ge phase. This process is undoubtedly behind the enhanced performance of Si₀.₅Ge₀.₅ compared to a physical mixture of Si and Ge.

Keywords: lithium ion battery, silicon germanium anode, in situ characterization, X-Ray diffraction

Procedia PDF Downloads 286
2441 Microbioreactor System for Cell Behavior Analysis Focused on Nerve Tissue Engineering

Authors: Yusser Olguín, Diego Benavente, Fernando Dorta, Nicole Orellana, Cristian Acevedo

Abstract:

One of the greatest challenges of tissue engineering is the generation of materials in which the highest possible number of conditions can be incorporated to stimulate the proliferation and differentiation of cells, which will be transformed together with the material into new functional tissue. In this sense, considering the properties of microfluidics and its relationship with cellular micro-environments, the possibility of controlling flow patterns and the ability to design diverse patterns in the chips, a microfluidic cell culture system can be established as a means for the evaluation of the effect of different parameters in a controlled and precise manner. Specifically in relation to the study and development of alternatives in peripheral nervous tissue engineering, it is necessary to consider different physical and chemical neurotrophic stimuli that promote cell growth and differentiation. Chemical stimuli include certain vitamins, glucocorticoids, gangliosides, and growth factors, while physical stimuli include topological stimuli, mechanical forces of the cellular environment and electrical stimulation. In this context, the present investigation shows the results of cell stimulation in a microbioreactor using electrical and chemical stimuli, where the differentiation of PC12 cells as a neuronal model is evidenced by neurite expression, dependent on the stimuli and their combination. The results were analysed with a multi-factor statistical approach, showing several relationships and dependencies between different parameters. Chip design, operating parameters and concentrations of neurotrophic chemical factors were found to be preponderant, based on the characteristics of the electrical stimuli.

Keywords: microfluidics, nerve tissue engineering, microbioreactor, electrical stimuli

Procedia PDF Downloads 85
2440 Influence of Mandrel’s Surface on the Properties of Joints Produced by Magnetic Pulse Welding

Authors: Ines Oliveira, Ana Reis

Abstract:

Magnetic Pulse Welding (MPW) is a cold solid-state welding process, accomplished by the electromagnetically driven, high-speed and low-angle impact between two metallic surfaces. It has the same working principle of Explosive Welding (EXW), i.e. is based on the collision of two parts at high impact speed, in this case, propelled by electromagnetic force. Under proper conditions, i.e., flyer velocity and collision point angle, a permanent metallurgical bond can be achieved between widely dissimilar metals. MPW has been considered a promising alternative to the conventional welding processes and advantageous when compared to other impact processes. Nevertheless, MPW current applications are mostly academic. Despite the existing knowledge, the lack of consensus regarding several aspects of the process calls for further investigation. As a result, the mechanical resistance, morphology and structure of the weld interface in MPW of Al/Cu dissimilar pair were investigated. The effect of process parameters, namely gap, standoff distance and energy, were studied. It was shown that welding only takes place if the process parameters are within an optimal range. Additionally, the formation of intermetallic phases cannot be completely avoided in the weld of Al/Cu dissimilar pair by MPW. Depending on the process parameters, the intermetallic compounds can appear as continuous layer or small pockets. The thickness and the composition of the intermetallic layer depend on the processing parameters. Different intermetallic phases can be identified, meaning that different temperature-time regimes can occur during the process. It is also found that lower pulse energies are preferred. The relationship between energy increase and melting is possibly related to multiple sources of heating. Higher values of pulse energy are associated with higher induced currents in the part, meaning that more Joule heating will be generated. In addition, more energy means higher flyer velocity, the air existing in the gap between the parts to be welded is expelled, and this aerodynamic drag (fluid friction) is proportional to the square of the velocity, further contributing to the generation of heat. As the kinetic energy also increases with the square of velocity, the dissipation of this energy through plastic work and jet generation will also contribute to an increase in temperature. To reduce intermetallic phases, porosity, and melt pockets, pulse energy should be minimized. The bond formation is affected not only by the gap, standoff distance, and energy but also by the mandrel’s surface conditions. No correlation was clearly identified between surface roughness/scratch orientation and joint strength. Nevertheless, the aspect of the interface (thickness of the intermetallic layer, porosity, presence of macro/microcracks) is clearly affected by the surface topology. Welding was not established on oil contaminated surfaces, meaning that the jet action is not enough to completely clean the surface.

Keywords: bonding mechanisms, impact welding, intermetallic compounds, magnetic pulse welding, wave formation

Procedia PDF Downloads 211
2439 The Reality of Engineering Education in the Kingdom of Saudi Arabia and Its Suitainability to The Requirements of The Labor Market

Authors: Hamad Albadr

Abstract:

With the development that has occurred in the orientation of universities from liability cognitive and maintain the culture of the community to responsibility job formation graduates to work according to the needs of the community development; representing universities in today's world, the prime motivator for the wheel of development in the community and find appropriate solutions to the problems they are facing and adapt to the demands of the changing environment. In this paper review of the reality of engineering education in the Kingdom of Saudi Arabia and its suitability to the requirements of the labor market, where they will be looking at the university as a system administrator educational using System Analysis Approach as one of the methods of modern management to analyze the performance of organizations and institutions, administrative and quality assessment. According to this approach is to deal with the system as a set of subsystems as components of the main divided into : input, process, and outputs, and the surrounding environment, will also be used research descriptive method and analytical , to gather information, data and analysis answers of the study population that consisting of a random sample of the beneficiaries of these services that the universities provided that about 500 professionals about employment in the business sector.

Keywords: universities in Saudi Arabia, engineering education, labor market, administrative, quality assessment

Procedia PDF Downloads 341
2438 42CrMo4 Steel Flow Behavior Characterization for High Temperature Closed Dies Hot Forging in Automotive Components Applications

Authors: O. Bilbao, I. Loizaga, F. A. Girot, A. Torregaray

Abstract:

The current energetical situation and the high competitiveness in industrial sectors as the automotive one have become the development of new manufacturing processes with less energy and raw material consumption a real necessity. As consequence, new forming processes related with high temperature hot forging in closed dies have emerged in the last years as new solutions to expand the possibilities of hot forging and iron casting in the automotive industry. These technologies are mid-way between hot forging and semi-solid metal processes, working at temperatures higher than the hot forging but below the solidus temperature or the semi solid range, where no liquid phase is expected. This represents an advantage comparing with semi-solid forming processes as thixoforging, by the reason that no so high temperatures need to be reached in the case of high melting point alloys as steels, reducing the manufacturing costs and the difficulties associated to semi-solid processing of them. Comparing with hot forging, this kind of technologies allow the production of parts with as forged properties and more complex and near-net shapes (thinner sidewalls), enhancing the possibility of designing lightweight components. From the process viewpoint, the forging forces are significantly decreased, and a significant reduction of the raw material, energy consumption, and the forging steps have been demonstrated. Despite the mentioned advantages, from the material behavior point of view, the expansion of these technologies has shown the necessity of developing new material flow behavior models in the process working temperature range to make the simulation or the prediction of these new forming processes feasible. Moreover, the knowledge of the material flow behavior at the working temperature range also allows the design of the new closed dies concept required. In this work, the flow behavior characterization in the mentioned temperature range of the widely used in automotive commercial components 42CrMo4 steel has been studied. For that, hot compression tests have been carried out in a thermomechanical tester in a temperature range that covers the material behavior from the hot forging until the NDT (Nil Ductility Temperature) temperature (1250 ºC, 1275 ºC, 1300 ºC, 1325 ºC, 1350ºC, and 1375 ºC). As for the strain rates, three different orders of magnitudes have been considered (0,1 s-1, 1s-1, and 10s-1). Then, results obtained from the hot compression tests have been treated in order to adapt or re-write the Spittel model, widely used in automotive commercial softwares as FORGE® that restrict the current existing models up to 1250ºC. Finally, the obtained new flow behavior model has been validated by the process simulation in a commercial automotive component and the comparison of the results of the simulation with the already made experimental tests in a laboratory cellule of the new technology. So as a conclusion of the study, a new flow behavior model for the 42CrMo4 steel in the new working temperature range and the new process simulation in its application in automotive commercial components has been achieved and will be shown.

Keywords: 42CrMo4 high temperature flow behavior, high temperature hot forging in closed dies, simulation of automotive commercial components, spittel flow behavior model

Procedia PDF Downloads 129
2437 Platform Virtual for Joint Amplitude Measurement Based in MEMS

Authors: Mauro Callejas-Cuervo, Andrea C. Alarcon-Aldana, Andres F. Ruiz-Olaya, Juan C. Alvarez

Abstract:

Motion capture (MC) is the construction of a precise and accurate digital representation of a real motion. Systems have been used in the last years in a wide range of applications, from films special effects and animation, interactive entertainment, medicine, to high competitive sport where a maximum performance and low injury risk during training and competition is seeking. This paper presents an inertial and magnetic sensor based technological platform, intended for particular amplitude monitoring and telerehabilitation processes considering an efficient cost/technical considerations compromise. Our platform particularities offer high social impact possibilities by making telerehabilitation accessible to large population sectors in marginal socio-economic sector, especially in underdeveloped countries that in opposition to developed countries specialist are scarce, and high technology is not available or inexistent. This platform integrates high-resolution low-cost inertial and magnetic sensors with adequate user interfaces and communication protocols to perform a web or other communication networks available diagnosis service. The amplitude information is generated by sensors then transferred to a computing device with adequate interfaces to make it accessible to inexperienced personnel, providing a high social value. Amplitude measurements of the platform virtual system presented a good fit to its respective reference system. Analyzing the robotic arm results (estimation error RMSE 1=2.12° and estimation error RMSE 2=2.28°), it can be observed that during arm motion in any sense, the estimation error is negligible; in fact, error appears only during sense inversion what can easily be explained by the nature of inertial sensors and its relation to acceleration. Inertial sensors present a time constant delay which acts as a first order filter attenuating signals at large acceleration values as is the case for a change of sense in motion. It can be seen a damped response of platform virtual in other images where error analysis show that at maximum amplitude an underestimation of amplitude is present whereas at minimum amplitude estimations an overestimation of amplitude is observed. This work presents and describes the platform virtual as a motion capture system suitable for telerehabilitation with the cost - quality and precision - accessibility relations optimized. These particular characteristics achieved by efficiently using the state of the art of accessible generic technology in sensors and hardware, and adequate software for capture, transmission analysis and visualization, provides the capacity to offer good telerehabilitation services, reaching large more or less marginal populations where technologies and specialists are not available but accessible with basic communication networks.

Keywords: inertial sensors, joint amplitude measurement, MEMS, telerehabilitation

Procedia PDF Downloads 259
2436 Employing Remotely Sensed Soil and Vegetation Indices and Predicting ‎by Long ‎Short-Term Memory to Irrigation Scheduling Analysis

Authors: Elham Koohikerade, Silvio Jose Gumiere

Abstract:

In this research, irrigation is highlighted as crucial for improving both the yield and quality of ‎potatoes due to their high sensitivity to soil moisture changes. The study presents a hybrid Long ‎Short-Term Memory (LSTM) model aimed at optimizing irrigation scheduling in potato fields in ‎Quebec City, Canada. This model integrates model-based and satellite-derived datasets to simulate ‎soil moisture content, addressing the limitations of field data. Developed under the guidance of the ‎Food and Agriculture Organization (FAO), the simulation approach compensates for the lack of direct ‎soil sensor data, enhancing the LSTM model's predictions. The model was calibrated using indices ‎like Surface Soil Moisture (SSM), Normalized Vegetation Difference Index (NDVI), Enhanced ‎Vegetation Index (EVI), and Normalized Multi-band Drought Index (NMDI) to effectively forecast ‎soil moisture reductions. Understanding soil moisture and plant development is crucial for assessing ‎drought conditions and determining irrigation needs. This study validated the spectral characteristics ‎of vegetation and soil using ECMWF Reanalysis v5 (ERA5) and Moderate Resolution Imaging ‎Spectrometer (MODIS) data from 2019 to 2023, collected from agricultural areas in Dolbeau and ‎Peribonka, Quebec. Parameters such as surface volumetric soil moisture (0-7 cm), NDVI, EVI, and ‎NMDI were extracted from these images. A regional four-year dataset of soil and vegetation moisture ‎was developed using a machine learning approach combining model-based and satellite-based ‎datasets. The LSTM model predicts soil moisture dynamics hourly across different locations and ‎times, with its accuracy verified through cross-validation and comparison with existing soil moisture ‎datasets. The model effectively captures temporal dynamics, making it valuable for applications ‎requiring soil moisture monitoring over time, such as anomaly detection and memory analysis. By ‎identifying typical peak soil moisture values and observing distribution shapes, irrigation can be ‎scheduled to maintain soil moisture within Volumetric Soil Moisture (VSM) values of 0.25 to 0.30 ‎m²/m², avoiding under and over-watering. The strong correlations between parcels suggest that a ‎uniform irrigation strategy might be effective across multiple parcels, with adjustments based on ‎specific parcel characteristics and historical data trends. The application of the LSTM model to ‎predict soil moisture and vegetation indices yielded mixed results. While the model effectively ‎captures the central tendency and temporal dynamics of soil moisture, it struggles with accurately ‎predicting EVI, NDVI, and NMDI.‎

Keywords: irrigation scheduling, LSTM neural network, remotely sensed indices, soil and vegetation ‎monitoring

Procedia PDF Downloads 41
2435 Remote Radiation Mapping Based on UAV Formation

Authors: Martin Arguelles Perez, Woosoon Yim, Alexander Barzilov

Abstract:

High-fidelity radiation monitoring is an essential component in the enhancement of the situational awareness capabilities of the Department of Energy’s Office of Environmental Management (DOE-EM) personnel. In this paper, multiple units of unmanned aerial vehicles (UAVs) each equipped with a cadmium zinc telluride (CZT) gamma-ray sensor are used for radiation source localization, which can provide vital real-time data for the EM tasks. To achieve this goal, a fully autonomous system of multicopter-based UAV swarm in 3D tetrahedron formation is used for surveying the area of interest and performing radiation source localization. The CZT sensor used in this study is suitable for small-size multicopter UAVs due to its small size and ease of interfacing with the UAV’s onboard electronics for high-resolution gamma spectroscopy enabling the characterization of radiation hazards. The multicopter platform with a fully autonomous flight feature is suitable for low-altitude applications such as radiation contamination sites. The conventional approach uses a single UAV mapping in a predefined waypoint path to predict the relative location and strength of the source, which can be time-consuming for radiation localization tasks. The proposed UAV swarm-based approach can significantly improve its ability to search for and track radiation sources. In this paper, two approaches are developed using (a) 2D planar circular (3 UAVs) and (b) 3D tetrahedron formation (4 UAVs). In both approaches, accurate estimation of the gradient vector is crucial for heading angle calculation. Each UAV carries the CZT sensor; the real-time radiation data are used for the calculation of a bulk heading vector for the swarm to achieve a UAV swarm’s source-seeking behavior. Also, a spinning formation is studied for both cases to improve gradient estimation near a radiation source. In the 3D tetrahedron formation, a UAV located closest to the source is designated as a lead unit to maintain the tetrahedron formation in space. Such a formation demonstrated a collective and coordinated movement for estimating a gradient vector for the radiation source and determining an optimal heading direction of the swarm. The proposed radiation localization technique is studied by computer simulation and validated experimentally in the indoor flight testbed using gamma sources. The technology presented in this paper provides the capability to readily add/replace radiation sensors to the UAV platforms in the field conditions enabling extensive condition measurement and greatly improving situational awareness and event management. Furthermore, the proposed radiation localization approach allows long-term measurements to be efficiently performed at wide areas of interest to prevent disasters and reduce dose risks to people and infrastructure.

Keywords: radiation, unmanned aerial system(UAV), source localization, UAV swarm, tetrahedron formation

Procedia PDF Downloads 99
2434 Geometric Optimisation of Piezoelectric Fan Arrays for Low Energy Cooling

Authors: Alastair Hales, Xi Jiang

Abstract:

Numerical methods are used to evaluate the operation of confined face-to-face piezoelectric fan arrays as pitch, P, between the blades is varied. Both in-phase and counter-phase oscillation are considered. A piezoelectric fan consists of a fan blade, which is clamped at one end, and an extremely low powered actuator. This drives the blade tip’s oscillation at its first natural frequency. Sufficient blade tip speed, created by the high oscillation frequency and amplitude, is required to induce vortices and downstream volume flow in the surrounding air. A single piezoelectric fan may provide the ideal solution for low powered hot spot cooling in an electronic device, but is unable to induce sufficient downstream airflow to replace a conventional air mover, such as a convection fan, in power electronics. Piezoelectric fan arrays, which are assemblies including multiple fan blades usually in face-to-face orientation, must be developed to widen the field of feasible applications for the technology. The potential energy saving is significant, with a 50% power demand reduction compared to convection fans even in an unoptimised state. A numerical model of a typical piezoelectric fan blade is derived and validated against experimental data. Numerical error is found to be 5.4% and 9.8% using two data comparison methods. The model is used to explore the variation of pitch as a function of amplitude, A, for a confined two-blade piezoelectric fan array in face-to-face orientation, with the blades oscillating both in-phase and counter-phase. It has been reported that in-phase oscillation is optimal for generating maximum downstream velocity and flow rate in unconfined conditions, due at least in part to the beneficial coupling between the adjacent blades that leads to an increased oscillation amplitude. The present model demonstrates that confinement has a significant detrimental effect on in-phase oscillation. Even at low pitch, counter-phase oscillation produces enhanced downstream air velocities and flow rates. Downstream air velocity from counter-phase oscillation can be maximally enhanced, relative to that generated from a single blade, by 17.7% at P = 8A. Flow rate enhancement at the same pitch is found to be 18.6%. By comparison, in-phase oscillation at the same pitch outputs 23.9% and 24.8% reductions in peak downstream air velocity and flow rate, relative to that generated from a single blade. This optimal pitch, equivalent to those reported in the literature, suggests that counter-phase oscillation is less affected by confinement. The optimal pitch for generating bulk airflow from counter-phase oscillation is large, P > 16A, due to the small but significant downstream velocity across the span between adjacent blades. However, by considering design in a confined space, counterphase pitch should be minimised to maximise the bulk airflow generated from a certain cross-sectional area within a channel flow application. Quantitative values are found to deviate to a small degree as other geometric and operational parameters are varied, but the established relationships are maintained.

Keywords: piezoelectric fans, low energy cooling, power electronics, computational fluid dynamics

Procedia PDF Downloads 221
2433 Application of Computer Aided Engineering Tools in Performance Prediction and Fault Detection of Mechanical Equipment of Mining Process Line

Authors: K. Jahani, J. Razavi

Abstract:

Nowadays, to decrease the number of downtimes in the industries such as metal mining, petroleum and chemical industries, predictive maintenance is crucial. In order to have efficient predictive maintenance, knowing the performance of critical equipment of production line such as pumps and hydro-cyclones under variable operating parameters, selecting best indicators of this equipment health situations, best locations for instrumentation, and also measuring of these indicators are very important. In this paper, computer aided engineering (CAE) tools are implemented to study some important elements of copper process line, namely slurry pumps and cyclone to predict the performance of these components under different working conditions. These modeling and simulations can be used in predicting, for example, the damage tolerance of the main shaft of the slurry pump or wear rate and location of cyclone wall or pump case and impeller. Also, the simulations can suggest best-measuring parameters, measuring intervals, and their locations.

Keywords: computer aided engineering, predictive maintenance, fault detection, mining process line, slurry pump, hydrocyclone

Procedia PDF Downloads 403