Search results for: fed-batch process
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14902

Search results for: fed-batch process

8572 An Unified Model for Longshore Sediment Transport Rate Estimation

Authors: Aleksandra Dudkowska, Gabriela Gic-Grusza

Abstract:

Wind wave-induced sediment transport is an important multidimensional and multiscale dynamic process affecting coastal seabed changes and coastline evolution. The knowledge about sediment transport rate is important to solve many environmental and geotechnical issues. There are many types of sediment transport models but none of them is widely accepted. It is bacause the process is not fully defined. Another problem is a lack of sufficient measurment data to verify proposed hypothesis. There are different types of models for longshore sediment transport (LST, which is discussed in this work) and cross-shore transport which is related to different time and space scales of the processes. There are models describing bed-load transport (discussed in this work), suspended and total sediment transport. LST models use among the others the information about (i) the flow velocity near the bottom, which in case of wave-currents interaction in coastal zone is a separate problem (ii) critical bed shear stress that strongly depends on the type of sediment and complicates in the case of heterogeneous sediment. Moreover, LST rate is strongly dependant on the local environmental conditions. To organize existing knowledge a series of sediment transport models intercomparisons was carried out as a part of the project “Development of a predictive model of morphodynamic changes in the coastal zone”. Four classical one-grid-point models were studied and intercompared over wide range of bottom shear stress conditions, corresponding with wind-waves conditions appropriate for coastal zone in polish marine areas. The set of models comprises classical theories that assume simplified influence of turbulence on the sediment transport (Du Boys, Meyer-Peter & Muller, Ribberink, Engelund & Hansen). It turned out that the values of estimated longshore instantaneous mass sediment transport are in general in agreement with earlier studies and measurements conducted in the area of interest. However, none of the formulas really stands out from the rest as being particularly suitable for the test location over the whole analyzed flow velocity range. Therefore, based on the models discussed a new unified formula for longshore sediment transport rate estimation is introduced, which constitutes the main original result of this study. Sediment transport rate is calculated based on the bed shear stress and critical bed shear stress. The dependence of environmental conditions is expressed by one coefficient (in a form of constant or function) thus the model presented can be quite easily adjusted to the local conditions. The discussion of the importance of each model parameter for specific velocity ranges is carried out. Moreover, it is shown that the value of near-bottom flow velocity is the main determinant of longshore bed-load in storm conditions. Thus, the accuracy of the results depends less on the sediment transport model itself and more on the appropriate modeling of the near-bottom velocities.

Keywords: bedload transport, longshore sediment transport, sediment transport models, coastal zone

Procedia PDF Downloads 371
8571 Upgrading of Bio-Oil by Bio-Pd Catalyst

Authors: Sam Derakhshan Deilami, Iain N. Kings, Lynne E. Macaskie, Brajendra K. Sharma, Anthony V. Bridgwater, Joseph Wood

Abstract:

This paper reports the application of a bacteria-supported palladium catalyst to the hydrodeoxygenation (HDO) of pyrolysis bio-oil, towards producing an upgraded transport fuel. Biofuels are key to the timely replacement of fossil fuels in order to mitigate the emissions of greenhouse gases and depletion of non-renewable resources. The process is an essential step in the upgrading of bio-oils derived from industrial by-products such as agricultural and forestry wastes, the crude oil from pyrolysis containing a large amount of oxygen that requires to be removed in order to create a fuel resembling fossil-derived hydrocarbons. The bacteria supported catalyst manufacture is a means of utilizing recycled metals and second life bacteria, and the metal can also be easily recovered from the spent catalysts after use. Comparisons are made between bio-Pd, and a conventional activated carbon supported Pd/C catalyst. Bio-oil was produced by fast pyrolysis of beechwood at 500 C at a residence time below 2 seconds, provided by Aston University. 5 wt % BioPd/C was prepared under reducing conditions, exposing cells of E. coli MC4100 to a solution of sodium tetrachloropalladate (Na2PdCl4), followed by rinsing, drying and grinding to form a powder. Pd/C was procured from Sigma-Aldrich. The HDO experiments were carried out in a 100 mL Parr batch autoclave using ~20g bio-crude oil and 0.6 g bio-Pd/C catalyst. Experimental variables investigated for optimization included temperature (160-350C) and reaction times (up to 5 h) at a hydrogen pressure of 100 bar. Most of the experiments resulted in an aqueous phase (~40%) and an organic phase (~50-60%) as well as gas phase (<5%) and coke (<2%). Study of the temperature and time upon the process showed that the degree of deoxygenation increased (from ~20 % up to 60 %) at higher temperatures in the region of 350 C and longer residence times up to 5 h. However minimum viscosity (~0.035 Pa.s) occurred at 250 C and 3 h residence time, indicating that some polymerization of the oil product occurs at the higher temperatures. Bio-Pd showed a similar degree of deoxygenation (~20 %) to Pd/C at lower temperatures of 160 C, but did not rise as steeply with temperature. More coke was formed over bio-Pd/C than Pd/C at temperatures above 250 C, suggesting that bio-Pd/C may be more susceptible to coke formation than Pd/C. Reactions occurring during bio-oil upgrading include catalytic cracking, decarbonylation, decarboxylation, hydrocracking, hydrodeoxygenation and hydrogenation. In conclusion, it was shown that bio-Pd/C displays an acceptable rate of HDO, which increases with residence time and temperature. However some undesirable reactions also occur, leading to a deleterious increase in viscosity at higher temperatures. Comparisons are also drawn with earlier work on the HDO of Chlorella derived bio-oil manufactured from micro-algae via hydrothermal liquefaction. Future work will analyze the kinetics of the reaction and investigate the effect of bi-metallic catalysts.

Keywords: bio-oil, catalyst, palladium, upgrading

Procedia PDF Downloads 158
8570 Role of Judiciary in Developing Countries

Authors: Amir Shafiq, Asif Shahzad, Shabbar Mehmood, Muhammad Saeed, Hamid Mustafa

Abstract:

Administration of justice in a society is evolutionary process. In pre-modern societies vital organs that we consider separate today i.e. legislation, implementation and adjudication were controlled by a King, the sovereign authority. Whereas now it is recognized that Development of a country revolves in seven arenas i.e. Civil Society, Political Society, Economic Society, Legislature, Judiciary, Executive & Bureaucracy. Each society whether developing or developed, has need of institutions and structures that can resolve difference of opinions of private or public nature between contending parties. Administration of justice has a key-role in the development of the society. Through this paper, it is to highlight that an independent judiciary having the support of public opinion therefore is inevitable to wriggle out from such problems in order to restore and protect the fundamental rights, constitution and democratic political system in third world countries like Pakistan.

Keywords: role of judiciary, developing countries, judicial activism, present scenario

Procedia PDF Downloads 370
8569 Optimum Dispatching Rule in Solar Ingot-Wafer Manufacturing System

Authors: Wheyming Song, Hung-Hsiang Lin, Scott Lian

Abstract:

In this research, we investigate the optimal dispatching rule for machines and manpower allocation in the solar ingot-wafer systems. The performance of the method is measured by the sales profit for each dollar paid to the operators in a one week at steady-state. The decision variables are identification-number of machines and operators when each job is required to be served in each process. We propose a rule which is a function of operator’s ability, corresponding salary, and standing location while in the factory. The rule is named ‘Multi-nominal distribution dispatch rule’. The proposed rule performs better than many traditional rules including generic algorithm and particle swarm optimization. Simulation results show that the proposed Multi-nominal distribution dispatch rule improvement on the sales profit dramatically.

Keywords: dispatching, solar ingot, simulation, flexsim

Procedia PDF Downloads 282
8568 Tax Administration Constraints: The Case of Small and Medium Size Enterprises in Addis Ababa, Ethiopia

Authors: Zeleke Ayalew Alemu

Abstract:

This study aims to investigate tax administration constraints in Addis Ababa with a focus on small and medium-sized enterprises by identifying issues and constraints in tax administration and assessment. The study identifies problems associated with taxpayers and tax-collecting authorities in the city. The research used qualitative and quantitative research designs and employed questionnaires, focus group discussion and key informant interviews for primary data collection and also used secondary data from different sources. The study identified many constraints that taxpayers are facing. Among others, tax administration offices’ inefficiency, reluctance to respond to taxpayers’ questions, limited tax assessment and administration knowledge and skills, and corruption and unethical practices are the major ones. Besides, the tax laws and regulations are complex and not enforced equally and fully on all taxpayers, causing a prevalence of business entities not paying taxes. This apparently results in an uneven playing field. Consequently, the tax system at present is neither fair nor transparent and increases compliance costs. In case of dispute, the appeal process is excessively long and the tax authority’s decision is irreversible. The Value Added Tax (VAT) administration and compliance system is not well designed, and VAT has created economic distortion among VAT-registered and non-registered taxpayers. Cash registration machine administration and the reporting system are big headaches for taxpayers. With regard to taxpayers, there is a lack of awareness of tax laws and documentation. Based on the above and other findings, the study forwarded recommendations, such as, ensuring fairness and transparency in tax collection and administration, enhancing the efficiency of tax authorities by use of modern technologies and upgrading human resources, conducting extensive awareness creation programs, and enforcing tax laws in a fair and equitable manner. The objective of this study is to assess problems, weaknesses and limitations of small and medium-sized enterprise taxpayers, tax authority administrations, and laws as sources of inefficiency and dissatisfaction to forward recommendations that bring about efficient, fair and transparent tax administration. The entire study has been conducted in a participatory and process-oriented manner by involving all partners and stakeholders at all levels. Accordingly, the researcher used participatory assessment methods in generating both secondary and primary data as well as both qualitative and quantitative data on the field. The research team held FGDs with 21 people from Addis Ababa City Administration tax offices and selected medium and small taxpayers. The study team also interviewed 10 KIIs selected from the various segments of stakeholders. The lead, along with research assistants, handled the KIIs using a predesigned semi-structured questionnaire.

Keywords: taxation, tax system, tax administration, small and medium enterprises

Procedia PDF Downloads 48
8567 The Effect of Additives on Characterization and Photocatalytic Activity of Ag-TiO₂ Nanocomposite Prepared via Sol-Gel Process

Authors: S. Raeis Farshid, B. Raeis Farshid

Abstract:

Ag-TiO₂ nanocomposites were prepared by the sol-gel method with and without additives such as carboxy methyl cellulose (CMC), polyethylene glycol (PEG), polyvinyl pyrrolidone (PVP), and hydroxyl propyl cellulose (HPC). The characteristics of the prepared Ag-TiO₂ nanocomposites were identified by Fourier Transform Infra-Red spectroscopy (FTIR), X-Ray Diffraction (XRD), and scanning electron microscopy (SEM) methods. The additives have a significant effect on the particle size distribution and photocatalytic activity of Ag-TiO₂ nanocomposites. SEM images have shown that the particle size distribution of Ag-TiO₂ nanocomposite in the presence of HPC was the best in comparison to the other samples. The photocatalytic activity of the synthesized nanocomposites was investigated for decolorization of methyl orange (MO) in water under UV-irradiation in a batch reactor, and the results showed that the photocatalytic activity of the nanocomposites had been increased by CMC, PEG, PVP, and HPC, respectively.

Keywords: sol-gel method, Ag-TiO₂, decolorization, photocatalyst, nanocomposite

Procedia PDF Downloads 62
8566 A Finite Element Analysis of Hexagonal Double-Arrowhead Auxetic Structure with Enhanced Energy Absorption Characteristics and Stiffness

Authors: Keda Li, Hong Hu

Abstract:

Auxetic materials, as an emerging artificial designed metamaterial has attracted growing attention due to their promising negative Poisson’s ratio behaviors and tunable properties. The conventional auxetic lattice structures for which the deformation process is governed by a bending-dominated mechanism have faced the limitation of poor mechanical performance for many potential engineering applications. Recently, both load-bearing and energy absorption capabilities have become a crucial consideration in auxetic structure design. This study reports the finite element analysis of a class of hexagonal double-arrowhead auxetic structures with enhanced stiffness and energy absorption performance. The structure design was developed by extending the traditional double-arrowhead honeycomb to a hexagon frame, the stretching-dominated deformation mechanism was determined according to Maxwell’s stability criterion. The finite element (FE) models of 2D lattice structures established with stainless steel material were analyzed in ABAQUS/Standard for predicting in-plane structural deformation mechanism, failure process, and compressive elastic properties. Based on the computational simulation, the parametric analysis was studied to investigate the effect of the structural parameters on Poisson’s ratio and mechanical properties. The geometrical optimization was then implemented to achieve the optimal Poisson’s ratio for the maximum specific energy absorption. In addition, the optimized 2D lattice structure was correspondingly converted into a 3D geometry configuration by using the orthogonally splicing method. The numerical results of 2D and 3D structures under compressive quasi-static loading conditions were compared separately with the traditional double-arrowhead re-entrant honeycomb in terms of specific Young's moduli, Poisson's ratios, and specified energy absorption. As a result, the energy absorption capability and stiffness are significantly reinforced with a wide range of Poisson’s ratio compared to traditional double-arrowhead re-entrant honeycomb. The auxetic behaviors, energy absorption capability, and yield strength of the proposed structure are adjustable with different combinations of joint angle, struts thickness, and the length-width ratio of the representative unit cell. The numerical prediction in this study suggests the proposed concept of hexagonal double-arrowhead structure could be a suitable candidate for the energy absorption applications with a constant request of load-bearing capacity. For future research, experimental analysis is required for the validation of the numerical simulation.

Keywords: auxetic, energy absorption capacity, finite element analysis, negative Poisson's ratio, re-entrant hexagonal honeycomb

Procedia PDF Downloads 74
8565 FPGA Implementation of Adaptive Clock Recovery for TDMoIP Systems

Authors: Semih Demir, Anil Celebi

Abstract:

Circuit switched networks widely used until the end of the 20th century have been transformed into packages switched networks. Time Division Multiplexing over Internet Protocol (TDMoIP) is a system that enables Time Division Multiplexing (TDM) traffic to be carried over packet switched networks (PSN). In TDMoIP systems, devices that send TDM data to the PSN and receive it from the network must operate with the same clock frequency. In this study, it was aimed to implement clock synchronization process in Field Programmable Gate Array (FPGA) chips using time information attached to the packages received from PSN. The designed hardware is verified using the datasets obtained for the different carrier types and comparing the results with the software model. Field tests are also performed by using the real time TDMoIP system.

Keywords: clock recovery on TDMoIP, FPGA, MATLAB reference model, clock synchronization

Procedia PDF Downloads 251
8564 Flow Field Analysis of a Liquid Ejector Pump Using Embedded Large Eddy Simulation Methodology

Authors: Qasim Zaheer, Jehanzeb Masud

Abstract:

The understanding of entrainment and mixing phenomenon in the ejector pump is of pivotal importance for designing and performance estimation. In this paper, the existence of turbulent vortical structures due to Kelvin-Helmholtz instability at the free surface between the motive and the entrained fluids streams are simulated using Embedded LES methodology. The efficacy of Embedded LES for simulation of complex flow field of ejector pump is evaluated using ANSYS Fluent®. The enhanced mixing and entrainment process due to breaking down of larger eddies into smaller ones as a consequence of Vortex Stretching phenomenon is captured in this study. Moreover, the flow field characteristics of ejector pump like pressure velocity fields and mass flow rates are analyzed and validated against the experimental results.

Keywords: Kelvin Helmholtz instability, embedded LES, complex flow field, ejector pump

Procedia PDF Downloads 276
8563 Comprehensive Risk Assessment Model in Agile Construction Environment

Authors: Jolanta Tamošaitienė

Abstract:

The article focuses on a developed comprehensive model to be used in an agile environment for the risk assessment and selection based on multi-attribute methods. The model is based on a multi-attribute evaluation of risk in construction, and the determination of their optimality criterion values are calculated using complex Multiple Criteria Decision-Making methods. The model may be further applied to risk assessment in an agile construction environment. The attributes of risk in a construction project are selected by applying the risk assessment condition to the construction sector, and the construction process efficiency in the construction industry accounts for the agile environment. The paper presents the comprehensive risk assessment model in an agile construction environment. It provides a background and a description of the proposed model and the developed analysis of the comprehensive risk assessment model in an agile construction environment with the criteria.

Keywords: assessment, environment, agile, model, risk

Procedia PDF Downloads 235
8562 Numerical Simulations of Frost Heave Using COMSOL Multiphysics Software in Unsaturated Freezing Soils

Authors: Sara Soltanpour, Adolfo Foriero

Abstract:

Frost heave is arguably the most problematic adverse phenomenon in cold region areas. Frost heave is a complex process that depends on heat and water transfer. These coupled physical fields generate considerable heave stresses as well as deformations. In the present study, a coupled thermal-hydraulic-mechanical (THM) model using COMSOL Multiphysics in frozen unsaturated soils, such as fine sand, is investigated. Particular attention to the frost heave and temperature distribution, as well as the water migrating during soil freezing, is assessed. The results obtained from the numerical simulations are consistent with the results measured in the full-scale tests conducted by Cold Regions Research and Engineering Laboratory (CRREL).

Keywords: frost heave, numerical simulations, COMSOL software, unsaturated freezing soil

Procedia PDF Downloads 99
8561 Analyzing the Mission Drift of Social Business: Case Study of Restaurant Providing Professional Training to At-Risk Youth

Authors: G. Yanay-Ventura, H. Desivilya Syna, K. Michael

Abstract:

Social businesses are based on the idea that an enterprise can be established for the sake of profit and, at the same time, with the aim of fulfilling social goals. Yet, the question of how these goals can be integrated in practice to derive parallel benefit in both realms still needs to be examined. Particularly notable in this context is the ‘governance challenge’ of social businesses, meaning the danger of the mission drifts from the social goal in the pursuit of good business. This study is based on an evaluation study of a social business that operates as a restaurant providing professional training to at-risk youth. The evaluation was based on the collection of a variety of data through interviews with stakeholders in the enterprise (directors and managers, business partners, social partners, and position holders in the restaurant and the social enterprise), a focus group consisting of the youth receiving the professional training, observations of the restaurant’s operation, and analysis of the social enterprise’s primary documents. The evaluation highlighted significant strengths of the social enterprise, including reaching relatively fast business sustainability, effective management of the restaurant, stable employment of the restaurant staff, and effective management of the social project. The social enterprise and business management have both enjoyed positive evaluations from a variety of stakeholders. Clearly, the restaurant was deemed by all a promising young business. However, the social project suffered from a 90% dropout rate among the youth entering its ranks, extreme monthly fluctuation in the number of youths participating, and a distinct minority of the youth who have succeeded in completing their training period. Possible explanations of the high dropout rate included the small number of cooks, which impeded the effectiveness of the training process and the provision of advanced cooking skills; lack of clarity regarding the essence and the elements of training; and lack of a meaningful peer group for the youth engaged in the program. Paradoxically, despite the stakeholders’ great appreciation for the social enterprise, the challenge of governability was also formidable, revealing a tangible risk of mission drift in the reduction of the social enterprise’s target population and a breach of the commitment made to the youth with regard to practical training. The risk of mission drifts emerged as a hidden and evasive issue for the stakeholders, who revealed a deep appreciation for the management and the outcomes of the social enterprise. The challenge of integration, therefore, requires an in-depth examination of how to maintain a successful business without hindering the achievement of the social goal. The study concludes that clear conceptualization of the training process and its aims, increased cooks’ participation in the social project, and novel conceptions with regard to the evaluation of success could serve to benefit the youth and impede mission drift.

Keywords: evaluation study, management, mission drift, social business

Procedia PDF Downloads 94
8560 The Functionality of Ovarian Follicle on Steroid Hormone Secretion under Heat Stress

Authors: Petnamnueng Dettipponpong, Shuen E. Chen

Abstract:

Heat stress is known to have negative effects on reproductive functions, such as follicular development and ovulation. This study aimed to investigate the specific effects of heat stress on steroid hormone secretion of ovarian follicle cells, particularly in relation to the expression of Apolipoprotein B (ApoB) and microsomal triglyceride transfer protein (MTP). The aim of the study was to understand the impact of heat stress on steroid hormone secretion in ovarian follicle cells and to explore the role of ApoB and MTP in this process. Primary granulosa and theca cells were collected from follicles and cultured under heat stress conditions (42 °C) for various time periods. Controls were maintained under normal conditions (37.5 °C ). The culture medium was collected at different time points to measure levels of progesterone and estradiol using ELISA kits. ApoB and MTP expression levels were analyzed using homemade antibodies and western blot. Data were assessed by a one-way ANOVA comparison test with Duncan’s new multiple-range test. Results were expressed as mean±S.E. Difference was considered significant at P<0.05. The results showed that heat stress significantly increased progesterone secretion in granulosa cells, with the peak observed after 13 hours of recovery under thermoneutral conditions. Estradiol secretion by theca cells was not affected. Heat stress also had a significant negative effect on granulosa cell viability. Additionally, the expression of ApoB and MTP was found to be differentially regulated by heat stress. ApoB expression in theca cells was transiently promoted, while ApoB expression in granulosa cells was consistently suppressed. MTP expression increased after 5 hours of recovery in both cell types. These findings suggest a mechanism by which chicken follicle cells export cellular lipids as very low-density lipoprotein (VLDL) in response to thermal stress. These contribute to our understanding of the role of ApoB and MTP steroidogenesis and lipid metabolism under heat stress conditions. The study involved the collection of primary granulosa and theca cells, culture under different temperature conditions, and analysis of the culture medium for hormone levels using ELISA kits. ApoB and MTP expression levels were assessed using homemade antibodies and western blot. This study aimed to address the effects of heat stress on steroid hormone secretion in ovarian follicle cells, as well as the role of ApoB and MTP in this process. The study demonstrates that heat stress stimulates steroidogenesis in granulosa cells, affecting progesterone secretion. ApoB and MTP expression were found to be differentially regulated by heat stress, indicating a potential mechanism for the export of cellular lipids in response to thermal stress.

Keywords: heat stress, granulosa cells, theca cells, steroidogenesis, chicken, apolipoprotein B, microsomal triglyceride transfer protein

Procedia PDF Downloads 53
8559 Performance Evaluation for Weightlifting Lifter by Barbell Trajectory

Authors: Ying-Chen Lin, Ching-Ting Hsu, Wei-Hua Ho

Abstract:

The purpose of this study is to investigate the kinematic characteristics and differences of the snatch barbell trajectory of 53 kg class female weight lifters. We take the 2014 Taiwan College Cup players as examples, and tend to make kinematic applications through the proven weightlifting barbell track system. The competition videos are taken by consumer camcorder with a tripod which set up at the side of the lifter. The results will be discussed in three parts, the first part is various lifting phase, the second part is the compare lifting between success and unsuccessful, and the third part is the outstanding player compare with the general. Conclusion through the barbell can be used to observe the trajectories of our players cite the usual process cannot be observed in the presence of malfunction or habits, so that the coach can find the problem more accurately guide the players. Our system can be applied in practice and competition to increase the resilience of the lifter on the field.

Keywords: computer aided sport training, kinematic, trajectory, weightlifting

Procedia PDF Downloads 440
8558 Introducing a Proper Total Quality Management Model for Libraries

Authors: Alireza Shahraki, Kaveh Keshmiry Zadeh

Abstract:

Total quality management in libraries is of particular importance because high-quality libraries can facilitate the sustained development process in countries. This study has been conducted to examine the feasibility of implementation of total quality management in libraries of Sistan and Baluchestan and to provide an appropriate model for this concern. All of the officials and employees of Sistan and Baluchestan libraries (23 individuals) constitute the population of the study. Data gathering tool is a questionnaire that is designated based on ISO9000. The data extracted from questionnaires were analyzed using SPSS software. Results indicate that the highest degree of conformance to the 8 principles of ISO9000 is attributed to the principle of 'users' (69.9%) and the lowest degree is associated with 'decision making based on facts' (39.1%). Moreover, a significant relationship was observed among the items (1 and 3), (2 and 5), (2 and 7), (3 and 5), (4 and 5), (4 and 7), (4 and 8), (5 and 7), and (7 and 8). According to the research findings, it can generally be said that it is not eligible now to utilize TQM in libraries of Sistan and Baluchestan.

Keywords: quality management, total quality, university libraries, libraries management

Procedia PDF Downloads 324
8557 Numerical Simulation on Two Components Particles Flow in Fluidized Bed

Authors: Wang Heng, Zhong Zhaoping, Guo Feihong, Wang Jia, Wang Xiaoyi

Abstract:

Flow of gas and particles in fluidized beds is complex and chaotic, which is difficult to measure and analyze by experiments. Some bed materials with bad fluidized performance always fluidize with fluidized medium. The material and the fluidized medium are different in many properties such as density, size and shape. These factors make the dynamic process more complex and the experiment research more limited. Numerical simulation is an efficient way to describe the process of gas-solid flow in fluidized bed. One of the most popular numerical simulation methods is CFD-DEM, i.e., computational fluid dynamics-discrete element method. The shapes of particles are always simplified as sphere in most researches. Although sphere-shaped particles make the calculation of particle uncomplicated, the effects of different shapes are disregarded. However, in practical applications, the two-component systems in fluidized bed also contain sphere particles and non-sphere particles. Therefore, it is needed to study the two component flow of sphere particles and non-sphere particles. In this paper, the flows of mixing were simulated as the flow of molding biomass particles and quartz in fluidized bad. The integrated model was built on an Eulerian–Lagrangian approach which was improved to suit the non-sphere particles. The constructed methods of cylinder-shaped particles were different when it came to different numerical methods. Each cylinder-shaped particle was constructed as an agglomerate of fictitious small particles in CFD part, which means the small fictitious particles gathered but not combined with each other. The diameter of a fictitious particle d_fic and its solid volume fraction inside a cylinder-shaped particle α_fic, which is called the fictitious volume fraction, are introduced to modify the drag coefficient β by introducing the volume fraction of the cylinder-shaped particles α_cld and sphere-shaped particles α_sph. In a computational cell, the void ε, can be expressed as ε=1-〖α_cld α〗_fic-α_sph. The Ergun equation and the Wen and Yu equation were used to calculate β. While in DEM method, cylinder-shaped particles were built by multi-sphere method, in which small sphere element merged with each other. Soft sphere model was using to get the connect force between particles. The total connect force of cylinder-shaped particle was calculated as the sum of the small sphere particles’ forces. The model (size=1×0.15×0.032 mm3) contained 420000 sphere-shaped particles (diameter=0.8 mm, density=1350 kg/m3) and 60 cylinder-shaped particles (diameter=10 mm, length=10 mm, density=2650 kg/m3). Each cylinder-shaped particle was constructed by 2072 small sphere-shaped particles (d=0.8 mm) in CFD mesh and 768 sphere-shaped particles (d=3 mm) in DEM mesh. The length of CFD and DEM cells are 1 mm and 2 mm. Superficial gas velocity was changed in different models as 1.0 m/s, 1.5 m/s, 2.0m/s. The results of simulation were compared with the experimental results. The movements of particles were regularly as fountain. The effect of superficial gas velocity on cylinder-shaped particles was stronger than that of sphere-shaped particles. The result proved this present work provided a effective approach to simulation the flow of two component particles.

Keywords: computational fluid dynamics, discrete element method, fluidized bed, multiphase flow

Procedia PDF Downloads 306
8556 Investigation of the Catalytic Role of Surfactants on Carbon Dioxide Hydrate Formation in Sediments

Authors: Ehsan Heidaryan

Abstract:

Gas hydrate sediments are ice like permafrost in deep see and oceans. Methane production in sequestration process and reducing atmospheric carbon dioxide, a main source of greenhouse gas, has been accentuated recently. One focus is capture, separation, and sequestration of industrial carbon dioxide. As a hydrate former, carbon dioxide forms hydrates at moderate temperatures and pressures. This phenomenon could be utilized to capture and separate carbon dioxide from flue gases, and also has the potential to sequester carbon dioxide in the deep seabeds. This research investigated the effect of synthetic surfactants on carbon dioxide hydrate formation, catalysis and consequently, methane production from hydrate permafrosts in sediments. It investigated the sequestration potential of carbon dioxide hydrates in ocean sediments. Also, the catalytic effect of biosurfactants in these processes was investigated.

Keywords: carbon dioxide, hydrate, sequestration, surfactant

Procedia PDF Downloads 415
8555 Cold Metal Transfer Welding of Dissimilar Thickness 6061-T6 to 5182-O Aluminum Alloys

Authors: A. Elrefaei

Abstract:

The possibility of having sheets with different thicknesses and materials in one assembly facilitates the optimal material distribution within the final product and reduces the weight of the structure. Ability of joining process to assembly these different material combinations is always a challenge to the designer. In this study, 0.6 mm thick 6061-T6 and 2 mm thick 5182-O were robot CMT welded using ER5356 and ER4043 filler metals. The thermal effect of welding resulted in a loss of hardness in the 6061 HAZ. Joints welded by ER5356 filler metal were much higher in fracture load than joints welded by ER4043 and the elongation of joints welded by ER5356 was almost double its corresponding joints welded by ER4043 filler. Owing to the big difference in formability and thickness of base metals, the fracture in forming test occurred in the softened 6061 HAZ out from the weld centerline.

Keywords: aluminum, CMT, mechanical, welding

Procedia PDF Downloads 213
8554 Removal of Heavy Metals in Wastewater Treatment System of Suan Sunandha Rajabhat University

Authors: Pantip Kayee, Yuwadee Yaponha, Jiranit Pongtubthai

Abstract:

This study focused on the determination of heavy metal concentration in wastewater and the investigation of heavy metal removal of wastewater treatment system of Suan Sunandha Rajabhat University. Heavy metals (Pb, Cu, Mn, Ni and Zn) were found in wastewater of Suan Sunandha Rajabhat University. Wastewater treatment systems of Suan Sunandha Rajabhat University showed the performance to remove heavy metals. However, heavy metals were still presented in effluent but these residue heavy metals were not over the standard for industrial wastewater. Wastewater treatment system can remove heavy metal by different process such as bioaccumulation by microorganism and biosorption on activated sludge.

Keywords: heavy metal, wastewater, bioaccumulation, biosorption

Procedia PDF Downloads 435
8553 Preschool Story Retelling: Actions and Verb Use

Authors: Eva Nwokah, Casey Taliancich-Klinger, Lauren Luna, Sarah Rodriguez

Abstract:

Story-retelling is a technique frequently used to assess children’s language skills and support their development of narratives. Fourteen preschool children listened to one of two stories from the wordless, illustrated Frog book series and then retold the story using the pictures. A comparison of three verb types (action, mental and other) in the original story model, and children's verb use in their retold stories revealed the salience of action events. The children's stories contained a similar proportion of verb types to the original story. However, the action verbs they used were rarely those they had heard in the original. The implications for the process of lexical encoding and narrative recall are discussed, as well as suggestions for the use of wordless picture books and the language teaching of new verbs.

Keywords: story re-telling, verb use, preschool language, wordless picture books

Procedia PDF Downloads 251
8552 An Improvement Study for Mattress Manufacturing Line with a Simulation Model

Authors: Murat Sarı, Emin Gundogar, Mumtaz Ipek

Abstract:

Nowadays, in a furniture sector, competition of market share (portion) and production variety and changeability enforce the firm to reengineer operations on manufacturing line to increase the productivity. In this study, spring mattress manufacturing line of the furniture manufacturing firm is analyzed analytically. It’s intended to search and find the bottlenecks of production to balance the semi-finished material flow. There are four base points required to investigate in bottleneck elimination process. These are bottlenecks of Method, Material, Machine and Man (work force) resources, respectively. Mentioned bottlenecks are investigated and varied scenarios are created for recruitment of manufacturing system. Probable near optimal alternatives are determined by system models built in Arena simulation software.

Keywords: bottleneck search, buffer stock, furniture sector, simulation

Procedia PDF Downloads 344
8551 The Role of Social Enterprise in Supporting Economic Development in Nigeria

Authors: Susan P. Teru, Jerome Nyameh

Abstract:

Many contemporary organizations are placing a greater emphasis on business enterprise systems as a means of generating higher levels of economic development. Many business research and literature has also concur that enterprise drive economic development, giving little or no credit to social enterprise, whose profit is reinvest to the community development compare to the business enterprise that share their profit to shareholders. Economic development includes economic policies that affect the beneficiaries of the economic entity. We suggest that producing social enterprise increments may be best achieved by orienting social enterprise entrepreneurs system to promote economic development. To this end, we describe a new approach to the social enterprise process that includes social entrepreneur and the key drivers of economic development at each stage. We present a model of social enterprise that incorporates the main ideas of the paper and suggests a new perspective for thinking about how to foster and manage social enterprise to achieve high levels of economic development.

Keywords: social enterprise, economic development, Nigeria, business and management

Procedia PDF Downloads 489
8550 Sorption Properties of Hemp Cellulosic Byproducts for Petroleum Spills and Water

Authors: M. Soleimani, D. Cree, C. Chafe, L. Bates

Abstract:

The accidental release of petroleum products into the environment could have harmful consequences to our ecosystem. Different techniques such as mechanical separation, membrane filtration, incineration, treatment processes using enzymes and dispersants, bioremediation, and sorption process using sorbents have been applied for oil spill remediation. Most of the techniques investigated are too costly or do not have high enough efficiency. This study was conducted to determine the sorption performance of hemp byproducts (cellulosic materials) in terms of sorption capacity and kinetics for hydrophobic and hydrophilic fluids. In this study, heavy oil, light oil, diesel fuel, and water/water vapor were used as sorbate fluids. Hemp stalk in different forms, including loose material (hammer milled (HM) and shredded (Sh) with low bulk densities) and densified forms (pellet form (P) and crumbled pellets (CP)) with high bulk densities, were used as sorbents. The sorption/retention tests were conducted according to ASTM 726 standard. For a quick-purpose application of the sorbents, the sorption tests were conducted for 15 min, and for an ideal sorption capacity of the materials, the tests were carried out for 24 h. During the test, the sorbent material was exposed to the fluid by immersion, followed by filtration through a stainless-steel wire screen. Water vapor adsorption was carried out in a controlled environment chamber with the capability of controlling relative humidity (RH) and temperature. To determine the kinetics of sorption for each fluid and sorbent, the retention capacity also was determined intervalley for up to 24 h. To analyze the kinetics of sorption, pseudo-first-order, pseudo-second order and intraparticle diffusion models were employed with the objective of minimal deviation of the experimental results from the models. The results indicated that HM and Sh materials had the highest sorption capacity for the hydrophobic fluids with approximately 6 times compared to P and CP materials. For example, average retention values of heavy oil on HM and Sh was 560% and 470% of the mass of the sorbents, respectively. Whereas, the retention of heavy oil on P and CP was up to 85% of the mass of the sorbents. This lower sorption capacity for P and CP can be due to the less exposed surface area of these materials and compacted voids or capillary tubes in the structures. For water uptake application, HM and Sh resulted in at least 40% higher sorption capacity compared to those obtained for P and CP. On average, the performance of sorbate uptake from high to low was as follows: water, heavy oil, light oil, diesel fuel. The kinetic analysis indicated that the second-pseudo order model can describe the sorption process of the oil and diesel better than other models. However, the kinetics of water absorption was better described by the pseudo-first-order model. Acetylation of HM materials could improve its oil and diesel sorption to some extent. Water vapor adsorption of hemp fiber was a function of temperature and RH, and among the models studied, the modified Oswin model was the best model in describing this phenomenon.

Keywords: environment, fiber, petroleum, sorption

Procedia PDF Downloads 111
8549 Developing a Clustered-Based Model and Strategy for Waterfront Urban Tourism in Manado, Indonesia

Authors: Bet El Silisna Lagarense, Agustinus Walansendow

Abstract:

Manado Waterfront Development (MWD) occurs along the coastline of the city to meet the communities’ various needs and interests. Manado waterfront, with its various kinds of tourist attractions, is being developed to strengthen opportunities for both tourism and other businesses. There are many buildings that are used for trade and business purposes. The spatial distributions of tourism, commercial and residential land uses overlap. Field research at the study site consisted desktop scan, questionnaire-based survey, observation and in-depth interview with key informants and Focus Group Discussion (FGD) identified how MWD was initially planned and designed in the whole process of decision making in terms of resource and environmental management particularly for the waterfront tourism development in the long run. The study developed a clustered-based model for waterfront urban tourism in Manado through evaluation of spatial distribution of tourism uses along the waterfront.

Keywords: clustered-based model, Manado, urban tourism, waterfront

Procedia PDF Downloads 281
8548 Performance Comparison of Joint Diagonalization Structure (JDS) Method and Wideband MUSIC Method

Authors: Sandeep Santosh, O. P. Sahu

Abstract:

We simulate an efficient multiple wideband and nonstationary source localization algorithm by exploiting both the non-stationarity of the signals and the array geometric information.This algorithm is based on joint diagonalization structure (JDS) of a set of short time power spectrum matrices at different time instants of each frequency bin. JDS can be used for quick and accurate multiple non-stationary source localization. The JDS algorithm is a one stage process i.e it directly searches the Direction of arrivals (DOAs) over the continuous location parameter space. The JDS method requires that the number of sensors is not less than the number of sources. By observing the simulation results, one can conclude that the JDS method can localize two sources when their difference is not less than 7 degree but the Wideband MUSIC is able to localize two sources for difference of 18 degree.

Keywords: joint diagonalization structure (JDS), wideband direction of arrival (DOA), wideband MUSIC

Procedia PDF Downloads 445
8547 Comparison of ANN and Finite Element Model for the Prediction of Ultimate Load of Thin-Walled Steel Perforated Sections in Compression

Authors: Zhi-Jun Lu, Qi Lu, Meng Wu, Qian Xiang, Jun Gu

Abstract:

The analysis of perforated steel members is a 3D problem in nature, therefore the traditional analytical expressions for the ultimate load of thin-walled steel sections cannot be used for the perforated steel member design. In this study, finite element method (FEM) and artificial neural network (ANN) were used to simulate the process of stub column tests based on specific codes. Results show that compared with those of the FEM model, the ultimate load predictions obtained from ANN technique were much closer to those obtained from the physical experiments. The ANN model for the solving the hard problem of complex steel perforated sections is very promising.

Keywords: artificial neural network (ANN), finite element method (FEM), perforated sections, thin-walled Steel, ultimate load

Procedia PDF Downloads 330
8546 Artificial Neural Networks with Decision Trees for Diagnosis Issues

Authors: Y. Kourd, D. Lefebvre, N. Guersi

Abstract:

This paper presents a new idea for fault detection and isolation (FDI) technique which is applied to industrial system. This technique is based on Neural Networks fault-free and Faulty behaviors Models (NNFM's). NNFM's are used for residual generation, while decision tree architecture is used for residual evaluation. The decision tree is realized with data collected from the NNFM’s outputs and is used to isolate detectable faults depending on computed threshold. Each part of the tree corresponds to specific residual. With the decision tree, it becomes possible to take the appropriate decision regarding the actual process behavior by evaluating few numbers of residuals. In comparison to usual systematic evaluation of all residuals, the proposed technique requires less computational effort and can be used for on line diagnosis. An application example is presented to illustrate and confirm the effectiveness and the accuracy of the proposed approach.

Keywords: neural networks, decision trees, diagnosis, behaviors

Procedia PDF Downloads 476
8545 A Model-Driven Approach of User Interface for MVP Rich Internet Application

Authors: Sarra Roubi, Mohammed Erramdani, Samir Mbarki

Abstract:

This paper presents an approach for the model-driven generating of Rich Internet Application (RIA) focusing on the graphical aspect. We used well known Model-Driven Engineering (MDE) frameworks and technologies, such as Eclipse Modeling Framework (EMF), Graphical Modeling Framework (GMF), Query View Transformation (QVTo) and Acceleo to enable the design and the code automatic generation of the RIA. During the development of the approach, we focused on the graphical aspect of the application in terms of interfaces while opting for the Model View Presenter pattern that is designed for graphics interfaces. The paper describes the process followed to define the approach, the supporting tool and presents the results from a case study.

Keywords: metamodel, model-driven engineering, MVP, rich internet application, transformation, user interface

Procedia PDF Downloads 332
8544 Isolation, Selection and Identification of Bacteria for Bioaugmentation of Paper Mills White Water

Authors: Nada Verdel, Tomaz Rijavec, Albin Pintar, Ales Lapanje

Abstract:

Objectives: White water circuits of woodfree paper mills contain suspended, dissolved, and colloidal particles, such as cellulose, starch, paper sizings, and dyes. By closing the white water circuits, these particles start to accumulate and affect the production. Due to high amount of organic matter that scavenge radicals and adsorbs onto catalyst surfaces, treatment of white water with photocatalysis is inappropriate. The most suitable approach should be bioaugmentation-assisted bioremediation. Accordingly, objectives were: - to isolate bacteria capable of degrading organic compounds used for the papermaking process - to select the most active bacteria for bioaugmentation. Status: The state-of-the-art of bioaugmentation of pulp and paper mill effluents is mostly based on biodegradation of lignin. Whereas in white water circuits of woodfree paper mills only papermaking compounds are present. As far as one can tell from the literature, the study on degradation activities of bacteria for all possible compounds of the papermaking process is a novelty. Methodology: The main parameters of the selected white water were systematically analyzed during a period of two months. Bacteria were isolated on selective media with particular carbon source. Organic substances used as carbon source either enter white water circuits as base paper or as recycled broke. The screening of bacterial activities for starch, cellulose, latex, polyvinyl alcohol, alkyl ketene dimers, and resin acids was followed by addition of lugol. Degraders of polycyclic aromatic dyes were selected by cometabolism tests; cometabolism is simultaneous biodegradation of two compounds, in which the degradation of the second compound depends on the presence of the first. The obtained strains were identified by 16S rRNA sequencing. Findings: 335 autochthonous strains were isolated on plates with selected carbon source. The isolated strains were selected according to degradation of the particular carbon source. The ultimate degraders of cationic starch, cellulose, and sizings are Pseudomonas sp. NV-CE12-CF and Aeromonas sp. NV-RES19-BTP. The most active strains capable of degrading azo dyes are Aeromonas sp. NV-RES19-BTP and Sphingomonas sp. NV-B14-CF. Klebsiella sp. NV-Y14A-BTP degrade polycyclic aromatic direct blue 15 and also yellow dye, Agromyces sp. NV-RED15A-BF and Cellulosimicrobium sp. NV-A4-BF are specialists for whitener and Aeromonas sp. NV-RES19-BTP is general degrader of all compounds. To the white water adapted bacteria were isolated and selected according to their degradation activities for particular organic substances. Mostly isolated bacteria are specialized to lower the competition in the microbial community. Degraders of readily-biodegradable compounds do not degrade recalcitrant polycyclic aromatic dyes and vice versa. General degraders are rare.

Keywords: bioaugmentation, biodegradation of azo dyes, cometabolism, smart wastewater treatment technologies

Procedia PDF Downloads 183
8543 Solution Growth of Titanium Nitride Nanowires for Implantation Application

Authors: Roaa Sait, Richard Cross

Abstract:

The synthesis and characterization of one dimensional nanostructure such as nanowires has received considerable attention. Much effort has concentrated on TiN material especially in the biological field due to its useful and unique properties in this field. Therefore, for the purpose of this project, synthesis of Titanium Nitride (TiN) nanowires (NWs) will be presented. They will be synthesised by growing titanium dioxide (Ti) NWs in an aqueous solution at low temperatures under atmospheric pressure. Then the grown nanowires will undergo a 'Nitrodation process' in which results in the formation of TiN NWs. The structure, morphology and composition of the grown nanowires will be characterized using Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-ray Diffraction (XRD) and Cyclic Voltammetry (CV). Obtaining TiN NWs is a challenging task since it has not been formulated before, as far as we acknowledge. This might be due to the fact that nitriding Ti NWs can be difficult in terms of optimizing experimental parameters.

Keywords: nanowires, dissolution-growth, nucleation, PECVD, deposition, spin coating, scanning electron microscopic analysis, cyclic voltammetry analysis

Procedia PDF Downloads 339