Search results for: surface plasmons
282 Experimental and Simulation Results for the Removal of H2S from Biogas by Means of Sodium Hydroxide in Structured Packed Columns
Authors: Hamadi Cherif, Christophe Coquelet, Paolo Stringari, Denis Clodic, Laura Pellegrini, Stefania Moioli, Stefano Langè
Abstract:
Biogas is a promising technology which can be used as a vehicle fuel, for heat and electricity production, or injected in the national gas grid. It is storable, transportable, not intermittent and substitutable for fossil fuels. This gas produced from the wastewater treatment by degradation of organic matter under anaerobic conditions is mainly composed of methane and carbon dioxide. To be used as a renewable fuel, biogas, whose energy comes only from methane, must be purified from carbon dioxide and other impurities such as water vapor, siloxanes and hydrogen sulfide. Purification of biogas for this application particularly requires the removal of hydrogen sulfide, which negatively affects the operation and viability of equipment especially pumps, heat exchangers and pipes, causing their corrosion. Several methods are available to eliminate hydrogen sulfide from biogas. Herein, reactive absorption in structured packed column by means of chemical absorption in aqueous sodium hydroxide solutions is considered. This study is based on simulations using Aspen Plus™ V8.0, and comparisons are done with data from an industrial pilot plant treating 85 Nm3/h of biogas which contains about 30 ppm of hydrogen sulfide. The rate-based model approach has been used for simulations in order to determine the efficiencies of separation for different operating conditions. To describe vapor-liquid equilibrium, a γ/ϕ approach has been considered: the Electrolyte NRTL model has been adopted to represent non-idealities in the liquid phase, while the Redlich-Kwong equation of state has been used for the vapor phase. In order to validate the thermodynamic model, Henry’s law constants of each compound in water have been verified against experimental data. Default values available in Aspen Plus™ V8.0 for the properties of pure components properties as heat capacity, density, viscosity and surface tension have also been verified. The obtained results for physical and chemical properties are in a good agreement with experimental data. Reactions involved in the process have been studied rigorously. Equilibrium constants for equilibrium reactions and the reaction rate constant for the kinetically controlled reaction between carbon dioxide and the hydroxide ion have been checked. Results of simulations of the pilot plant purification section show the influence of low temperatures, concentration of sodium hydroxide and hydrodynamic parameters on the selective absorption of hydrogen sulfide. These results show an acceptable degree of accuracy when compared with the experimental data obtained from the pilot plant. Results show also the great efficiency of sodium hydroxide for the removal of hydrogen sulfide. The content of this compound in the gas leaving the column is under 1 ppm.Keywords: biogas, hydrogen sulfide, reactive absorption, sodium hydroxide, structured packed column
Procedia PDF Downloads 354281 Unfolding Architectural Assemblages: Mapping Contemporary Spatial Objects' Affective Capacity
Authors: Panagiotis Roupas, Yota Passia
Abstract:
This paper aims at establishing an index of design mechanisms - immanent in spatial objects - based on the affective capacity of their material formations. While spatial objects (design objects, buildings, urban configurations, etc.) are regarded as systems composed of interacting parts, within the premises of assemblage theory, their ability to affect and to be affected has not yet been mapped or sufficiently explored. This ability lies in excess, a latent potentiality they contain, not transcendental but immanent in their pre-subjective aesthetic power. As spatial structures are theorized as assemblages - composed of heterogeneous elements that enter into relations with one another - and since all assemblages are parts of larger assemblages, their components' ability to engage is contingent. We thus seek to unfold the mechanisms inherent in spatial objects that allow to the constituent parts of design assemblages to perpetually enter into new assemblages. To map architectural assemblage's affective ability, spatial objects are analyzed in two axes. The first axis focuses on the relations that the assemblage's material and expressive components develop in order to enter the assemblages. Material components refer to those material elements that an assemblage requires in order to exist, while expressive components includes non-linguistic (sense impressions) as well as linguistic (beliefs). The second axis records the processes known as a-signifying signs or a-signs, which are the triggering mechanisms able to territorialize or deterritorialize, stabilize or destabilize the assemblage and thus allow it to assemble anew. As a-signs cannot be isolated from matter, we point to their resulting effects, which without entering the linguistic level they are expressed in terms of intensity fields: modulations, movements, speeds, rhythms, spasms, etc. They belong to a molecular level where they operate in the pre-subjective world of perceptions, effects, drives, and emotions. A-signs have been introduced as intensities that transform the object beyond meaning, beyond fixed or known cognitive procedures. To that end, from an archive of more than 100 spatial objects by contemporary architects and designers, we have created an effective mechanisms index is created, where each a-sign is now connected with the list of effects it triggers and which thoroughly defines it. And vice versa, the same effect can be triggered by different a-signs, allowing the design object to lie in a perpetual state of becoming. To define spatial objects, A-signs are categorized in terms of their aesthetic power to affect and to be affected on the basis of the general categories of form, structure and surface. Thus, different part's degree of contingency are evaluated and measured and finally, we introduce as material information that is immanent in the spatial object while at the same time they confer no meaning; they only convey some information without semantic content. Through this index, we are able to analyze and direct the final form of the spatial object while at the same time establishing the mechanism to measure its continuous transformation.Keywords: affective mechanisms index, architectural assemblages, a-signifying signs, cartography, virtual
Procedia PDF Downloads 127280 Liquid Waste Management in Cluster Development
Authors: Abheyjit Singh, Kulwant Singh
Abstract:
There is a gradual depletion of the water table in the earth's crust, and it is required to converse and reduce the scarcity of water. This is only done by rainwater harvesting, recycling of water and by judicially consumption/utilization of water and adopting unique treatment measures. Domestic waste is generated in residential areas, commercial settings, and institutions. Waste, in general, is unwanted, undesirable, and nevertheless an inevitable and inherent product of social, economic, and cultural life. In a cluster, a need-based system is formed where the project is designed for systematic analysis, collection of sewage from the cluster, treating it and then recycling it for multifarious work. The liquid waste may consist of Sanitary sewage/ Domestic waste, Industrial waste, Storm waste, or Mixed Waste. The sewage contains both suspended and dissolved particles, and the total amount of organic material is related to the strength of the sewage. The untreated domestic sanitary sewage has a BOD (Biochemical Oxygen Demand) of 200 mg/l. TSS (Total Suspended Solids) about 240 mg/l. Industrial Waste may have BOD and TSS values much higher than those of sanitary sewage. Another type of impurities of wastewater is plant nutrients, especially when there are compounds of nitrogen N phosphorus P in the sewage; raw sanitary contains approx. 35 mg/l Nitrogen and 10 mg/l of Phosphorus. Finally, the pathogen in the waste is expected to be proportional to the concentration of facial coliform bacteria. The coliform concentration in raw sanitary sewage is roughly 1 billion per liter. The system of sewage disposal technique has been universally applied to all conditions, which are the nature of soil formation, Availability of land, Quantity of Sewage to be disposed of, The degree of treatment and the relative cost of disposal technique. The adopted Thappar Model (India) has the following designed parameters consisting of a Screen Chamber, a Digestion Tank, a Skimming Tank, a Stabilization Tank, an Oxidation Pond and a Water Storage Pond. The screening Chamber is used to remove plastic and other solids, The Digestion Tank is designed as an anaerobic tank having a retention period of 8 hours, The Skimming Tank has an outlet that is kept 1 meter below the surface anaerobic condition at the bottom and also help in organic solid remover, Stabilization Tank is designed as primary settling tank, Oxidation Pond is a facultative pond having a depth of 1.5 meter, Storage Pond is designed as per the requirement. The cost of the Thappar model is Rs. 185 Lakh per 3,000 to 4,000 population, and the Area required is 1.5 Acre. The complete structure will linning as per the requirement. The annual maintenance will be Rs. 5 lakh per year. The project is useful for water conservation, silage water for irrigation, decrease of BOD and there will be no longer damage to community assets and economic loss to the farmer community by inundation. There will be a healthy and clean environment in the community.Keywords: collection, treatment, utilization, economic
Procedia PDF Downloads 76279 Cement Matrix Obtained with Recycled Aggregates and Micro/Nanosilica Admixtures
Authors: C. Mazilu, D. P. Georgescu, A. Apostu, R. Deju
Abstract:
Cement mortars and concretes are some of the most used construction materials in the world, global cement production being expected to grow to approx. 5 billion tons, until 2030. But, cement is an energy intensive material, the cement industry being responsible for cca. 7% of the world's CO2 emissions. Also, natural aggregates represent non-renewable resources, exhaustible, which must be used efficiently. A way to reduce the negative impact on the environment is the use of additional hydraulically active materials, as a partial substitute for cement in mortars and concretes and/or the use of recycled concrete aggregates (RCA) for the recovery of construction waste, according to EU Directive 2018/851. One of the most effective active hydraulic admixtures is microsilica and more recently, with the technological development on a nanometric scale, nanosilica. Studies carried out in recent years have shown that the introduction of SiO2 nanoparticles into cement matrix improves the properties, even compared to microsilica. This is due to the very small size of the nanosilica particles (<100nm) and the very large specific surface, which helps to accelerate cement hydration and acts as a nucleating agent to generate even more calcium hydrosilicate which densifies and compacts the structure. The cementitious compositions containing recycled concrete aggregates (RCA) present, in generally, inferior properties compared to those obtained with natural aggregates. Depending on the degree of replacement of natural aggregate, decreases the workability of mortars and concretes with RAC, decrease mechanical resistances and increase drying shrinkage; all being determined, in particular, by the presence to the old mortar attached to the original aggregate from the RAC, which makes its porosity high and the mixture of components to require more water for preparation. The present study aims to use micro and nanosilica for increase the performance of some mortars and concretes obtained with RCA. The research focused on two types of cementitious systems: a special mortar composition used for encapsulating Low Level radioactive Waste (LLW); a composition of structural concrete, class C30/37, with the combination of exposure classes XC4+XF1 and settlement class S4. The mortar was made with 100% recycled aggregate, 0-5 mm sort and in the case of concrete, 30% recycled aggregate was used for 4-8 and 8-16 sorts, according to EN 206, Annex E. The recycled aggregate was obtained from a specially made concrete for this study, which after 28 days was crushed with the help of a Retsch jaw crusher and further separated by sieving on granulometric sorters. The partial replacement of cement was done progressively, in the case of the mortar composition, with microsilica (3, 6, 9, 12, 15% wt.), nanosilica (0.75, 1.5, 2.25% wt.), respectively mixtures of micro and nanosilica. The optimal combination of silica, from the point of view of mechanical resistance, was later used also in the case of the concrete composition. For the chosen cementitious compositions, the influence of micro and/or nanosilica on the properties in the fresh state (workability, rheological characteristics) and hardened state (mechanical resistance, water absorption, freeze-thaw resistance, etc.) is highlighted.Keywords: cement, recycled concrete aggregates, micro/nanosilica, durability
Procedia PDF Downloads 68278 Comparative Review of Models for Forecasting Permanent Deformation in Unbound Granular Materials
Authors: Shamsulhaq Amin
Abstract:
Unbound granular materials (UGMs) are pivotal in ensuring long-term quality, especially in the layers under the surface of flexible pavements and other constructions. This study seeks to better understand the behavior of the UGMs by looking at popular models for predicting lasting deformation under various levels of stresses and load cycles. These models focus on variables such as the number of load cycles, stress levels, and features specific to materials and were evaluated on the basis of their ability to accurately predict outcomes. The study showed that these factors play a crucial role in how well the models work. Therefore, the research highlights the need to look at a wide range of stress situations to more accurately predict how much the UGMs bend or shift. The research looked at important factors, like how permanent deformation relates to the number of times a load is applied, how quickly this phenomenon happens, and the shakedown effect, in two different types of UGMs: granite and limestone. A detailed study was done over 100,000 load cycles, which provided deep insights into how these materials behave. In this study, a number of factors, such as the level of stress applied, the number of load cycles, the density of the material, and the moisture present were seen as the main factors affecting permanent deformation. It is vital to fully understand these elements for better designing pavements that last long and handle wear and tear. A series of laboratory tests were performed to evaluate the mechanical properties of materials and acquire model parameters. The testing included gradation tests, CBR tests, and Repeated load triaxial tests. The repeated load triaxial tests were crucial for studying the significant components that affect deformation. This test involved applying various stress levels to estimate model parameters. In addition, certain model parameters were established by regression analysis, and optimization was conducted to improve outcomes. Afterward, the material parameters that were acquired were used to construct graphs for each model. The graphs were subsequently compared to the outcomes obtained from the repeated load triaxial testing. Additionally, the models were evaluated to determine if they demonstrated the two inherent deformation behaviors of materials when subjected to repetitive load: the initial phase, post-compaction, and the second phase volumetric changes. In this study, using log-log graphs was key to making the complex data easier to understand. This method made the analysis clearer and helped make the findings easier to interpret, adding both precision and depth to the research. This research provides important insight into picking the right models for predicting how these materials will act under expected stress and load conditions. Moreover, it offers crucial information regarding the effect of load cycle and permanent deformation as well as the shakedown effect on granite and limestone UGMs.Keywords: permanent deformation, unbound granular materials, load cycles, stress level
Procedia PDF Downloads 39277 Hiveopolis - Honey Harvester System
Authors: Erol Bayraktarov, Asya Ilgun, Thomas Schickl, Alexandre Campo, Nicolis Stamatios
Abstract:
Traditional means of harvesting honey are often stressful for honeybees. Each time honey is collected a portion of the colony can die. In consequence, the colonies’ resilience to environmental stressors will decrease and this ultimately contributes to the global problem of honeybee colony losses. As part of the project HIVEOPOLIS, we design and build a different kind of beehive, incorporating technology to reduce negative impacts of beekeeping procedures, including honey harvesting. A first step in maintaining more sustainable honey harvesting practices is to design honey storage frames that can automate the honey collection procedures. This way, beekeepers save time, money, and labor by not having to open the hive and remove frames, and the honeybees' nest stays undisturbed.This system shows promising features, e.g., high reliability which could be a key advantage compared to current honey harvesting technologies.Our original concept of fractional honey harvesting has been to encourage the removal of honey only from "safe" locations and at levels that would leave the bees enough high-nutritional-value honey. In this abstract, we describe the current state of our honey harvester, its technology and areas to improve. The honey harvester works by separating the honeycomb cells away from the comb foundation; the movement and the elastic nature of honey supports this functionality. The honey sticks to the foundation, because of the surface tension forces amplified by the geometry. In the future, by monitoring the weight and therefore the capped honey cells on our honey harvester frames, we will be able to remove honey as soon as the weight measuring system reports that the comb is ready for harvesting. Higher viscosity honey or crystalized honey cause challenges in temperate locations when a smooth flow of honey is required. We use resistive heaters to soften the propolis and wax to unglue the moving parts during extraction. These heaters can also melt the honey slightly to the needed flow state. Precise control of these heaters allows us to operate the device for several purposes. We use ‘Nitinol’ springs that are activated by heat as an actuation method. Unlike conventional stepper or servo motors, which we also evaluated throughout development, the springs and heaters take up less space and reduce the overall system complexity. Honeybee acceptance was unknown until we actually inserted a device inside a hive. We not only observed bees walking on the artificial comb but also building wax, filling gaps with propolis and storing honey. This also shows that bees don’t mind living in spaces and hives built from 3D printed materials. We do not have data yet to prove that the plastic materials do not affect the chemical composition of the honey. We succeeded in automatically extracting stored honey from the device, demonstrating a useful extraction flow and overall effective operation this way.Keywords: honey harvesting, honeybee, hiveopolis, nitinol
Procedia PDF Downloads 108276 Using Passive Cooling Strategies to Reduce Thermal Cooling Load for Coastal High-Rise Buildings of Jeddah, Saudi Arabia
Authors: Ahmad Zamzam
Abstract:
With the development of the economy in recent years, Saudi Arabia has been maintaining high economic growth. Therefore, its energy consumption has increased dramatically. This economic growth reflected on the expansion of high-rise tower's construction. Jeddah coastal strip (cornice) has many high-rise buildings planned to start next few years. These projects required a massive amount of electricity that was not planned to be supplied by the old infrastructure. This research studies the effect of the building envelope on its thermal performance. It follows a parametric simulation methodology using Ecotect software to analyze the effect of the building envelope design on its cooling energy load for an office high-rise building in Jeddah, Saudi Arabia, which includes building geometrical form, massing treatments, orientation and glazing type effect. The research describes an integrated passive design approach to reduce the cooling requirement for high-rise building through an improved building envelope design. The research used Ecotect to make four simulation studies; the first simulation compares the thermal performance of five high-rise buildings, presenting the basic shape of the plan. All the buildings have the same plan area and same floor height. The goal of this simulation is to find out the best shape for the thermal performance. The second simulation studies the effect of orientation on the thermal performance by rotating the same building model to find out the best and the worst angle for the building thermal performance. The third simulation studies the effect of the massing treatment on the total cooling load. It compared five models with different massing treatment, but with the same total built up area. The last simulation studied the effect of the glazing type by comparing the total cooling load of the same building using five different glass type and also studies the feasibility of using these glass types by studying the glass cost effect. The results indicate that using the circle shape as building plan could reduce the thermal cooling load by 40%. Also, using shading devices could reduce the cooling loads by 5%. The study states that using any of the massing grooving, recess or any treatment that could increase the outer exposed surface is not preferred and will decrease the building thermal performance. Also, the result shows that the best direction for glazing and openings from thermal performance viewpoint in Jeddah is the North direction while the worst direction is the East one. The best direction angle for openings - regarding the thermal performance in Jeddah- is 15 deg West and the worst is 250 deg West (110 deg East). Regarding the glass type effect, comparing to the double glass with air fill type as a reference case, the double glass with Air-Low-E will save 14% from the required amount of the thermal cooling load annually. Argon fill and triple glass will save 16% and 17% from the total thermal cooling load respectively, but for the glass cost purpose, using the Argon fill and triple glass is not feasible.Keywords: passive cooling, reduce thermal load, Jeddah, building shape, energy
Procedia PDF Downloads 128275 A Novel Nanocomposite Membrane Designed for the Treatment of Oil/Gas Produced Water
Authors: Zhaoyang Liu, Detao Qin, Darren Delai Sun
Abstract:
The onshore production of oil and gas (for example, shale gas) generates large quantities of wastewater, referred to be ‘produced water’, which contains high contents of oils and salts. The direct discharge of produced water, if not appropriately treated, can be toxic to the environment and human health. Membrane filtration has been deemed as an environmental-friendly and cost-effective technology for treating oily wastewater. However, conventional polymeric membranes have their drawbacks of either low salt rejection rate or high membrane fouling tendency when treating oily wastewater. Recent years, forward osmosis (FO) membrane filtration has emerged as a promising technology with its unique advantages of low operation pressure and less membrane fouling tendency. However, until now there is still no report about FO membranes specially designed and fabricated for treating the oily and salty produced water. In this study, a novel nanocomposite FO membrane was developed specially for treating oil- and salt-polluted produced water. By leveraging the recent advance of nanomaterials and nanotechnology, this nanocomposite FO membrane was designed to be made of double layers: an underwater oleophobic selective layer on top of a nanomaterial infused polymeric support layer. Wherein, graphene oxide (GO) nanosheets were selected to add into the polymeric support layer because adding GO nanosheets can optimize the pore structures of the support layer, thus potentially leading to high water flux for FO membranes. In addition, polyvinyl alcohol (PVA) hydrogel was selected as the selective layer because hydrated and chemically-crosslinked PVA hydrogel is capable of simultaneously rejecting oil and salt. After nanocomposite FO membranes were fabricated, the membrane structures were systematically characterized with the instruments of TEM, FESEM, XRD, ATR-FTIR, surface zeta-potential and Contact angles (CA). The membrane performances for treating produced waters were tested with the instruments of TOC, COD and Ion chromatography. The working mechanism of this new membrane was also analyzed. Very promising experimental results have been obtained. The incorporation of GO nanosheets can reduce internal concentration polarization (ICP) effect in the polymeric support layer. The structural parameter (S value) of the new FO membrane is reduced by 23% from 265 ± 31 μm to 205 ± 23 μm. The membrane tortuosity (τ value) is decreased by 20% from 2.55 ± 0.19 to 2.02 ± 0.13 μm, which contributes to the decrease of S value. Moreover, the highly-hydrophilic and chemically-cross-linked hydrogel selective layer present high antifouling property under saline oil/water emulsions. Compared with commercial FO membrane, this new FO membrane possesses three times higher water flux, higher removal efficiencies for oil (>99.9%) and salts (>99.7% for multivalent ions), and significantly lower membrane fouling tendency (<10%). To our knowledge, this is the first report of a nanocomposite FO membrane with the combined merits of high salt rejection, high oil repellency and high water flux for treating onshore oil/gas produced waters. Due to its outstanding performance and ease of fabrication, this novel nanocomposite FO membrane possesses great application potential in wastewater treatment industry.Keywords: nanocomposite, membrane, polymer, graphene oxide
Procedia PDF Downloads 249274 Improving Binding Selectivity in Molecularly Imprinted Polymers from Templates of Higher Biomolecular Weight: An Application in Cancer Targeting and Drug Delivery
Authors: Ben Otange, Wolfgang Parak, Florian Schulz, Michael Alexander Rubhausen
Abstract:
The feasibility of extending the usage of molecular imprinting technique in complex biomolecules is demonstrated in this research. This technique is promising in diverse applications in areas such as drug delivery, diagnosis of diseases, catalysts, and impurities detection as well as treatment of various complications. While molecularly imprinted polymers MIP remain robust in the synthesis of molecules with remarkable binding sites that have high affinities to specific molecules of interest, extending the usage to complex biomolecules remains futile. This work reports on the successful synthesis of MIP from complex proteins: BSA, Transferrin, and MUC1. We show in this research that despite the heterogeneous binding sites and higher conformational flexibility of the chosen proteins, relying on their respective epitopes and motifs rather than the whole template produces highly sensitive and selective MIPs for specific molecular binding. Introduction: Proteins are vital in most biological processes, ranging from cell structure and structural integrity to complex functions such as transport and immunity in biological systems. Unlike other imprinting templates, proteins have heterogeneous binding sites in their complex long-chain structure, which makes their imprinting to be marred by challenges. In addressing this challenge, our attention is inclined toward the targeted delivery, which will use molecular imprinting on the particle surface so that these particles may recognize overexpressed proteins on the target cells. Our goal is thus to make surfaces of nanoparticles that specifically bind to the target cells. Results and Discussions: Using epitopes of BSA and MUC1 proteins and motifs with conserved receptors of transferrin as the respective templates for MIPs, significant improvement in the MIP sensitivity to the binding of complex protein templates was noted. Through the Fluorescence Correlation Spectroscopy FCS measurements on the size of protein corona after incubation of the synthesized nanoparticles with proteins, we noted a high affinity of MIPs to the binding of their respective complex proteins. In addition, quantitative analysis of hard corona using SDS-PAGE showed that only a specific protein was strongly bound on the respective MIPs when incubated with similar concentrations of the protein mixture. Conclusion: Our findings have shown that the merits of MIPs can be extended to complex molecules of higher biomolecular mass. As such, the unique merits of the technique, including high sensitivity and selectivity, relative ease of synthesis, production of materials with higher physical robustness, and higher stability, can be extended to more templates that were previously not suitable candidates despite their abundance and usage within the body.Keywords: molecularly imprinted polymers, specific binding, drug delivery, high biomolecular mass-templates
Procedia PDF Downloads 55273 A Comparison of Two and Three Dimensional Motion Capture Methodologies in the Analysis of Underwater Fly Kicking Kinematics
Authors: Isobel M. Thompson, Dorian Audot, Dominic Hudson, Martin Warner, Joseph Banks
Abstract:
Underwater fly kick is an essential skill in swimming, which can have a considerable impact upon overall race performance in competition, especially in sprint events. Reduced wave drags acting upon the body under the surface means that the underwater fly kick will potentially be the fastest the swimmer is travelling throughout the race. It is therefore critical to understand fly kicking techniques and determining biomechanical factors involved in the performance. Most previous studies assessing fly kick kinematics have focused on two-dimensional analysis; therefore, the three-dimensional elements of the underwater fly kick techniques are not well understood. Those studies that have investigated fly kicking techniques using three-dimensional methodologies have not reported full three-dimensional kinematics for the techniques observed, choosing to focus on one or two joints. There has not been a direct comparison completed on the results obtained using two-dimensional and three-dimensional analysis, and how these different approaches might affect the interpretation of subsequent results. The aim of this research is to quantify the differences in kinematics observed in underwater fly kicks obtained from both two and three-dimensional analyses of the same test conditions. In order to achieve this, a six-camera underwater Qualisys system was used to develop an experimental methodology suitable for assessing the kinematics of swimmer’s starts and turns. The cameras, capturing at a frequency of 100Hz, were arranged along the side of the pool spaced equally up to 20m creating a capture volume of 7m x 2m x 1.5m. Within the measurement volume, error levels were estimated at 0.8%. Prior to pool trials, participants completed a landside calibration in order to define joint center locations, as certain markers became occluded once the swimmer assumed the underwater fly kick position in the pool. Thirty-four reflective markers were placed on key anatomical landmarks, 9 of which were then removed for the pool-based trials. The fly-kick swimming conditions included in the analysis are as follows: maximum effort prone, 100m pace prone, 200m pace prone, 400m pace prone, and maximum pace supine. All trials were completed from a push start to 15m to ensure consistent kick cycles were captured. Both two-dimensional and three-dimensional kinematics are calculated from joint locations, and the results are compared. Key variables reported include kick frequency and kick amplitude, as well as full angular kinematics of the lower body. Key differences in these variables obtained from two-dimensional and three-dimensional analysis are identified. Internal rotation (up to 15º) and external rotation (up to -28º) were observed using three-dimensional methods. Abduction (5º) and adduction (15º) were also reported. These motions are not observed in the two-dimensional analysis. Results also give an indication of different techniques adopted by swimmers at various paces and orientations. The results of this research provide evidence of the strengths of both two dimensional and three dimensional motion capture methods in underwater fly kick, highlighting limitations which could affect the interpretation of results from both methods.Keywords: swimming, underwater fly kick, performance, motion capture
Procedia PDF Downloads 134272 Assessment of Heavy Metals Contamination Levels in Groundwater: A Case Study of the Bafia Agricultural Area, Centre Region Cameroon
Authors: Carine Enow-Ayor Tarkang, Victorine Neh Akenji, Dmitri Rouwet, Jodephine Njdma, Andrew Ako Ako, Franco Tassi, Jules Remy Ngoupayou Ndam
Abstract:
Groundwater is the major water resource in the whole of Bafia used for drinking, domestic, poultry and agricultural purposes, and being an area of intense agriculture, there is a great necessity to do a quality assessment. Bafia is one of the main food suppliers in the Centre region of Cameroon, and so to meet their demands, the farmers make use of fertilizers and other agrochemicals to increase their yield. Less than 20% of the population in Bafia has access to piped-borne water due to the national shortage, according to the authors best knowledge very limited studies have been carried out in the area to increase awareness of the groundwater resources. The aim of this study was to assess heavy metal contamination levels in ground and surface waters and to evaluate the effects of agricultural inputs on water quality in the Bafia area. 57 water samples (including 31 wells, 20 boreholes, 4 rivers and 2 springs) were analyzed for their physicochemical parameters, while collected samples were filtered, acidified with HNO3 and analyzed by ICP-MS for their heavy metal content (Fe, Ti, Sr, Al, Mn). Results showed that most of the water samples are acidic to slightly neutral and moderately mineralized. Ti concentration was significantly high in the area (mean value 130µg/L), suggesting another Ti source besides the natural input from Titanium oxides. The high amounts of Mn and Al in some cases also pointed to additional input, probably from fertilizers that are used in the farmlands. Most of the water samples were found to be significantly contaminated with heavy metals exceeding the WHO allowable limits (Ti-94.7%, Al-19.3%, Mn-14%, Fe-5.2% and Sr-3.5% above limits), especially around farmlands and topographic low areas. The heavy metal concentration was evaluated using the heavy metal pollution index (HPI), heavy metal evaluation index (HEI) and degree of contamination (Cd), while the Ficklin diagram was used for the water based on changes in metal content and pH. The high mean values of HPI and Cd (741 and 5, respectively), which exceeded the critical limit, indicate that the water samples are highly contaminated, with intense pollution from Ti, Al and Mn. Based on the HPI and Cd, 93% and 35% of the samples, respectively, are unacceptable for drinking purposes. The lowest HPI value point also had the lowest EC (50 µS/cm), indicating lower mineralization and less anthropogenic influence. According to the Ficklin diagram, 89% of the samples fell within the near-neutral low-metal domain, while 9% fell in the near-neutral extreme-metal domain. Two significant factors were extracted from the PCA, explaining 70.6% of the total variance. The first factor revealed intense anthropogenic activity (especially from fertilizers), while the second factor revealed water-rock interactions. Agricultural activities thus have an impact on the heavy metal content of groundwater in the area; hence, much attention should be given to the affected areas in order to protect human health/life and thus sustainably manage this precious resource.Keywords: Bafia, contamination, degree of contamination, groundwater, heavy metal pollution index
Procedia PDF Downloads 87271 Hydrogen Production from Auto-Thermal Reforming of Ethanol Catalyzed by Tri-Metallic Catalyst
Authors: Patrizia Frontera, Anastasia Macario, Sebastiano Candamano, Fortunato Crea, Pierluigi Antonucci
Abstract:
The increasing of the world energy demand makes today biomass an attractive energy source, based on the minimizing of CO2 emission and on the global warming reduction purposes. Recently, COP-21, the international meeting on global climate change, defined the roadmap for sustainable worldwide development, based on low-carbon containing fuel. Hydrogen is an energy vector able to substitute the conventional fuels from petroleum. Ethanol for hydrogen production represents a valid alternative to the fossil sources due to its low toxicity, low production costs, high biodegradability, high H2 content and renewability. Ethanol conversion to generate hydrogen by a combination of partial oxidation and steam reforming reactions is generally called auto-thermal reforming (ATR). The ATR process is advantageous due to the low energy requirements and to the reduced carbonaceous deposits formation. Catalyst plays a pivotal role in the ATR process, especially towards the process selectivity and the carbonaceous deposits formation. Bimetallic or trimetallic catalysts, as well as catalysts with doped-promoters supports, may exhibit high activity, selectivity and deactivation resistance with respect to the corresponding monometallic ones. In this work, NiMoCo/GDC, NiMoCu/GDC and NiMoRe/GDC (where GDC is Gadolinia Doped Ceria support and the metal composition is 60:30:10 for all catalyst) have been prepared by impregnation method. The support, Gadolinia 0.2 Doped Ceria 0.8, was impregnated by metal precursors solubilized in aqueous ethanol solution (50%) at room temperature for 6 hours. After this, the catalysts were dried at 100°C for 8 hours and, subsequently, calcined at 600°C in order to have the metal oxides. Finally, active catalysts were obtained by reduction procedure (H2 atmosphere at 500°C for 6 hours). All sample were characterized by different analytical techniques (XRD, SEM-EDX, XPS, CHNS, H2-TPR and Raman Spectorscopy). Catalytic experiments (auto-thermal reforming of ethanol) were carried out in the temperature range 500-800°C under atmospheric pressure, using a continuous fixed-bed microreactor. Effluent gases from the reactor were analyzed by two Varian CP4900 chromarographs with a TCD detector. The analytical investigation focused on the preventing of the coke deposition, the metals sintering effect and the sulfur poisoning. Hydrogen productivity, ethanol conversion and products distribution were measured and analyzed. At 600°C, all tri-metallic catalysts show the best performance: H2 + CO reaching almost the 77 vol.% in the final gases. While NiMoCo/GDC catalyst shows the best selectivity to hydrogen whit respect to the other tri-metallic catalysts (41 vol.% at 600°C). On the other hand, NiMoCu/GDC and NiMoRe/GDC demonstrated high sulfur poisoning resistance (up to 200 cc/min) with respect to the NiMoCo/GDC catalyst. The correlation among catalytic results and surface properties of the catalysts will be discussed.Keywords: catalysts, ceria, ethanol, gadolinia, hydrogen, Nickel
Procedia PDF Downloads 155270 Development of Metal-Organic Frameworks-Type Hybrid Functionalized Materials for Selective Uranium Extraction
Authors: Damien Rinsant, Eugen Andreiadis, Michael Carboni, Daniel Meyer
Abstract:
Different types of materials have been developed for the solid/liquid uranium extraction processes, such as functionalized organic polymers, hybrid silica or inorganic adsorbents. In general, these materials exhibit a moderate affinity for uranyl ions and poor selectivity against impurities like iron, vanadium or molybdenum. Moreover, the structural organization deficiency of these materials generates ion diffusion issues inside the material. Therefore, the aim of our study is to developed efficient and organized materials, stable in the acid media encountered in uranium extraction processes. Metal organic frameworks (MOFs) are hybrid crystalline materials consisting of an inorganic part (cluster or metal ions) and tailored organic linkers connected via coordination bonds. These hierarchical materials have exceptional surface area, thermal stability and a large variety of tunable structures. However, due to the reversibility of constitutive coordination bonds, MOFs have moderate stability in strongly complexing or acidic media. Only few of them are known to be stable in aqueous media and only one example is described in strong acidic media. However, these conditions are very often encountered in the environmental pollution remediation of mine wastewaters. To tackle the challenge of developing MOFs adapted for uranium extraction from acid mine waters, we have investigated the stability of several materials. To ensure a good stability we have synthetized and characterized different materials based on highly coordinated metal clusters, such as LnOFs and Zirconium based materials. Among the latter, the UiO family shows a great stability in sulfuric acid media even in the presence of 1.4 M sodium sulfate at pH 2. However, the stability in phosphoric media is reduced due to the high affinity between zirconium and phosphate ligand. Based on these results, we have developed a tertiary amine functionalized MOF denoted UiO-68-NMe2 particularly adapted for the extraction of anionic uranyl (VI) sulfate complexes mainly present in the acid mine solutions. The adsorption capacity of the material has been determined upon varying total sulfate concentration, contact time and uranium concentration. The extraction tests put in evidence different phenomena due to the complexity of the extraction media and the interaction between the MOF and sulfate anion. Finally, the extraction mechanisms and the interaction between uranyl and the MOF structure have been investigated. The functionalized material UiO-68-NMe2 has been characterized in the presence and absence of uranium by FT-IR, UV and Raman techniques. Moreover, the stability of the protonated amino functionalized MOF has been evaluated. The synthesis, characterization and evaluation of this type of hybrid material, particularly adapted for uranium extraction in sulfuric acid media by an anionic exchange mechanism, paved the way for the development of metal organic frameworks functionalized by different other chelating motifs, such as bifunctional ligands showing an enhanced affinity and selectivity for uranium in acid and complexing media. Work in this direction is currently in progress.Keywords: extraction, MOF, ligand, uranium
Procedia PDF Downloads 160269 Empowering Indigenous Epistemologies in Geothermal Development
Authors: Te Kīpa Kēpa B. Morgan, Oliver W. Mcmillan, Dylan N. Taute, Tumanako N. Fa'aui
Abstract:
Epistemologies are ways of knowing. Indigenous Peoples are aware that they do not perceive and experience the world in the same way as others. So it is important when empowering Indigenous epistemologies, such as that of the New Zealand Māori, to also be able to represent a scientific understanding within the same analysis. A geothermal development assessment tool has been developed by adapting the Mauri Model Decision Making Framework. Mauri is a metric that is capable of representing the change in the life-supporting capacity of things and collections of things. The Mauri Model is a method of grouping mauri indicators as dimension averages in order to allow holistic assessment and also to conduct sensitivity analyses for the effect of worldview bias. R-shiny is the coding platform used for this Vision Mātauranga research which has created an expert decision support tool (DST) that combines a stakeholder assessment of worldview bias with an impact assessment of mauri-based indicators to determine the sustainability of proposed geothermal development. The initial intention was to develop guidelines for quantifying mātauranga Māori impacts related to geothermal resources. To do this, three typical scenarios were considered: a resource owner wishing to assess the potential for new geothermal development; another party wishing to assess the environmental and cultural impacts of the proposed development; an assessment that focuses on the holistic sustainability of the resource, including its surface features. Indicator sets and measurement thresholds were developed that are considered necessary considerations for each assessment context and these have been grouped to represent four mauri dimensions that mirror the four well-being criteria used for resource management in Aotearoa, New Zealand. Two case studies have been conducted to test the DST suitability for quantifying mātauranga Māori and other biophysical factors related to a geothermal system. This involved estimating mauri0meter values for physical features such as temperature, flow rate, frequency, colour, and developing indicators to also quantify qualitative observations about the geothermal system made by Māori. A retrospective analysis has then been conducted to verify different understandings of the geothermal system. The case studies found that the expert DST is useful for geothermal development assessment, especially where hapū (indigenous sub-tribal grouping) are conflicted regarding the benefits and disadvantages of their’ and others’ geothermal developments. These results have been supplemented with evaluations for the cumulative impacts of geothermal developments experienced by different parties using integration techniques applied to the time history curve of the expert DST worldview bias weighted plotted against the mauri0meter score. Cumulative impacts represent the change in resilience or potential of geothermal systems, which directly assists with the holistic interpretation of change from an Indigenous Peoples’ perspective.Keywords: decision support tool, holistic geothermal assessment, indigenous knowledge, mauri model decision-making framework
Procedia PDF Downloads 187268 Molecular Dynamics Simulation Study of Sulfonated Polybenzimidazole Polymers as Promising Forward Osmosis Membranes
Authors: Seyedeh Pardis Hosseini
Abstract:
With increased levels of clean and affordable water scarcity crises in many countries, wastewater treatment has been chosen as a viable method to produce freshwater for various consumptions. Even though reverse osmosis dominates the wastewater treatment market, forward osmosis (FO) processes have significant advantages, such as potentially using a renewable and low-grade energy source and improving water quality. FO is an osmotically driven membrane process that uses a high concentrated draw solution and a relatively low concentrated feed solution across a semi-permeable membrane. Among many novel FO membranes that have been introduced over the past decades, polybenzimidazole (PBI) membranes, a class of aromatic heterocyclic-based polymers, have shown high thermal and chemical stability because of their unique chemical structure. However, the studies reviewed indicate that the hydrophilicity of PBI membranes is comparatively low. Hence, there is an urgent need to develop novel FO membranes with modified PBI polymers to promote hydrophilicity. A few studies have been undertaken to improve the PBI hydrophilicity by fabricating mixed matrix polymeric membranes and surface modification. Thereby, in this study, two different sulfonated polybenzimidazole (SPBI) polymers with the same backbone but different functional groups, namely arylsulfonate PBI (PBI-AS) and propylsulfonate PBI (PBI-PS), are introduced as FO membranes and studied via the molecular dynamics (MD) simulation method. The FO simulation box consists of three distinct regions: a saltwater region, a membrane region, and a pure-water region. The pure-water region is situated at the upper part of the simulation box, while the saltwater region, which contains an aqueous salt solution of Na+ and Cl− ions along with water molecules, occupies the lower part of the simulation box. Specifically, the saltwater region includes 710 water molecules and 24 Na+ and 24 Cl− ions, resulting in a combined concentration of 10 weight percent (wt%). The pure-water region comprises 788 water molecules. Both the saltwater and pure-water regions have a density of 1.0 g/cm³. The membrane region, positioned between the saltwater and pure-water regions, is constructed from three types of polymers: PBI, PBI-AS, and PBI-PS, each consisting of three polymer chains with 30 monomers per chain. The structural and thermophysical properties of the polymers, water molecules, and Na+ and Cl− ions were analyzed using the COMPASS forcefield. All simulations were conducted using the BIOVIA Materials Studio 2020 software. By monitoring the variation in the number of water molecules over the simulation time within the saltwater region, the water permeability of the polymer membranes was calculated and subsequently compared. The results indicated that SPBI polymers exhibited higher water permeability compared to PBI polymers. This enhanced permeability can be attributed to the structural and compositional differences between SPBI and PBI polymers, which likely facilitate more efficient water transport through the membrane. Consequently, the adoption of SPBI polymers in the FO process is anticipated to result in significantly improved performance. This improvement could lead to higher water flux rates, better salt rejection, and overall more efficient use of resources in desalination and water purification applications.Keywords: forward osmosis, molecular dynamics simulation, sulfonated polybenzimidazole, water permeability
Procedia PDF Downloads 27267 Achieving Sustainable Agriculture with Treated Municipal Wastewater
Authors: Reshu Yadav, Himanshu Joshi, S. K. Tripathi
Abstract:
Fresh water is a scarce resource which is essential for humans and ecosystems, but its distribution is uneven. Agricultural production accounts for 70% of all surface water supplies. It is projected that against the expansion in the area equipped for irrigation by 0.6% per year, the global potential irrigation water demand would rise by 9.5% during 2021-25. This would, on one hand, have to compete against the sharply rising urban water demand. On the other, it would also have to face the fear of climate change, as temperatures rise and crop yields could drop from 10-30% in many large areas. The huge demand for irrigation combined with fresh water scarcity encourages to explore the reuse of wastewater as a resource. However, the use of such wastewater is often linked to the safety issues when used non judiciously or with poor safeguards while irrigating food crops. Paddy is one of the major crops globally and amongst the most important in South Asia and Africa. In many parts of the world, use of municipal wastewater has been promoted as a viable option in this regard. In developing and fast growing countries like India, regularly increasing wastewater generation rates may allow this option to be considered quite seriously. In view of this, a pilot field study was conducted at the Jagjeetpur Municipal Sewage treatment plant situated in the Haridwar town of Uttarakhand state, India. The objectives of the present study were to study the effect of treated wastewater on the production of various paddy varieties (Sharbati, PR-114, PB-1, Menaka, PB1121 and PB 1509) and emission of GHG gases (CO2, CH4 and N2O) as compared to the same varieties grown in the control plots irrigated with fresh water. Of late, the concept of water footprint assessment has emerged, which explains enumeration of various types of water footprints of an agricultural entity from its production to processing stages. Paddy, the most water demanding staple crop of Uttarakhand state, displayed a high green water footprint value of 2966.538 m3/ton. Most of the wastewater irrigated varieties displayed upto 6% increase in production, except Menaka and PB-1121, which showed a reduction in production (6% and 3% respectively), due to pest and insect infestation. The treated wastewater was observed to be rich in Nitrogen (55.94 mg/ml Nitrate), Phosphorus (54.24 mg/ml) and Potassium (9.78 mg/ml), thus rejuvenating the soil quality and not requiring any external nutritional supplements. Percentage increase of GHG gases on irrigation with treated municipal waste water as compared to control plots was observed as 0.4% - 8.6% (CH4), 1.1% - 9.2% (CO2), and 0.07% - 5.8% (N2O). The variety, Sharbati, displayed maximum production (5.5 ton/ha) and emerged as the most resistant variety against pests and insects. The emission values of CH4 ,CO2 and N2O were 729.31 mg/m2/d, 322.10 mg/m2/d and 400.21 mg/m2/d in water stagnant condition. This study highlighted a successful possibility of reuse of wastewater for non-potable purposes offering the potential for exploiting this resource that can replace or reduce existing use of fresh water sources in agricultural sector.Keywords: greenhouse gases, nutrients, water footprint, wastewater irrigation
Procedia PDF Downloads 321266 Development of Three-Dimensional Bio-Reactor Using Magnetic Field Stimulation to Enhance PC12 Cell Axonal Extension
Authors: Eiji Nakamachi, Ryota Sakiyama, Koji Yamamoto, Yusuke Morita, Hidetoshi Sakamoto
Abstract:
The regeneration of injured central nerve network caused by the cerebrovascular accidents is difficult, because of poor regeneration capability of central nerve system composed of the brain and the spinal cord. Recently, new regeneration methods such as transplant of nerve cells and supply of nerve nutritional factor were proposed and examined. However, there still remain many problems with the canceration of engrafted cells and so on and it is strongly required to establish an efficacious treating method of a central nerve system. Blackman proposed the electromagnetic stimulation method to enhance the axonal nerve extension. In this study, we try to design and fabricate a new three-dimensional (3D) bio-reactor, which can load a uniform AC magnetic field stimulation on PC12 cells in the extracellular environment for enhancement of an axonal nerve extension and 3D nerve network generation. Simultaneously, we measure the morphology of PC12 cell bodies, axons, and dendrites by the multiphoton excitation fluorescence microscope (MPM) and evaluate the effectiveness of the uniform AC magnetic stimulation to enhance the axonal nerve extension. Firstly, we designed and fabricated the uniform AC magnetic field stimulation bio-reactor. For the AC magnetic stimulation system, we used the laminated silicon steel sheets for a yoke structure of 3D chamber, which had a high magnetic permeability. Next, we adopted the pole piece structure and installed similar specification coils on both sides of the yoke. We searched an optimum pole piece structure using the magnetic field finite element (FE) analyses and the response surface methodology. We confirmed that the optimum 3D chamber structure showed a uniform magnetic flux density in the PC12 cell culture area by using FE analysis. Then, we fabricated the uniform AC magnetic field stimulation bio-reactor by adopting analytically determined specifications, such as the size of chamber and electromagnetic conditions. We confirmed that measurement results of magnetic field in the chamber showed a good agreement with FE results. Secondly, we fabricated a dish, which set inside the uniform AC magnetic field stimulation of bio-reactor. PC12 cells were disseminated with collagen gel and could be 3D cultured in the dish. The collagen gel were poured in the dish. The collagen gel, which had a disk shape of 6 mm diameter and 3mm height, was set on the membrane filter, which was located at 4 mm height from the bottom of dish. The disk was full filled with the culture medium inside the dish. Finally, we evaluated the effectiveness of the uniform AC magnetic field stimulation to enhance the nurve axonal extension. We confirmed that a 6.8 increase in the average axonal extension length of PC12 under the uniform AC magnetic field stimulation at 7 days culture in our bio-reactor, and a 24.7 increase in the maximum axonal extension length. Further, we confirmed that a 60 increase in the number of dendrites of PC12 under the uniform AC magnetic field stimulation. Finally, we confirm the availability of our uniform AC magnetic stimulation bio-reactor for the nerve axonal extension and the nerve network generation.Keywords: nerve regeneration, axonal extension , PC12 cell, magnetic field, three-dimensional bio-reactor
Procedia PDF Downloads 168265 A Hybrid Film: NiFe₂O₄ Nanoparticles in Poly-3-Hydroxybutyrate as an Antibacterial Agent
Authors: Karen L. Rincon-Granados, América R. Vázquez-Olmos, Adriana-Patricia Rodríguez-Hernández, Gina Prado-Prone, Margarita Rivera, Roberto Y. Sato-Berrú
Abstract:
In this work, a hybrid film based on poly-3-hydroxybutyrate (P3HB) and nickel ferrite (NiFe₂O₄) nanoparticles (NPs) was obtained by a simple and reproducible methodology in order to study its antibacterial and cytotoxic properties. The motivation for this research is the current antimicrobial resistance (RAM). This is a threat to human health and development worldwide. RAM is caused by the emergence of bacterial strains resistant to traditional antibiotics that were used as treatment. Due to this, the need to investigate new alternatives for preventing and treating bacterial infections emerges. In this sense, metal oxide NPs have aroused great interest due to their unique physicochemical properties. However, their use is limited by the nanostructured nature, commonly obtained by chemical and physical synthesis methods, as powders or colloidal dispersions. Therefore, the incorporation of nanostructured materials in polymer matrices to obtain hybrid materials that allow disinfecting and preventing the spread of bacteria on various surfaces. Accordingly, this work presents the synthesis and study of the antibacterial properties of the P3HB@NiFe₂O₄ hybrid film as a potential material to inhibit bacterial growth. The NiFe₂O₄ NPs were previously synthesized by a mechanochemical method. The P3HB and P3HB@NiFe₂O₄ films were obtained by the solvent casting method. The films were characterized by X-ray diffraction (XRD), Raman scattering, and scanning electron microscopy (SEM). The XRD pattern showed that the NiFe₂O₄ NPs were incorporated into the P3HB polymer matrix and retained their nanometric sizes. By energy dispersive X-ray spectroscopy (EDS), it was observed that the NPs are homogeneously distributed in the film. The bactericidal effect of the films obtained was evaluated in vitro using the broth surface method against two opportunistic and nosocomial pathogens, Staphylococcus aureus and Pseudomonas aeruginosa. The bacterial growth results showed that the P3HB@NiFe₂O₄ hybrid film was inhibited by 97% and 96% for S. aureus and P. aeruginosa, respectively. Surprisingly, the P3HB film inhibited both bacterial strains by around 90%. The cytotoxicity of the NiFe₂O₄ NPs, P3HB@NiFe₂O₄ hybrid film, and the P3HB film was evaluated using human skin cells, keratinocytes, and fibroblasts, finding that the NPs are biocompatible. The P3HB film and hybrids are cytotoxic, which demonstrated that although P3HB is known and reported as a biocompatible polymer, under our work conditions, P3HB was cytotoxic. Its bactericidal effect could be related to this activity. Its films are bactericidal and cytotoxic to keratinocytes and fibroblasts, the first barrier of human skin. Despite this, the hybrid film of P3HB@NiFe₂O₄ presents synergy with the bactericidal effect between P3HB and NPs, increasing bacterial inhibition. In addition, NPs decrease the cytotoxicity of P3HB to keratinocytes. The methodology used in this work was successful in producing hybrid films with antibacterial activity. However, future challenges are generated to find relationships between NPs and P3HB that allow taking advantage of their bactericidal properties and do not compromise biocompatibility.Keywords: poly-3-hydroxybutyrate, nanoparticles, hybrid film, antibacterial
Procedia PDF Downloads 82264 Production and Characterization of Biochars from Torrefaction of Biomass
Authors: Serdar Yaman, Hanzade Haykiri-Acma
Abstract:
Biomass is a CO₂-neutral fuel that is renewable and sustainable along with having very huge global potential. Efficient use of biomass in power generation and production of biomass-based biofuels can mitigate the greenhouse gasses (GHG) and reduce dependency on fossil fuels. There are also other beneficial effects of biomass energy use such as employment creation and pollutant reduction. However, most of the biomass materials are not capable of competing with fossil fuels in terms of energy content. High moisture content and high volatile matter yields of biomass make it low calorific fuel, and it is very significant concern over fossil fuels. Besides, the density of biomass is generally low, and it brings difficulty in transportation and storage. These negative aspects of biomass can be overcome by thermal pretreatments that upgrade the fuel property of biomass. That is, torrefaction is such a thermal process in which biomass is heated up to 300ºC under non-oxidizing conditions to avoid burning of the material. The treated biomass is called as biochar that has considerably lower contents of moisture, volatile matter, and oxygen compared to the parent biomass. Accordingly, carbon content and the calorific value of biochar increase to the level which is comparable with that of coal. Moreover, hydrophilic nature of untreated biomass that leads decay in the structure is mostly eliminated, and the surface properties of biochar turn into hydrophobic character upon torrefaction. In order to investigate the effectiveness of torrefaction process on biomass properties, several biomass species such as olive milling residue (OMR), Rhododendron (small shrubby tree with bell-shaped flowers), and ash tree (timber tree) were chosen. The fuel properties of these biomasses were analyzed through proximate and ultimate analyses as well as higher heating value (HHV) determination. For this, samples were first chopped and ground to a particle size lower than 250 µm. Then, samples were subjected to torrefaction in a horizontal tube furnace by heating from ambient up to temperatures of 200, 250, and 300ºC at a heating rate of 10ºC/min. The biochars obtained from this process were also tested by the methods applied to the parent biomass species. Improvement in the fuel properties was interpreted. That is, increasing torrefaction temperature led to regular increases in the HHV in OMR, and the highest HHV (6065 kcal/kg) was gained at 300ºC. Whereas, torrefaction at 250ºC was seen optimum for Rhododendron and ash tree since torrefaction at 300ºC had a detrimental effect on HHV. On the other hand, the increase in carbon contents and reduction in oxygen contents were determined. Burning characteristics of the biochars were also studied using thermal analysis technique. For this purpose, TA Instruments SDT Q600 model thermal analyzer was used and the thermogravimetric analysis (TGA), derivative thermogravimetry (DTG), differential scanning calorimetry (DSC), and differential thermal analysis (DTA) curves were compared and interpreted. It was concluded that torrefaction is an efficient method to upgrade the fuel properties of biomass and the biochars from which have superior characteristics compared to the parent biomasses.Keywords: biochar, biomass, fuel upgrade, torrefaction
Procedia PDF Downloads 373263 Influence of Cryo-Grinding on Particle Size Distribution of Proso Millet Bran Fraction
Authors: Maja Benkovic, Dubravka Novotni, Bojana Voucko, Duska Curic, Damir Jezek, Nikolina Cukelj
Abstract:
Cryo-grinding is an ultra-fine grinding method used in the pharmaceutical industry, production of herbs and spices and in the production and handling of cereals, due to its ability to produce powders with small particle sizes which maintain their favorable bioactive profile. The aim of this study was to determine the particle size distributions of the proso millet (Panicum miliaceum) bran fraction grinded at cryogenic temperature (using liquid nitrogen (LN₂) cooling, T = - 196 °C), in comparison to non-cooled grinding. Proso millet bran is primarily used as an animal feed, but has a potential in food applications, either as a substrate for extraction of bioactive compounds or raw material in the bakery industry. For both applications finer particle sizes of the bran could be beneficial. Thus, millet bran was ground for 2, 4, 8 and 12 minutes using the ball mill (CryoMill, Retsch GmbH, Haan, Germany) at three grinding modes: (I) without cooling, (II) at cryo-temperature, and (III) at cryo-temperature with included 1 minute of intermediate cryo-cooling step after every 2 minutes of grinding, which is usually applied when samples require longer grinding times. The sample was placed in a 50 mL stainless steel jar containing one grinding ball (Ø 25 mm). The oscillation frequency in all three modes was 30 Hz. Particle size distributions of the bran were determined by a laser diffraction particle sizing method (Mastersizer 2000) using the Scirocco 2000 dry dispersion unit (Malvern Instruments, Malvern, UK). Three main effects of the grinding set-up were visible from the results. Firstly, grinding time at all three modes had a significant effect on all particle size parameters: d(0.1), d(0.5), d(0.9), D[3,2], D[4,3], span and specific surface area. Longer grinding times resulted in lower values of the above-listed parameters, e.g. the averaged d(0.5) of the sample (229.57±1.46 µm) dropped to 51.29±1.28 µm after 2 minutes grinding without LN₂, and additionally to 43.00±1.33 µm after 4 minutes of grinding without LN₂. The only exception was the sample ground for 12 minutes without cooling, where an increase in particle diameters occurred (d(0.5)=62.85±2.20 µm), probably due to particles adhering to one another and forming larger particle clusters. Secondly, samples with LN₂ cooling exhibited lower diameters in comparison to non-cooled. For example, after 8 minutes of non-cooled grinding d(0.5)=46.97±1.05 µm was achieved, while the LN₂ cooling enabled collection of particles with average sizes of d(0.5)=18.57±0.18 µm. Thirdly, the application of intermediate cryo-cooling step resulted in similar particle diameters (d(0.5)=15.83±0.36 µm, 12 min of grinding) as cryo-milling without this step (d(0.5)=16.33±2.09 µm, 12 min of grinding). This indicates that intermediate cooling is not necessary for the current application, which consequently reduces the consumption of LN₂. These results point out the potential beneficial effects of millet bran grinding at cryo-temperatures. Further research will show if the lower particle size achieved in comparison to non-cooled grinding could result in increased bioavailability of bioactive compounds, as well as protein digestibility and solubility of dietary fibers of the proso millet bran fraction.Keywords: ball mill, cryo-milling, particle size distribution, proso millet (Panicum miliaceum) bran
Procedia PDF Downloads 145262 Fischer Tropsch Synthesis in Compressed Carbon Dioxide with Integrated Recycle
Authors: Kanchan Mondal, Adam Sims, Madhav Soti, Jitendra Gautam, David Carron
Abstract:
Fischer-Tropsch (FT) synthesis is a complex series of heterogeneous reactions between CO and H2 molecules (present in the syngas) on the surface of an active catalyst (Co, Fe, Ru, Ni, etc.) to produce gaseous, liquid, and waxy hydrocarbons. This product is composed of paraffins, olefins, and oxygenated compounds. The key challenge in applying the Fischer-Tropsch process to produce transportation fuels is to make the capital and production costs economically feasible relative to the comparative cost of existing petroleum resources. To meet this challenge, it is imperative to enhance the CO conversion while maximizing carbon selectivity towards the desired liquid hydrocarbon ranges (i.e. reduction in CH4 and CO2 selectivities) at high throughputs. At the same time, it is equally essential to increase the catalyst robustness and longevity without sacrificing catalyst activity. This paper focuses on process development to achieve the above. The paper describes the influence of operating parameters on Fischer Tropsch synthesis (FTS) from coal derived syngas in supercritical carbon dioxide (ScCO2). In addition, the unreacted gas and solvent recycle was incorporated and the effect of unreacted feed recycle was evaluated. It was expected that with the recycle, the feed rate can be increased. The increase in conversion and liquid selectivity accompanied by the production of narrower carbon number distribution in the product suggest that higher flow rates can and should be used when incorporating exit gas recycle. It was observed that this process was capable of enhancing the hydrocarbon selectivity (nearly 98 % CO conversion), reducing improving the carbon efficiency from 17 % to 51 % in a once through process and further converting 16 % CO2 to liquid with integrated recycle of the product gas stream and increasing the life of the catalyst. Catalyst robustness enhancement has been attributed to the absorption of heat of reaction by the compressed CO2 which reduced the formation of hotspots and the dissolution of waxes by the CO2 solvent which reduced the blinding of active sites. In addition, the recycling the product gas stream reduced the reactor footprint to one-fourth of the once through size and product fractionation utilizing the solvent effects of supercritical CO2 were realized. In addition to the negative CO2 selectivities, methane production was also inhibited and was limited to less than 1.5%. The effect of the process conditions on the life of the catalysts will also be presented. Fe based catalysts are known to have a high proclivity for producing CO2 during FTS. The data of the product spectrum and selectivity on Co and Fe-Co based catalysts as well as those obtained from commercial sources will also be presented. The measurable decision criteria were the increase in CO conversion at H2:CO ratio of 1:1 (as commonly found in coal gasification product stream) in supercritical phase as compared to gas phase reaction, decrease in CO2 and CH4 selectivity, overall liquid product distribution, and finally an increase in the life of the catalysts.Keywords: carbon efficiency, Fischer Tropsch synthesis, low GHG, pressure tunable fractionation
Procedia PDF Downloads 237261 Foslip Loaded and CEA-Affimer Functionalised Silica Nanoparticles for Fluorescent Imaging of Colorectal Cancer Cells
Authors: Yazan S. Khaled, Shazana Shamsuddin, Jim Tiernan, Mike McPherson, Thomas Hughes, Paul Millner, David G. Jayne
Abstract:
Introduction: There is a need for real-time imaging of colorectal cancer (CRC) to allow tailored surgery to the disease stage. Fluorescence guided laparoscopic imaging of primary colorectal cancer and the draining lymphatics would potentially bring stratified surgery into clinical practice and realign future CRC management to the needs of patients. Fluorescent nanoparticles can offer many advantages in terms of intra-operative imaging and therapy (theranostic) in comparison with traditional soluble reagents. Nanoparticles can be functionalised with diverse reagents and then targeted to the correct tissue using an antibody or Affimer (artificial binding protein). We aimed to develop and test fluorescent silica nanoparticles and targeted against CRC using an anti-carcinoembryonic antigen (CEA) Affimer (Aff). Methods: Anti-CEA and control Myoglobin Affimer binders were subcloned into the expressing vector pET11 followed by transformation into BL21 Star™ (DE3) E.coli. The expression of Affimer binders was induced using 0.1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG). Cells were harvested, lysed and purified using nickle chelating affinity chromatography. The photosensitiser Foslip (soluble analogue of 5,10,15,20-Tetra(m-hydroxyphenyl) chlorin) was incorporated into the core of silica nanoparticles using water-in-oil microemulsion technique. Anti-CEA or control Affs were conjugated to silica nanoparticles surface using sulfosuccinimidyl-4-(N-maleimidomethyl) cyclohexane-1-carboxylate (sulfo SMCC) chemical linker. Binding of CEA-Aff or control nanoparticles to colorectal cancer cells (LoVo, LS174T and HC116) was quantified in vitro using confocal microscopy. Results: The molecular weights of the obtained band of Affimers were ~12.5KDa while the diameter of functionalised silica nanoparticles was ~80nm. CEA-Affimer targeted nanoparticles demonstrated 9.4, 5.8 and 2.5 fold greater fluorescence than control in, LoVo, LS174T and HCT116 cells respectively (p < 0.002) for the single slice analysis. A similar pattern of successful CEA-targeted fluorescence was observed in the maximum image projection analysis, with CEA-targeted nanoparticles demonstrating 4.1, 2.9 and 2.4 fold greater fluorescence than control particles in LoVo, LS174T, and HCT116 cells respectively (p < 0.0002). There was no significant difference in fluorescence for CEA-Affimer vs. CEA-Antibody targeted nanoparticles. Conclusion: We are the first to demonstrate that Foslip-doped silica nanoparticles conjugated to anti-CEA Affimers via SMCC allowed tumour cell-specific fluorescent targeting in vitro, and had shown sufficient promise to justify testing in an animal model of colorectal cancer. CEA-Affimer appears to be a suitable targeting molecule to replace CEA-Antibody. Targeted silica nanoparticles loaded with Foslip photosensitiser is now being optimised to drive photodynamic killing, via reactive oxygen generation.Keywords: colorectal cancer, silica nanoparticles, Affimers, antibodies, imaging
Procedia PDF Downloads 240260 Influence of a High-Resolution Land Cover Classification on Air Quality Modelling
Authors: C. Silveira, A. Ascenso, J. Ferreira, A. I. Miranda, P. Tuccella, G. Curci
Abstract:
Poor air quality is one of the main environmental causes of premature deaths worldwide, and mainly in cities, where the majority of the population lives. It is a consequence of successive land cover (LC) and use changes, as a result of the intensification of human activities. Knowing these landscape modifications in a comprehensive spatiotemporal dimension is, therefore, essential for understanding variations in air pollutant concentrations. In this sense, the use of air quality models is very useful to simulate the physical and chemical processes that affect the dispersion and reaction of chemical species into the atmosphere. However, the modelling performance should always be evaluated since the resolution of the input datasets largely dictates the reliability of the air quality outcomes. Among these data, the updated LC is an important parameter to be considered in atmospheric models, since it takes into account the Earth’s surface changes due to natural and anthropic actions, and regulates the exchanges of fluxes (emissions, heat, moisture, etc.) between the soil and the air. This work aims to evaluate the performance of the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem), when different LC classifications are used as an input. The influence of two LC classifications was tested: i) the 24-classes USGS (United States Geological Survey) LC database included by default in the model, and the ii) CLC (Corine Land Cover) and specific high-resolution LC data for Portugal, reclassified according to the new USGS nomenclature (33-classes). Two distinct WRF-Chem simulations were carried out to assess the influence of the LC on air quality over Europe and Portugal, as a case study, for the year 2015, using the nesting technique over three simulation domains (25 km2, 5 km2 and 1 km2 horizontal resolution). Based on the 33-classes LC approach, particular emphasis was attributed to Portugal, given the detail and higher LC spatial resolution (100 m x 100 m) than the CLC data (5000 m x 5000 m). As regards to the air quality, only the LC impacts on tropospheric ozone concentrations were evaluated, because ozone pollution episodes typically occur in Portugal, in particular during the spring/summer, and there are few research works relating to this pollutant with LC changes. The WRF-Chem results were validated by season and station typology using background measurements from the Portuguese air quality monitoring network. As expected, a better model performance was achieved in rural stations: moderate correlation (0.4 – 0.7), BIAS (10 – 21µg.m-3) and RMSE (20 – 30 µg.m-3), and where higher average ozone concentrations were estimated. Comparing both simulations, small differences grounded on the Leaf Area Index and air temperature values were found, although the high-resolution LC approach shows a slight enhancement in the model evaluation. This highlights the role of the LC on the exchange of atmospheric fluxes, and stresses the need to consider a high-resolution LC characterization combined with other detailed model inputs, such as the emission inventory, to improve air quality assessment.Keywords: land use, spatial resolution, WRF-Chem, air quality assessment
Procedia PDF Downloads 159259 Proposals for the Practical Implementation of the Biological Monitoring of Occupational Exposure for Antineoplastic Drugs
Authors: Mireille Canal-Raffin, Nadege Lepage, Antoine Villa
Abstract:
Context: Most antineoplastic drugs (AD) have a potential carcinogenic, mutagenic and/or reprotoxic effect and are classified as 'hazardous to handle' by National Institute for Occupational Safety and Health Their handling increases with the increase of cancer incidence. AD contamination from workers who handle AD and/or care for treated patients is, therefore, a major concern for occupational physicians. As part of the process of evaluation and prevention of chemical risks for professionals exposed to AD, Biological Monitoring of Occupational Exposure (BMOE) is the tool of choice. BMOE allows identification of at-risk groups, monitoring of exposures, assessment of poorly controlled exposures and the effectiveness and/or wearing of protective equipment, and documenting occupational exposure incidents to AD. This work aims to make proposals for the practical implementation of the BMOE for AD. The proposed strategy is based on the French good practice recommendations for BMOE, issued in 2016 by 3 French learned societies. These recommendations have been adapted to occupational exposure to AD. Results: AD contamination of professionals is a sensitive topic, and the BMOE requires the establishment of a working group and information meetings within the concerned health establishment to explain the approach, objectives, and purpose of monitoring. Occupational exposure to AD is often discontinuous and 2 steps are essential upstream: a study of the nature and frequency of AD used to select the Biological Exposure Indice(s) (BEI) most representative of the activity; a study of AD path in the institution to target exposed professionals and to adapt medico-professional information sheet (MPIS). The MPIS is essential to gather the necessary elements for results interpretation. Currently, 28 urinary specific BEIs of AD exposure have been identified, and corresponding analytical methods have been published: 11 BEIs were AD metabolites, and 17 were AD. Results interpretation is performed by groups of homogeneous exposure (GHE). There is no threshold biological limit value of interpretation. Contamination is established when an AD is detected in trace concentration or in a urine concentration equal or greater than the limit of quantification (LOQ) of the analytical method. Results can only be compared to LOQs of these methods, which must be as low as possible. For 8 of the 17 AD BEIs, the LOQ is very low with values between 0.01 to 0.05µg/l. For the other BEIs, the LOQ values were higher between 0.1 to 30µg/l. Results restitution by occupational physicians to workers should be individual and collective. Faced with AD dangerousness, in cases of workers contamination, it is necessary to put in place corrective measures. In addition, the implementation of prevention and awareness measures for those exposed to this risk is a priority. Conclusion: This work is a help for occupational physicians engaging in a process of prevention of occupational risks related to AD exposure. With the current analytical tools, effective and available, the (BMOE) to the AD should now be possible to develop in routine occupational physician practice. The BMOE may be complemented by surface sampling to determine workers' contamination modalities.Keywords: antineoplastic drugs, urine, occupational exposure, biological monitoring of occupational exposure, biological exposure indice
Procedia PDF Downloads 137258 Microplastic Concentrations in Cultured Oyster in Two Bays of Baja California, Mexico
Authors: Eduardo Antonio Lozano Hernandez, Nancy Ramirez Alvarez, Lorena Margarita Rios Mendoza, Jose Vinicio Macias Zamora, Felix Augusto Hernandez Guzman, Jose Luis Sanchez Osorio
Abstract:
Microplastics (MPs) are one of the most numerous reported wastes found in the marine ecosystem, representing one of the greatest risks for organisms that inhabit that environment due to their bioavailability. Such is the case of bivalve mollusks, since they are capable of filtering large volumes of water, which increases the risk of contamination by microplastics through the continuous exposure to these materials. This study aims to determine, quantify and characterize microplastics found in the cultured oyster Crassostrea gigas. We also analyzed if there are spatio-temporal differences in the microplastic concentration of organisms grown in two bays having quite different human population. In addition, we wanted to have an idea of the possible impact on humans via consumption of these organisms. Commercial size organisms (>6cm length; n = 15) were collected by triplicate from eight oyster farming sites in Baja California, Mexico during winter and summer. Two sites are located in Todos Santos Bay (TSB), while the other six are located in San Quintin Bay (SQB). Site selection was based on commercial concessions for oyster farming in each bay. The organisms were chemically digested with 30% KOH (w/v) and 30% H₂O₂ (v/v) to remove the organic matter and subsequently filtered using a GF/D filter. All particles considered as possible MPs were quantified according to their physical characteristics using a stereoscopic microscope. The type of synthetic polymer was determined using a FTIR-ATR microscope and using a user as well as a commercial reference library (Nicolet iN10 Thermo Scientific, Inc.) of IR spectra of plastic polymers (with a certainty ≥70% for polymers pure; ≥50% for composite polymers). Plastic microfibers were found in all the samples analyzed. However, a low incidence of MP fragments was observed in our study (approximately 9%). The synthetic polymers identified were mainly polyester and polyacrylonitrile. In addition, polyethylene, polypropylene, polystyrene, nylon, and T. elastomer. On average, the content of microplastics in organisms were higher in TSB (0.05 ± 0.01 plastic particles (pp)/g of wet weight) than found in SQB (0.02 ± 0.004 pp/g of wet weight) in the winter period. The highest concentration of MPs found in TSB coincides with the rainy season in the region, which increases the runoff from streams and wastewater discharges to the bay, as well as the larger population pressure (> 500,000 inhabitants). Otherwise, SQB is a mainly rural location, where surface runoff from streams is minimal and in addition, does not have a wastewater discharge into the bay. During the summer, no significant differences (Manne-Whitney U test; P=0.484) were observed in the concentration of MPs found in the cultured oysters of TSB and SQB, (average: 0.01 ± 0.003 pp/g and 0.01 ± 0.002 pp/g, respectively). Finally, we concluded that the consumption of oyster does not represent a risk for humans due to the low concentrations of MPs found. The concentration of MPs is influenced by the variables such as temporality, circulations dynamics of the bay and existing demographic pressure.Keywords: FTIR-ATR, Human risk, Microplastic, Oyster
Procedia PDF Downloads 174257 Lithological Mapping and Iron Deposits Identification in El-Bahariya Depression, Western Desert, Egypt, Using Remote Sensing Data Analysis
Authors: Safaa M. Hassan; Safwat S. Gabr, Mohamed F. Sadek
Abstract:
This study is proposed for the lithological and iron oxides detection in the old mine areas of El-Bahariya Depression, Western Desert, using ASTER and Landsat-8 remote sensing data. Four old iron ore occurrences, namely; El-Gedida, El-Haraa, Ghurabi, and Nasir mine areas found in the El-Bahariya area. This study aims to find new high potential areas for iron mineralization around El-Baharyia depression. Image processing methods such as principle component analysis (PCA) and band ratios (b4/b5, b5/b6, b6/b7, and 4/2, 6/7, band 6) images were used for lithological identification/mapping that includes the iron content in the investigated area. ASTER and Landsat-8 visible and short-wave infrared data found to help mapping the ferruginous sandstones, iron oxides as well as the clay minerals in and around the old mines area of El-Bahariya depression. Landsat-8 band ratio and the principle component of this study showed well distribution of the lithological units, especially ferruginous sandstones and iron zones (hematite and limonite) along with detection of probable high potential areas for iron mineralization which can be used in the future and proved the ability of Landsat-8 and ASTER data in mapping these features. Minimum Noise Fraction (MNF), Mixture Tuned Matched Filtering (MTMF), pixel purity index methods as well as Spectral Ange Mapper classifier algorithm have been successfully discriminated the hematite and limonite content within the iron zones in the study area. Various ASTER image spectra and ASD field spectra of hematite and limonite and the surrounding rocks are compared and found to be consistent in terms of the presence of absorption features at range from 1.95 to 2.3 μm for hematite and limonite. Pixel purity index algorithm and two sub-pixel spectral methods, namely Mixture Tuned Matched Filtering (MTMF) and matched filtering (MF) methods, are applied to ASTER bands to delineate iron oxides (hematite and limonite) rich zones within the rock units. The results are validated in the field by comparing image spectra of spectrally anomalous zone with the USGS resampled laboratory spectra of hematite and limonite samples using ASD measurements. A number of iron oxides rich zones in addition to the main surface exposures of the El-Gadidah Mine, are confirmed in the field. The proposed method is a successful application of spectral mapping of iron oxides deposits in the exposed rock units (i.e., ferruginous sandstone) and present approach of both ASTER and ASD hyperspectral data processing can be used to delineate iron-rich zones occurring within similar geological provinces in any parts of the world.Keywords: Landsat-8, ASTER, lithological mapping, iron exploration, western desert
Procedia PDF Downloads 145256 Treatment of Wastewater by Constructed Wetland Eco-Technology: Plant Species Alters the Performance and the Enrichment of Bacteria Ries Alters the Performance and the Enrichment of Bacteria
Authors: Kraiem Khadija, Hamadi Kallali, Naceur Jedidi
Abstract:
Constructed wetland systems are eco-technology recognized as environmentally friendly and emerging innovative solutions remediation as these systems are cost-effective and sustainable wastewater treatment systems. The performance of these biological system is affected by various factors such as plant, substrate, wastewater type, hydraulic loading rate, hydraulic retention time, water depth, and operation mood. The objective of this study was to to assess the alters of plant species on pollutants reduction and enrichment of anammox and nitrifing denitrifing bacteria in a modified vertical flow (VFCW) constructed wetland. This tests were carried out using three modified vertical constructed wetlands with a surface of 0.23 m² and depth 80 cm. It was a saturated vertical constructed wetland at the bottom. The saturation zone is maintained by the siphon structure at the outlet. The VFCW (₁) system was unplanted, VFCW (₂) planted with Typha angustofolia, and VFCW(₃) planted with Phragmites australis. The experimental units were fed with domestic wastewater and were operated by batch mode during 8 months at an average hydraulic loading rate around 20 cm day− 1. The operation cycle was two days feeding and five days rest. Results indicated that plants presence improved the removal efficiency; the removal rates of organic matter (85.1–90.9%; COD and 81.8–88.9%; BOD5), nitrogen (54.2–73%; NTK and 66–77%; NH4 -N) were higher by 10.7–30.1% compared to the unplanted vertical constructed wetland. On the other hand, the plant species had no significant effect on removal efficiency of COD, The removal of COD was similar in VFCW (₂) and VFCW (₃) (p > 0.05), attaining average removal efficiencies of 88.7% and 85.2%, respectively. Whereas it had a significant effect on NTK removal (p > 0.05), with an average removal rate of 72% versus 51% for VFCW (₂) and VFCW (₃), respectively. Among the three sets of vertical flow constructed wetlands, the VFCW(₂) removed the highest percent of total streptococcus, fecal streptococcus total coliforms, fecal coliforms, E. coli as 59, 62, 52, 63, and 58%, respectively. The presence and the plant species alters the community composition and abundance of the bacteria. The abundance of bacteria in the planted wetland was much higher than that in the unplanted one. VFCW(₃) had the highest relative abundance of nitrifying bacteria such as Nitrosospira (18%), Nitrosospira (12%), and Nitrobacter (8%). Whereas the vertical constructed wetland planted with typha had larger number of denitrifying species, with relative abundances of Aeromonas (13%), Paracoccus (11%), Thauera (7%), and Thiobacillus (6%). However, the abundance of nitrifying bacteria was very lower in this system than VFCW(₂). Interestingly, the presence of Thypha angustofolia species favored the enrichment of anammox bacteria compared to unplanted system and system planted with phragmites australis. The results showed that the middle layer had the most accumulation of anammox bacteria, which the anaerobic condition is better and the root system is moderate. Vegetation has several characteristics that make it an essential component of wetlands, but its exact effects are complex and debated.Keywords: wastawater, constructed wetland, anammox, removal
Procedia PDF Downloads 104255 Li2o Loss of Lithium Niobate Nanocrystals during High-Energy Ball-Milling
Authors: Laura Kocsor, Laszlo Peter, Laszlo Kovacs, Zsolt Kis
Abstract:
The aim of our research is to prepare rare-earth-doped lithium niobate (LiNbO3) nanocrystals, having only a few dopant ions in the focal point of an exciting laser beam. These samples will be used to achieve individual addressing of the dopant ions by light beams in a confocal microscope setup. One method for the preparation of nanocrystalline materials is to reduce the particle size by mechanical grinding. High-energy ball-milling was used in several works to produce nano lithium niobate. Previously, it was reported that dry high-energy ball-milling of lithium niobate in a shaker mill results in the partial reduction of the material, which leads to a balanced formation of bipolarons and polarons yielding gray color together with oxygen release and Li2O segregation on the open surfaces. In the present work we focus on preparing LiNbO3 nanocrystals by high-energy ball-milling using a Fritsch Pulverisette 7 planetary mill. Every ball-milling process was carried out in zirconia vial with zirconia balls of different sizes (from 3 mm to 0.1 mm), wet grinding with water, and the grinding time being less than an hour. Gradually decreasing the ball size to 0.1 mm, an average particle size of about 10 nm could be obtained determined by dynamic light scattering and verified by scanning electron microscopy. High-energy ball-milling resulted in sample darkening evidenced by optical absorption spectroscopy measurements indicating that the material underwent partial reduction. The unwanted lithium oxide loss decreases the Li/Nb ratio in the crystal, strongly influencing the spectroscopic properties of lithium niobate. Zirconia contamination was found in ground samples proved by energy-dispersive X-ray spectroscopy measurements; however, it cannot be explained based on the hardness properties of the materials involved in the ball-milling process. It can be understood taking into account the presence of lithium hydroxide formed the segregated lithium oxide and water during the ball-milling process, through chemically induced abrasion. The quantity of the segregated Li2O was measured by coulometric titration. During the wet milling process in the planetary mill, it was found that the lithium oxide loss increases linearly in the early phase of the milling process, then a saturation of the Li2O loss can be seen. This change goes along with the disappearance of the relatively large particles until a relatively narrow size distribution is achieved in accord with the dynamic light scattering measurements. With the 3 mm ball size and 1100 rpm rotation rate, the mean particle size achieved is 100 nm, and the total Li2O loss is about 1.2 wt.% of the original LiNbO3. Further investigations have been done to minimize the Li2O segregation during the ball-milling process. Since the Li2O loss was observed to increase with the growing total surface of the particles, the influence of ball-milling parameters on its quantity has also been studied.Keywords: high-energy ball-milling, lithium niobate, mechanochemical reaction, nanocrystals
Procedia PDF Downloads 135254 Ramification of Pemphigus Vulgaris Sera and the Monoclonal Antibody Against Desmoglein-3 on Nrf2 Expression in Keratinocyte Cultures
Authors: Faris Mohsin Alabeedi
Abstract:
Pemphigus Vulgaris (PV) is a life-threatening autoimmune blistering disease characterized by the presence of autoantibodies directed against the epidermis's surface proteins. There are two forms of PV, mucocutaneous and mucosal-dominant PV. Disruption of the cell junctions is a hallmark of PV due to the autoantibodies targeting the desmosomal cadherins, desmoglein-3 (Dsg3) and desmoglein-1, leading to acantholysis in the skin and mucous membrane. Although the pathogenesis of PV is known, the detailed molecular events remain not fully understood. Our recent study has shown that both the PV sera and pathogenic anti-Dsg3 antibody AK23 can induce ROS and cause oxidative stress in cultured keratinocytes. In line with our finding, other independent studies also demonstrate oxidative stress in PV. Since Nrf2 plays a crucial role in cellular anti-oxidative stress response, we hypothesize that the expression of Nrf2 may alter in PV. Thus, treatment of cells with PV sera or AK23 may cause changes in Nrf2 expression and distribution. The purpose of this study was to examine the effect of AK23 and PV sera on Nrf2 in a normal human keratinocyte cell line, such as NTERT cells. Both a time-course and dose-dependent experiments with AK23, alongside the matched isotype control IgG, were performed in keratinocyte cultures and analysed by immunofluorescence for Nrf2 and Dsg3. Additionally, the same approach was conducted with the sera from PV patients and healthy individuals that served as a control in this study. All the fluorescent images were analysed using ImageJ software. Each experiment was repeated twice. In general, variations were observed throughout this study. In the dose-response experiments, although enhanced Dsg3 expression was consistently detected in AK23 treated cells, the expression of Nrf2 showed no consistent findings between the experiments, although changes in its expression were noticeable in cells treated with AK23. In the time-course study, a trend with induction of Nrf2 over time was shown in control cells treated with mouse isotype IgG. Treatment with AK23 showed a reduction of Nrf2 in a time-dependent manner, especially at the 24-hour time point. However, the earlier time points, such as 2 hours and 6 hours with AK23 treatments, detected somewhat variations. Finally, PV sera caused a decrease of Dsg3, but on the other hand, variations were observed in Nrf2 expression in PV sera treated cells. In general, PV sera seemed to cause a reduction of Nrf2 in the majority of PV sera treated samples. In addition, more pronounced cytoplasmic expression of Nrf2 has been observed in PV sera treated cells than those treated with AK23, suggesting that polyclonal and monoclonal IgG might induce a different effect on Nrf2 expression and distribution. Further experimental studies are crucial to obtain a more coincide global view of Nrf2-mediated gene regulation. In particular, Pemphigus Voulgaris studies assessing how the Nrf2-dependent network changes from a physiological to a pathological condition can provide insight into disease mechanisms and perhaps initiate further treatment approaches.Keywords: pemphigus vulgaris, monoclonal antibody against desmoglein-3, Nrf2 oxidative stress, keratinocyte cultures
Procedia PDF Downloads 76253 Antibacterial Bioactive Glasses in Orthopedic Surgery and Traumatology
Authors: V. Schmidt, L. Janovák, N. Wiegand, B. Patczai, K. Turzó
Abstract:
Large bone defects are not able to heal spontaneously. Bioactive glasses seem to be appropriate (bio)materials for bone reconstruction. Bioactive glasses are osteoconductive and osteoinductive, therefore, play a useful role in bony regeneration and repair. Because of their not optimal mechanical properties (e.g., brittleness, low bending strength, and fracture toughness), their applications are limited. Bioactive glass can be used as a coating material applied on metal surfaces. In this way -when using them as implants- the excellent mechanical properties of metals and the biocompatibility and bioactivity of glasses will be utilized. Furthermore, ion release effects of bioactive glasses regarding osteogenic and angiogenic responses have been shown. Silicate bioactive glasses (45S5 Bioglass) induce the release and exchange of soluble Si, Ca, P, and Na ions on the material surface. This will lead to special cellular responses inducing bone formation, which is favorable in the biointegration of the orthopedic prosthesis. The incorporation of other additional elements in the silicate network such as fluorine, magnesium, iron, silver, potassium, or zinc has been shown, as the local delivery of these ions is able to enhance specific cell functions. Although hip and knee prostheses present a high success rate, bacterial infections -mainly implant associated- are serious and frequent complications. Infection can also develop after implantation of hip prostheses, the elimination of which means more surgeries for the patient and additional costs for the clinic. Prosthesis-related infection is a severe complication of orthopedic surgery, which often causes prolonged illness, pain, and functional loss. While international efforts are made to reduce the risk of these infections, orthopedic surgical infections (SSIs) continue to occur in high numbers. It is currently estimated that up to 2.5% of primary hip and knee surgeries and up to 20% of revision arthroplasties are complicated by periprosthetic joint infection (PJIs). According to some authors, these numbers are underestimated, and they are also increasing. Staphylococcus aureus is the leading cause of both SSIs and PJIs, and the prevalence of methicillin-resistant S. aureus (MRSA) is on the rise, particularly in the United States. These deep infections lead to implant removal and consequently increase morbidity and mortality. The study targets this clinical problem using our experience so far with the Ag-doped polymer coatings on Titanium implants. Non-modified or modified (e.g., doped with antibacterial agents, like Ag) bioactive glasses could play a role in the prevention of infections or the therapy of infected tissues. Bioactive glasses have excellent biocompatibility, proved by in vitro cell culture studies of human osteoblast-like MG-63 cells. Ag-doped bioactive glass-scaffold has a good antibacterial ability against Escherichia coli and other bacteria. It may be concluded that these scaffolds have great potential in the prevention and therapy of implant-associated bone infection.Keywords: antibacterial agents, bioactive glass, hip and knee prosthesis, medical implants
Procedia PDF Downloads 193