Search results for: solo performance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12926

Search results for: solo performance

6626 Analysis of Digital Transformation in Banking: The Hungarian Case

Authors: Éva Pintér, Péter Bagó, Nikolett Deutsch, Miklós Hetényi

Abstract:

The process of digital transformation has a profound influence on all sectors of the worldwide economy and the business environment. The influence of blockchain technology can be observed in the digital economy and e-government, rendering it an essential element of a nation's growth strategy. The banking industry is experiencing significant expansion and development of financial technology firms. Utilizing developing technologies such as artificial intelligence (AI), machine learning (ML), and big data (BD), these entrants are offering more streamlined financial solutions, promptly addressing client demands, and presenting a challenge to incumbent institutions. The advantages of digital transformation are evident in the corporate realm, and firms that resist its adoption put their survival at risk. The advent of digital technologies has revolutionized the business environment, streamlining processes and creating opportunities for enhanced communication and collaboration. Thanks to the aid of digital technologies, businesses can now swiftly and effortlessly retrieve vast quantities of information, all the while accelerating the process of creating new and improved products and services. Big data analytics is generally recognized as a transformative force in business, considered the fourth paradigm of science, and seen as the next frontier for innovation, competition, and productivity. Big data, an emerging technology that is shaping the future of the banking sector, offers numerous advantages to banks. It enables them to effectively track consumer behavior and make informed decisions, thereby enhancing their operational efficiency. Banks may embrace big data technologies to promptly and efficiently identify fraud, as well as gain insights into client preferences, which can then be leveraged to create better-tailored products and services. Moreover, the utilization of big data technology empowers banks to develop more intelligent and streamlined models for accurately recognizing and focusing on the suitable clientele with pertinent offers. There is a scarcity of research on big data analytics in the banking industry, with the majority of existing studies only examining the advantages and prospects associated with big data. Although big data technologies are crucial, there is a dearth of empirical evidence about the role of big data analytics (BDA) capabilities in bank performance. This research addresses a gap in the existing literature by introducing a model that combines the resource-based view (RBV), the technical organization environment framework (TOE), and dynamic capability theory (DC). This study investigates the influence of Big Data Analytics (BDA) utilization on the performance of market and risk management. This is supported by a comparative examination of Hungarian mobile banking services.

Keywords: big data, digital transformation, dynamic capabilities, mobile banking

Procedia PDF Downloads 68
6625 Source-Detector Trajectory Optimization for Target-Based C-Arm Cone Beam Computed Tomography

Authors: S. Hatamikia, A. Biguri, H. Furtado, G. Kronreif, J. Kettenbach, W. Birkfellner

Abstract:

Nowadays, three dimensional Cone Beam CT (CBCT) has turned into a widespread clinical routine imaging modality for interventional radiology. In conventional CBCT, a circular sourcedetector trajectory is used to acquire a high number of 2D projections in order to reconstruct a 3D volume. However, the accumulated radiation dose due to the repetitive use of CBCT needed for the intraoperative procedure as well as daily pretreatment patient alignment for radiotherapy has become a concern. It is of great importance for both health care providers and patients to decrease the amount of radiation dose required for these interventional images. Thus, it is desirable to find some optimized source-detector trajectories with the reduced number of projections which could therefore lead to dose reduction. In this study we investigate some source-detector trajectories with the optimal arbitrary orientation in the way to maximize performance of the reconstructed image at particular regions of interest. To achieve this approach, we developed a box phantom consisting several small target polytetrafluoroethylene spheres at regular distances through the entire phantom. Each of these spheres serves as a target inside a particular region of interest. We use the 3D Point Spread Function (PSF) as a measure to evaluate the performance of the reconstructed image. We measured the spatial variance in terms of Full-Width-Half-Maximum (FWHM) of the local PSFs each related to a particular target. The lower value of FWHM shows the better spatial resolution of reconstruction results at the target area. One important feature of interventional radiology is that we have very well-known imaging targets as a prior knowledge of patient anatomy (e.g. preoperative CT) is usually available for interventional imaging. Therefore, we use a CT scan from the box phantom as the prior knowledge and consider that as the digital phantom in our simulations to find the optimal trajectory for a specific target. Based on the simulation phase we have the optimal trajectory which can be then applied on the device in real situation. We consider a Philips Allura FD20 Xper C-arm geometry to perform the simulations and real data acquisition. Our experimental results based on both simulation and real data show our proposed optimization scheme has the capacity to find optimized trajectories with minimal number of projections in order to localize the targets. Our results show the proposed optimized trajectories are able to localize the targets as good as a standard circular trajectory while using just 1/3 number of projections. Conclusion: We demonstrate that applying a minimal dedicated set of projections with optimized orientations is sufficient to localize targets, may minimize radiation.

Keywords: CBCT, C-arm, reconstruction, trajectory optimization

Procedia PDF Downloads 132
6624 Analytical Hierarchical Process for Multi-Criteria Decision-Making

Authors: Luis Javier Serrano Tamayo

Abstract:

This research on technology makes a first approach to the selection of an amphibious landing ship with strategic capabilities, through the implementation of a multi-criteria model using Analytical Hierarchical Process (AHP), in which a significant group of alternatives of latest technology has been considered. The variables were grouped at different levels to match design and performance characteristics, which affect the lifecycle as well as the acquisition, maintenance and operational costs. The model yielded an overall measure of effectiveness and an overall measure of cost of each kind of ship that was compared each other inside the model and showed in a Pareto chart. The modeling was developed using the Expert Choice software, based on AHP method.

Keywords: analytic hierarchy process, multi-criteria decision-making, Pareto analysis, Colombian Marine Corps, projection operations, expert choice, amphibious landing ship

Procedia PDF Downloads 550
6623 Performance Analysis of Artificial Neural Network Based Land Cover Classification

Authors: Najam Aziz, Nasru Minallah, Ahmad Junaid, Kashaf Gul

Abstract:

Landcover classification using automated classification techniques, while employing remotely sensed multi-spectral imagery, is one of the promising areas of research. Different land conditions at different time are captured through satellite and monitored by applying different classification algorithms in specific environment. In this paper, a SPOT-5 image provided by SUPARCO has been studied and classified in Environment for Visual Interpretation (ENVI), a tool widely used in remote sensing. Then, Artificial Neural Network (ANN) classification technique is used to detect the land cover changes in Abbottabad district. Obtained results are compared with a pixel based Distance classifier. The results show that ANN gives the better overall accuracy of 99.20% and Kappa coefficient value of 0.98 over the Mahalanobis Distance Classifier.

Keywords: landcover classification, artificial neural network, remote sensing, SPOT 5

Procedia PDF Downloads 548
6622 Work Life Balance Strategies and Retention of Medical Professionals

Authors: Naseem M. Twaissi

Abstract:

Medical professionals play an important role in society, and in general, they care more about their patients than about their personal well-being. They need to take a professional approach to maintain a work-life balance. Through a collection of primary data from 1020 medical professionals and the application of relevant statistical tools, this paper explores the pressures on medical professionals with reference to their work-life balance. This study highlights how hospital management, in addition to economic reasons, needs to identify variables to enhance the work-life balance of medical professionals so that quality healthcare facilities may be provided to the citizens of Jordan. Results indicate that formulation and implementation of policies for enhancing work-life balance together with career and retention plans for medical professionals would enhance the performance of hospitals and the quality of health care in Jordan, leading to greater societal well-being.

Keywords: work life balance, job environment, job satisfaction, employee well-being, stress, hospital industry

Procedia PDF Downloads 143
6621 Model of Multi-Criteria Evaluation for Railway Lines

Authors: Juraj Camaj, Martin Kendra, Jaroslav Masek

Abstract:

The paper is focused to the evaluation railway tracks in the Slovakia by using Multi-Criteria method. Evaluation of railway tracks has important impacts for the assessment of investment in technical equipment. Evaluation of railway tracks also has an important impact for the allocation of marshalling yards. Marshalling yards are in transport model as centers for the operation assigned catchment area. This model is one of the effective ways to meet the development strategy of the European Community's railways. By applying this model in practice, a transport company can guarantee a higher quality of service and then expect an increase in performance. The model is also applicable to other rail networks. This model supplements a theoretical problem of train formation problem of new ways of looking at evaluation of factors affecting the organization of wagon flows.

Keywords: railway track, multi-criteria methods, evaluation, transportation model

Procedia PDF Downloads 470
6620 Adaptive Filtering in Subbands for Supervised Source Separation

Authors: Bruna Luisa Ramos Prado Vasques, Mariane Rembold Petraglia, Antonio Petraglia

Abstract:

This paper investigates MIMO (Multiple-Input Multiple-Output) adaptive filtering techniques for the application of supervised source separation in the context of convolutive mixtures. From the observation that there is correlation among the signals of the different mixtures, an improvement in the NSAF (Normalized Subband Adaptive Filter) algorithm is proposed in order to accelerate its convergence rate. Simulation results with mixtures of speech signals in reverberant environments show the superior performance of the proposed algorithm with respect to the performances of the NLMS (Normalized Least-Mean-Square) and conventional NSAF, considering both the convergence speed and SIR (Signal-to-Interference Ratio) after convergence.

Keywords: adaptive filtering, multi-rate processing, normalized subband adaptive filter, source separation

Procedia PDF Downloads 439
6619 Thermoelectrical Properties of Cs Doped BiCuSeO as Promising Oxide Materials for Thermoelectric Energy Converter

Authors: Abdenour Achour, Kan Chen, Mike Reece, Zhaorong Huang

Abstract:

Here we report the synthesis of pure and cost effective of BiCuSeO by a flux method in air, and the enhancement of the thermoelectric performance by Cs doping. The comparison between our synthesis and the usual vacuum furnace method has been studied for the pristine oxyselenides BiCuSeO. We report for very high Seebeck coefficients up to 516 μV K⁻¹ at room temperature with the electrical conductivity of 5.20 S cm⁻¹ which lead to a high power factor of 140 µWm⁻¹K⁻². We also report at the high temperatures the lowest thermal conductivity value of 0.42 µWm⁻¹K⁻¹. Upon doping with Cs, enhanced electrical conductivity coupled with a moderate Seebeck coefficient lead to a power factor of 338 µWm⁻¹K⁻² at 682 K. Moreover, it shows a very low thermal conductivity in the temperature range of 300 to 682 K (0.75 to 0.35 Wm⁻¹K⁻¹). By optimizing the power factor and reducing the thermal conductivity, this results in a high ZT of ~ 0.66 at 682 K for Bi0.995Cs0.005CuSeO.

Keywords: BiCuSeO, Cs doping, thermoelectric, oxyselenide

Procedia PDF Downloads 300
6618 Aggregate Angularity on the Permanent Deformation Zones of Hot Mix Asphalt

Authors: Lee P. Leon, Raymond Charles

Abstract:

This paper presents a method of evaluating the effect of aggregate angularity on hot mix asphalt (HMA) properties and its relationship to the Permanent Deformation resistance. The research concluded that aggregate particle angularity had a significant effect on the Permanent Deformation performance, and also that with an increase in coarse aggregate angularity there was an increase in the resistance of mixes to Permanent Deformation. A comparison between the measured data and predictive data of permanent deformation predictive models showed the limits of existing prediction models. The numerical analysis described the permanent deformation zones and concluded that angularity has an effect of the onset of these zones. Prediction of permanent deformation help road agencies and by extension economists and engineers determine the best approach for maintenance, rehabilitation, and new construction works of the road infrastructure.

Keywords: aggregate angularity, asphalt concrete, permanent deformation, rutting prediction

Procedia PDF Downloads 406
6617 Large-Scale Production of High-Performance Fiber-Metal-Laminates by Prepreg-Press-Technology

Authors: Christian Lauter, Corin Reuter, Shuang Wu, Thomas Troester

Abstract:

Lightweight construction became more and more important over the last decades in several applications, e.g. in the automotive or aircraft sector. This is the result of economic and ecological constraints on the one hand and increasing safety and comfort requirements on the other hand. In the field of lightweight design, different approaches are used due to specific requirements towards the technical systems. The use of endless carbon fiber reinforced plastics (CFRP) offers the largest weight saving potential of sometimes more than 50% compared to conventional metal-constructions. However, there are very limited industrial applications because of the cost-intensive manufacturing of the fibers and production technologies. Other disadvantages of pure CFRP-structures affect the quality control or the damage resistance. One approach to meet these challenges is hybrid materials. This means CFRP and sheet metal are combined on a material level. Therefore, new opportunities for innovative process routes are realizable. Hybrid lightweight design results in lower costs due to an optimized material utilization and the possibility to integrate the structures in already existing production processes of automobile manufacturers. In recent and current research, the advantages of two-layered hybrid materials have been pointed out, i.e. the possibility to realize structures with tailored mechanical properties or to divide the curing cycle of the epoxy resin into two steps. Current research work at the Chair for Automotive Lightweight Design (LiA) at the Paderborn University focusses on production processes for fiber-metal-laminates. The aim of this work is the development and qualification of a large-scale production process for high-performance fiber-metal-laminates (FML) for industrial applications in the automotive or aircraft sector. Therefore, the prepreg-press-technology is used, in which pre-impregnated carbon fibers and sheet metals are formed and cured in a closed, heated mold. The investigations focus e.g. on the realization of short process chains and cycle times, on the reduction of time-consuming manual process steps, and the reduction of material costs. This paper gives an overview over the considerable steps of the production process in the beginning. Afterwards experimental results are discussed. This part concentrates on the influence of different process parameters on the mechanical properties, the laminate quality and the identification of process limits. Concluding the advantages of this technology compared to conventional FML-production-processes and other lightweight design approaches are carried out.

Keywords: composite material, fiber-metal-laminate, lightweight construction, prepreg-press-technology, large-series production

Procedia PDF Downloads 240
6616 Traffic Signal Control Using Citizens’ Knowledge through the Wisdom of the Crowd

Authors: Aleksandar Jovanovic, Katarina Kukic, Ana Uzelac, Dusan Teodorovic

Abstract:

Wisdom of the Crowd (WoC) is a decentralized method that uses the collective intelligence of humans. Individual guesses may be far from the target, but when considered as a group, they converge on optimal solutions for a given problem. We will utilize WoC to address the challenge of controlling traffic lights within intersections from the streets of Kragujevac, Serbia. The problem at hand falls within the category of NP-hard problems. We will employ an algorithm that leverages the swarm intelligence of bees: Bee Colony Optimization (BCO). Data regarding traffic signal timing at a single intersection will be gathered from citizens through a survey. Results obtained in that manner will be compared to the BCO results for different traffic scenarios. We will use Vissim traffic simulation software as a tool to compare the performance of bees’ and humans’ collective intelligence.

Keywords: wisdom of the crowd, traffic signal control, combinatorial optimization, bee colony optimization

Procedia PDF Downloads 110
6615 Boiling Heat Transfer Enhancement Using Hydrophilic Millimeter Copper Free Particles

Authors: Abbasali Abouei Mehrizi, Hao Wang, Leping Zhou

Abstract:

Modification of surface wettability is one of the conventional approaches to manipulate the boiling heat transfer. Instead of direct surface modification, in the present study, the surface is decorated with free copper particles with different hydrophobicity. We used millimeter-sized copper particles with two different hydrophobicity. The surface is covered with untreated, hydrophilic, and a combination of hydrophobic and hydrophilic copper particles separately, and the heat flux and wall superheat temperature was measured experimentally and compared with the bare polished copper surface. The results show that the untreated copper particles can slightly improve the boiling heat transfer when the hydrophilic copper particles have better performance. Combining hydrophilic and hydrophobic copper particles reduces boiling heat transfer.

Keywords: boiling heat transfer, copper balls, hydrophobic, hydrophilic

Procedia PDF Downloads 71
6614 Haematological Indices of West African Dwarf Goats Fed Diets Containing Varying Levels of Sodium Humate

Authors: Ubu Isaiah, Gambo D.

Abstract:

Haematological studies are an important diagnosis of nutritional studies. The study investigated the haematological parameters of West African Dwarf (WAD) goats fed a diet containing different levels of sodium humate. Twenty (20) WAD bucks weighing between 8.154 ± 0.340 kg were used for this study. The bucks were randomly allotted to four dietary treatments containing 0, 5, 10, and 15 g/kg diet of sodium humate laid out as a completely randomized design. Data on haematological parameters were obtained and statistically analysed using the generalized linear model (GLM) of the Statistical Package for Social Sciences (SPSS) (version 23). Results showed that sodium humate supplementation (p <0.05) has no significant effect on Neutrophils, Eosinophil, Basophils, and Monocytes, respectively. It was recommended up to 15 g/kg diet supplementation of sodium humate sufficiently enhance the performance of WAD goats as well the improving their haematological indices.

Keywords: haematological indices, goat, sodium humate

Procedia PDF Downloads 100
6613 The Influence of Physical Activity and Sporting Regular on the School Performances of Pupils Ages 6-10 Years Old

Authors: Kheira A. Bekhechi, Belkacem Khiat

Abstract:

The goal of our study is to know if there is an influence of the regular sporting physical-activity on the school performances of Algerian children. An experimental group composed of 55 sporting pupils and a reference group of 55 non-sporting pupils between 6 to10 years old (boys and girls) of the primary schools in Oran (Algeria) were followed during 15 months (Five terms). The socio-demographic data was collected from a survey given to pupils of the two groups and the school results from the administration at the end of each term. The sporting pupils have a general school average significantly higher than those of the non- sporting pupils (p < 0.05). The practice of physical activity and regular sporting by the children would deserve to be largely encouraged based on the beneficial effects not only on health but also on the academic performance. The parents, teachers and health professionals should be strongly aware.

Keywords: cognitive capacities, physical activity and sport, school children, school performances

Procedia PDF Downloads 189
6612 Joint Space Hybrid Force/Position Control of 6-DoF Robot Manipulator Using Neural Network

Authors: Habtemariam Alemu

Abstract:

It has been known that the performance of position and force control is highly affected by both robot dynamic and environment stiffness uncertainties. In this paper, joint space hybrid force and position control strategy with self-selecting matrix using artificial neural network compensator is proposed. The objective of the work is to improve controller robustness by applying a neural network technique in order to compensate the effect of uncertainties in the robot model. Simulation results for a 6 degree of freedom (6-DoF) manipulator and different types of environments showed the effectiveness of the suggested approach. 6-DoF Puma 560 family robot manipulator is chosen as industrial robot and its efficient dynamic model is designed using Matlab/SimMechanics library.

Keywords: robot manipulator, force/position control, artificial neural network, Matlab/Simulink

Procedia PDF Downloads 517
6611 Item Response Calibration/Estimation: An Approach to Adaptive E-Learning System Development

Authors: Adeniran Adetunji, Babalola M. Florence, Akande Ademola

Abstract:

In this paper, we made an overview on the concept of adaptive e-Learning system, enumerates the elements of adaptive learning concepts e.g. A pedagogical framework, multiple learning strategies and pathways, continuous monitoring and feedback on student performance, statistical inference to reach final learning strategy that works for an individual learner by “mass-customization”. Briefly highlights the motivation of this new system proposed for effective learning teaching. E-Review literature on the concept of adaptive e-learning system and emphasises on the Item Response Calibration, which is an important approach to developing an adaptive e-Learning system. This paper write-up is concluded on the justification of item response calibration/estimation towards designing a successful and effective adaptive e-Learning system.

Keywords: adaptive e-learning system, pedagogical framework, item response, computer applications

Procedia PDF Downloads 598
6610 Using Machine Learning to Enhance Win Ratio for College Ice Hockey Teams

Authors: Sadixa Sanjel, Ahmed Sadek, Naseef Mansoor, Zelalem Denekew

Abstract:

Collegiate ice hockey (NCAA) sports analytics is different from the national level hockey (NHL). We apply and compare multiple machine learning models such as Linear Regression, Random Forest, and Neural Networks to predict the win ratio for a team based on their statistics. Data exploration helps determine which statistics are most useful in increasing the win ratio, which would be beneficial to coaches and team managers. We ran experiments to select the best model and chose Random Forest as the best performing. We conclude with how to bridge the gap between the college and national levels of sports analytics and the use of machine learning to enhance team performance despite not having a lot of metrics or budget for automatic tracking.

Keywords: NCAA, NHL, sports analytics, random forest, regression, neural networks, game predictions

Procedia PDF Downloads 118
6609 A Case-Based Reasoning-Decision Tree Hybrid System for Stock Selection

Authors: Yaojun Wang, Yaoqing Wang

Abstract:

Stock selection is an important decision-making problem. Many machine learning and data mining technologies are employed to build automatic stock-selection system. A profitable stock-selection system should consider the stock’s investment value and the market timing. In this paper, we present a hybrid system including both engage for stock selection. This system uses a case-based reasoning (CBR) model to execute the stock classification, uses a decision-tree model to help with market timing and stock selection. The experiments show that the performance of this hybrid system is better than that of other techniques regarding to the classification accuracy, the average return and the Sharpe ratio.

Keywords: case-based reasoning, decision tree, stock selection, machine learning

Procedia PDF Downloads 421
6608 Active Control Improvement of Smart Cantilever Beam by Piezoelectric Materials and On-Line Differential Artificial Neural Networks

Authors: P. Karimi, A. H. Khedmati Bazkiaei

Abstract:

The main goal of this study is to test differential neural network as a controller of smart structure and is to enumerate its advantages and disadvantages in comparison with other controllers. In this study, the smart structure has been considered as a Euler Bernoulli cantilever beam and it has been tried that it be under control with the use of vibration neural network resulting from movement. Also, a linear observer has been considered as a reference controller and has been compared its results. The considered vibration charts and the controlled state have been recounted in the final part of this text. The obtained result show that neural observer has better performance in comparison to the implemented linear observer.

Keywords: smart material, on-line differential artificial neural network, active control, finite element method

Procedia PDF Downloads 212
6607 Upon One Smoothing Problem in Project Management

Authors: Dimitri Golenko-Ginzburg

Abstract:

A CPM network project with deterministic activity durations, in which activities require homogenous resources with fixed capacities, is considered. The problem is to determine the optimal schedule of starting times for all network activities within their maximal allowable limits (in order not to exceed the network's critical time) to minimize the maximum required resources for the project at any point in time. In case when a non-critical activity may start only at discrete moments with the pregiven time span, the problem becomes NP-complete and an optimal solution may be obtained via a look-over algorithm. For the case when a look-over requires much computational time an approximate algorithm is suggested. The algorithm's performance ratio, i.e., the relative accuracy error, is determined. Experimentation has been undertaken to verify the suggested algorithm.

Keywords: resource smoothing problem, CPM network, lookover algorithm, lexicographical order, approximate algorithm, accuracy estimate

Procedia PDF Downloads 302
6606 Structural Performance Evaluation of Power Boiler for the Pressure Release Valve in Consideration of the Thermal Expansion

Authors: Young-Hun Lee, Tae-Gwan Kim, Jong-Kyu Kim, Young-Chul Park

Abstract:

In this study, Spring safety valve Heat - structure coupled analysis was carried out. Full analysis procedure and performing thermal analysis at a maximum temperature, them to the results obtained through to give an additional load and the pressure on the valve interior, and Disc holder Heat-Coupled structure Analysis was carried out. Modeled using a 3D design program Solidworks, For the modeling of the safety valve was used 3D finite element analysis program ANSYS. The final result to be obtained through the Analysis examined the stability of the maximum displacement and the maximum stress to the valve internal components occurring in the high-pressure conditions.

Keywords: finite element method, spring safety valve, gap, stress, strain, deformation

Procedia PDF Downloads 370
6605 Numerical Study of Heat Release of the Symmetrically Arranged Extruded-Type Heat Sinks

Authors: Man Young Kim, Gyo Woo Lee

Abstract:

In this numerical study, we want to present the design of highly efficient extruded-type heat sink. The symmetrically arranged extruded-type heat sinks are used instead of a single extruded or swaged-type heat sink. In this parametric study, the maximum temperatures, the base temperatures between heaters, and the heat release rates were investigated with respect to the arrangements of heat sources, air flow rates, and amounts of heat input. Based on the results we believe that the use of both side of heat sink is to be much better for release the heat than the use of single side. Also from the results, it is believed that the symmetric arrangement of heat sources is recommended to achieve a higher heat transfer from the heat sink.

Keywords: heat sink, forced convection, heat transfer, performance evaluation, symmetrical arrangement

Procedia PDF Downloads 417
6604 Restrained Shrinkage Behavior of Self Consolidating Concrete

Authors: Boudjelthia Radhwane

Abstract:

Self-compacting concrete (SCC) developed in Japan in the late 80s has enabled the construction industry to reduce demand on the resources, improve the work condition and also reduce the impact of environment by elimination of the need for compaction. The shrinkage of concrete is the main cause of cracking in bridge decks. Bridge decks tend to be restrained from shrinkage, and this restraint along with other factors causes the bridge to crack. The characteristics of SCC under restrained shrinkage are important to understand in order to predict the cracking behavior in actual structures. Restrained shrinkage testing is done in accordance to AASHTO testing protocol. The free shrinkage performance and cracking behavior were reported and compared when changing the sand to aggregate ratio and the water to cement ratio. The results of free shrinkage show that when a mix design has higher free shrinkage, it will crack in restrained shrinkage earlier than a mix with lower free shrinkage.

Keywords: concrete mix, cracking behavior, restrained shrinkage, self compacting concrete

Procedia PDF Downloads 379
6603 Machine Learning Techniques to Develop Traffic Accident Frequency Prediction Models

Authors: Rodrigo Aguiar, Adelino Ferreira

Abstract:

Road traffic accidents are the leading cause of unnatural death and injuries worldwide, representing a significant problem of road safety. In this context, the use of artificial intelligence with advanced machine learning techniques has gained prominence as a promising approach to predict traffic accidents. This article investigates the application of machine learning algorithms to develop traffic accident frequency prediction models. Models are evaluated based on performance metrics, making it possible to do a comparative analysis with traditional prediction approaches. The results suggest that machine learning can provide a powerful tool for accident prediction, which will contribute to making more informed decisions regarding road safety.

Keywords: machine learning, artificial intelligence, frequency of accidents, road safety

Procedia PDF Downloads 89
6602 Stable Diffusion, Context-to-Motion Model to Augmenting Dexterity of Prosthetic Limbs

Authors: André Augusto Ceballos Melo

Abstract:

Design to facilitate the recognition of congruent prosthetic movements, context-to-motion translations guided by image, verbal prompt, users nonverbal communication such as facial expressions, gestures, paralinguistics, scene context, and object recognition contributes to this process though it can also be applied to other tasks, such as walking, Prosthetic limbs as assistive technology through gestures, sound codes, signs, facial, body expressions, and scene context The context-to-motion model is a machine learning approach that is designed to improve the control and dexterity of prosthetic limbs. It works by using sensory input from the prosthetic limb to learn about the dynamics of the environment and then using this information to generate smooth, stable movements. This can help to improve the performance of the prosthetic limb and make it easier for the user to perform a wide range of tasks. There are several key benefits to using the context-to-motion model for prosthetic limb control. First, it can help to improve the naturalness and smoothness of prosthetic limb movements, which can make them more comfortable and easier to use for the user. Second, it can help to improve the accuracy and precision of prosthetic limb movements, which can be particularly useful for tasks that require fine motor control. Finally, the context-to-motion model can be trained using a variety of different sensory inputs, which makes it adaptable to a wide range of prosthetic limb designs and environments. Stable diffusion is a machine learning method that can be used to improve the control and stability of movements in robotic and prosthetic systems. It works by using sensory feedback to learn about the dynamics of the environment and then using this information to generate smooth, stable movements. One key aspect of stable diffusion is that it is designed to be robust to noise and uncertainty in the sensory feedback. This means that it can continue to produce stable, smooth movements even when the sensory data is noisy or unreliable. To implement stable diffusion in a robotic or prosthetic system, it is typically necessary to first collect a dataset of examples of the desired movements. This dataset can then be used to train a machine learning model to predict the appropriate control inputs for a given set of sensory observations. Once the model has been trained, it can be used to control the robotic or prosthetic system in real-time. The model receives sensory input from the system and uses it to generate control signals that drive the motors or actuators responsible for moving the system. Overall, the use of the context-to-motion model has the potential to significantly improve the dexterity and performance of prosthetic limbs, making them more useful and effective for a wide range of users Hand Gesture Body Language Influence Communication to social interaction, offering a possibility for users to maximize their quality of life, social interaction, and gesture communication.

Keywords: stable diffusion, neural interface, smart prosthetic, augmenting

Procedia PDF Downloads 102
6601 Evaluation of Cirata Reservoir Sustainability Using Multi Dimensionalscaling (MDS)

Authors: Kholil Kholil, Aniwidayati

Abstract:

MDS (Multi-Dimensional Scaling) is one method that has been widely used to evaluate the use of natural resources. By using Raffish software tool, we will able to analyze sustainability level of the natural resources use. This paper will discuss the level of sustainability of the reservoir using MDS (Multi-Dimensional Scaling) based on five dimensions: (1) Ecology & Layout, (2) Economics, (3) Social & Culture, (4) Regulations & Institutional, and (5) Infrastructure and Technology. MDS analysis results show that the dimension of ecological and layout, institutional and the regulation are lack of sustainability due to the low index score of 45.76 and 42.24. While for the economic, social and culture, and infrastructure and technology dimension reach each score of 63.12, 64.42, and 68.64 (only the sufficient sustainability category). It means that the sustainability performance of Cirata Reservoir seriously threatened.

Keywords: MDS, cirata reservoir, carrying capacity, water quality, sustainable development, sedimentation, sustainability index

Procedia PDF Downloads 382
6600 A Survey on Quasi-Likelihood Estimation Approaches for Longitudinal Set-ups

Authors: Naushad Mamode Khan

Abstract:

The Com-Poisson (CMP) model is one of the most popular discrete generalized linear models (GLMS) that handles both equi-, over- and under-dispersed data. In longitudinal context, an integer-valued autoregressive (INAR(1)) process that incorporates covariate specification has been developed to model longitudinal CMP counts. However, the joint likelihood CMP function is difficult to specify and thus restricts the likelihood based estimating methodology. The joint generalized quasilikelihood approach (GQL-I) was instead considered but is rather computationally intensive and may not even estimate the regression effects due to a complex and frequently ill conditioned covariance structure. This paper proposes a new GQL approach for estimating the regression parameters (GQLIII) that are based on a single score vector representation. The performance of GQL-III is compared with GQL-I and separate marginal GQLs (GQL-II) through some simulation experiments and is proved to yield equally efficient estimates as GQL-I and is far more computationally stable.

Keywords: longitudinal, com-Poisson, ill-conditioned, INAR(1), GLMS, GQL

Procedia PDF Downloads 356
6599 Clustering of Panels and Shade Diffusion Techniques for Partially Shaded PV Array-Review

Authors: Shahida Khatoon, Mohd. Faisal Jalil, Vaishali Gautam

Abstract:

The Photovoltaic (PV) generated power is mainly dependent on environmental factors. The PV array’s lifetime and overall systems effectiveness reduce due to the partial shading condition. Clustering the electrical connections between solar modules is a viable strategy for minimizing these power losses by shade diffusion. This article comprehensively evaluates various PV array clustering/reconfiguration models for PV systems. These are static and dynamic reconfiguration techniques for extracting maximum power in mismatch conditions. This paper explores and analyzes current breakthroughs in solar PV performance improvement strategies that merit further investigation. Altogether, researchers and academicians working in the field of dedicated solar power generation will benefit from this research.

Keywords: static reconfiguration, dynamic reconfiguration, photo voltaic array, partial shading, CTC configuration

Procedia PDF Downloads 120
6598 Synthesizing and Fabrication of Pani-(SnO₂, ZnO)/rGO by Sol-Gel Method to Develop a Biosensor Thin-Films on Top Glass Substrate

Authors: Mohammad Arifin, Huda Abdullah, Norshafadzila Mohammad Naim

Abstract:

The fabricated PANI-(SnO₂, ZnO)/rGO nanocomposite thin films for the E. coli bacteria sensor were investigated. The nanocomposite thin films were prepared by the sol-gel method and deposited on the glass substrate using the spin-coating technique. The internal structure and surface morphology of the thin films have been analyzed by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and atomic force microscopy (AFM). The optical properties of the films were investigated by UV-Vis spectroscopy, Raman spectroscopy, and Fourier transform infrared spectroscopy (FTIR). The sensitivity performance was identified by measuring the changing conductivity before and after the incubation of E. coli bacteria using current-voltage (I-V) and cyclic voltammetry (C-V) measurements.

Keywords: PANI-(SnO₂, ZnO)/rGO, nanocomposite, bacteria sensor, thin films

Procedia PDF Downloads 119
6597 Enhancement of Building Sustainability by Using Environment-Friendly Material

Authors: Rina Yadav, Meng-Ting Tsai

Abstract:

In the present scenario, sustainable buildings are in high demand. The essential decision for building sustainability is made during the design and preconstruction stages. Main objective of this study is reduction of unfavorable environmental impacts, which is a major cause of global warming. Based on this problem, to diminish the environmental hazards, present research study is applied to provide a guideline to designer that will be useful for material selection stage of designing. This can be achieved by using local available materials such as wood, mud, bamboos instead of cement, steel, concrete by reducing carbon dioxide emission. Energy simulation will be analyzed by software to get the comparable result. It will be encouraging and motivational for designer while using ecofriendly material to achieve points in Leadership in energy and environmental design (LEED) in green rating system.

Keywords: sustainability design, lead rating, LEED, building performance analyses

Procedia PDF Downloads 492