Search results for: ion temperature gradient mode
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9432

Search results for: ion temperature gradient mode

3132 Alginate Wrapped NiO-ZnO Nanocomposites-Based Catalyst for the Reduction of Methylene Blue

Authors: Mohamed A. Adam Abakar, Abdullah M. Asiri, Sher Bahadar Khan

Abstract:

In this paper, nickel oxide-zinc oxide (NiO-ZnO) catalyst was embedded in an alginate polymer (Na alg/NiO-ZnO), a nanocomposite that was used as a nano-catalyst for catalytic conversion of deleterious contaminants such as organic dyes (Acridine Orange “ArO”, Methylene Blue “MB”, Methyl Orange “MO”) and 4-Nitrophenol “4-NP” as well. FESEM, EDS, FTIR and XRD techniques were used to identify the shape and structure of the nano-catalyst (Na alg/NiO-ZnO). UV spectrophotometry is used to collect the results and it showed greater and faster reduction rate for MB (illustrated in figures 2, 3, 4 and 5). Data recorded and processed, drawing and analysis of graphs achieved by using Origin 2018. Reduction percentage of MB was assessed to be 95.25 % in just 13 minutes. Furthermore, the catalytic property of Na alg/NiO-ZnO in the reduction of organic dyes was investigated using various catalyst amounts, dye types, reaction times and reducing agent dosages at room temperature (rt). NaBH4-assisted reduction of organic dyes was studied using alg/NiO-ZnO as a potential catalyst.

Keywords: Alginate, metal oxides, nanocomposites-based, catalysts, reduction, photocatalytic degradation, water treatment

Procedia PDF Downloads 72
3131 A Systematic Review of the Psychometric Properties of Augmentative and Alternative Communication Assessment Tools in Adolescents with Complex Communication Needs

Authors: Nadwah Onwi, Puspa Maniam, Azmawanie A. Aziz, Fairus Mukhtar, Nor Azrita Mohamed Zin, Nurul Haslina Mohd Zin, Nurul Fatehah Ismail, Mohamad Safwan Yusoff, Susilidianamanalu Abd Rahman, Siti Munirah Harris, Maryam Aizuddin

Abstract:

Objective: Malaysia has a growing number of individuals with complex communication needs (CCN). The initiation of augmentative and alternative communication (AAC) intervention may facilitate individuals with CCN to understand and express themselves optimally and actively participate in activities in their daily life. AAC is defined as multimodal use of communication ability to allow individuals to use every mode possible to communicate with others using a set of symbols or systems that may include the symbols, aids, techniques, and strategies. It is consequently critical to evaluate the deficits to inform treatment for AAC intervention. However, no known measurement tools are available to evaluate the user with CCN available locally. Design: A systematic review (SR) is designed to analyze the psychometric properties of AAC assessment for adolescents with CCN published in peer-reviewed journals. Tools are rated by the methodological quality of studies and the psychometric measurement qualities of each tool. Method: A literature search identifying AAC assessment tools with psychometrically robust properties and conceptual framework was considered. Two independent reviewers screened the abstracts and full-text articles and review bibliographies for further references. Data were extracted using standardized forms and study risk of bias was assessed. Result: The review highlights the psychometric properties of AAC assessment tools that can be used by speech-language therapists applicable to be used in the Malaysian context. The work outlines how systematic review methods may be applied to the consideration of published material that provides valuable data to initiate the development of Malay Language AAC assessment tools. Conclusion: The synthesis of evidence has provided a framework for Malaysia Speech-Language therapists in making an informed decision for AAC intervention in our standard operating procedure in the Ministry of Health, Malaysia.

Keywords: augmentative and alternative communication, assessment, adolescents, complex communication needs

Procedia PDF Downloads 152
3130 Students’ Perception of Careers in Shared Services Industry

Authors: Oksana Koval, Stephen Nabareseh

Abstract:

Talent attraction is identified as a top priority between 2015 – 2020 for Shared Service Centers (SSCs) based on an industry-wide studies. Due to market dynamics and the structure of labour force, shared service industries in Eastern and Central Europe strive for qualified graduates with appropriate and unique skills to occupy such job places. The inbuilt interest and course prescriptions undertaken by prospective job seekers determine whether SSCs will eventually admit such professionals. This paper assesses students’ overall perception of careers in the shared services industry and further diagnosis gender impact and influence on the job preferences among students. Questionnaires were distributed among students in the Czech Republic universities using an online mode. Respondents vary by study year, gender, age, course of study, and work preferences. A total of 1283 student responses has been analyzed using Stata data analytics software. It was discovered that over 70% of respondents who are aware of SSCs are quite ignorant of the job opportunities offered by the centers. While majority of respondents are interested in support positions (e.g. procurement specialist, planning specialist, human resource specialist, process improvement specialist and payroll specialist, etc.), around a third of respondents (32.8 percent) will decline a job offer from SSCs. The analysis also revealed that males are more likely than females to seek careers in international companies, hence, tend to be more favorable towards shared service jobs. Females, however, have stronger preferences towards marketing and PR jobs. The research results provide insights into the job aspirations of students interviewed. The findings provide a huge resource for recruitment agencies and shared service industries to renew and redirect their search for talents into SSCs. Based on the fact that great portion of respondents are planning to start their career within 6-12 months, the research provides important highlights for the talent attraction and recruitment strategies in the industry and provides a curriculum direction in academia.

Keywords: Czech Republic labour market, gender, talent attraction, shared service centers, students

Procedia PDF Downloads 230
3129 Phycoremiadation of Heavy Metals by Marine Macroalgae Collected from Olaikuda, Rameswaram, Southeast Coast of India

Authors: Suparna Roy, Anatharaman Perumal

Abstract:

The industrial effluent with high amount of heavy metals is known to have adverse effects on the environment. For the removal of heavy metals from aqueous environment, different conventional treatment technologies had been applied gradually which are not economically beneficial and also produce huge quantity of toxic chemical sludge. So, bio-sorption of heavy metals by marine plant is an eco-friendly innovative and alternative technology for removal of these pollutants from aqueous environment. The aim of this study is to evaluate the capacity of heavy metals accumulation and removal by some selected marine macroalgae (seaweeds) from marine environment. Methods: Seaweeds Acanthophora spicifera (Vahl.) Boergesen, Codium tomentosum Stackhouse, Halimeda gracilis Harvey ex. J. Agardh, Gracilaria opuntia Durairatnam.nom. inval. Valoniopsis pachynema (Martens) Boergesen, Caulerpa racemosa var. macrophysa (Sonder ex Kutzing) W. R. Taylor and Hydroclathrus clathratus (C. Agardh) Howe were collected from Olaikuda (09°17.526'N-079°19.662'E), Rameshwaram, south east coast of India during post monsoon period (April’2016). Seaweeds were washed with sterilized and filtered in-situ seawater repeatedly to remove all the epiphytes and debris and clean seaweeds were kept for shade drying for one week. The dried seaweeds were grinded to powder, and one gm powder seaweeds were taken in a 250ml conical flask, and 8 ml of 10 % HNO3 (70 % pure) was added to each sample and kept in room temperature (28 ̊C) for 24 hours and then samples were heated in hotplate at 120 ̊C, boiled to evaporate up to dryness and 20 ml of Nitric acid: Percholoric acid in 4:1 were added to it and again heated to hotplate at 90 ̊C up to evaporate to dryness, then samples were kept in room temperature for few minutes to cool and 10ml 10 % HNO3 were added to it and kept for 24 hours in cool and dark place and filtered with Whatman (589/2) filter paper and the filtrates were collected in 250ml clean conical flask and diluted accurately to 25 ml volume with double deionised water and triplicate of each sample were analysed with Inductively-Coupled plasma analysis (ICP-OES) to analyse total eleven heavy metals (Ag, Cd, B, Cu, Mn, Co, Ni, Cr, Pb, Zn, and Al content of the specified species and data were statistically evaluated for standard deviation. Results: Acanthophora spicifera contains highest amount of Ag (0.1± 0.2 mg/mg) followed by Cu (0.16±0.01 mg/mg), Mn (1.86±0.02 mg/mg), B (3.59±0.2 mg/mg), Halimeda gracilis showed highest accumulation of Al (384.75±0.12mg/mg), Valoniopsis pachynema accumulates maximum amount of Co (0.12±0.01 mg/mg), Zn (0.64±0.02 mg/mg), Caulerpa racemosa var. macrophysa contains Zn (0.63±0.01), Cr (0.26±0.01 mg/mg ), Ni (0.21±0.05), Pb (0.16±0.03 ) and Cd ( 0.02±00 ). Hydroclathrus clathratus, Codium tomentosum and Gracilaria opuntia also contain adequate amount of heavy metals. Conclusions: The mentioned species of seaweeds are contributing important role for decreasing the heavy metals pollution in marine environment by bioaccumulation. So, we can utilise this species to remove excess amount of heavy metals from polluted area.

Keywords: heavy metals pollution, seaweeds, bioaccumulation, eco-friendly, phyco-remediation

Procedia PDF Downloads 235
3128 The Effect of Photochemical Smog on Respiratory Health Patients in Abuja Nigeria

Authors: Christabel Ihedike, John Mooney, Monica Price

Abstract:

Summary: This study aims to critically evaluate effect of photochemical smog on respiratory health in Nigeria. Cohort of chronic obstructive pulmonary disease (COPD) patients was recruited from two large hospitals in Abuja Nigeria. Respiratory health questionnaires, daily diaries, dyspnoea scale and lung function measurement were used to obtain health data and investigate the relationship with air quality data (principally ozone, NOx and particulate pollution). Concentrations of air pollutants were higher than WHO and Nigerian air quality standard. The result suggests a correlation between measured air quality and exacerbation of respiratory illness. Introduction: Photochemical smog is a significant health challenge in most cities and its effect on respiratory health is well acknowledged. This type of pollution is most harmful to the elderly, children and those with underlying respiratory disease. This study aims to investigate impact of increasing temperature and photo-chemically generated secondary air pollutants on respiratory health in Abuja Nigeria. Method and Result: Health data was collected using spirometry to measure lung function on routine attendance at the clinic, daily diaries kept by patients and information obtained using respiratory questionnaire. Questionnaire responses (obtained using an adapted and internally validated version of St George’s Hospital Respiratory Questionnaire), shows that ‘time of wheeze’ showed an association with participants activities: 30% had worse wheeze in the morning: 10% cannot shop, 15% take long-time to get washed, 25% walk slower, 15% if hurry have to stop and 5% cannot take-bath. There was also a decrease in Forced expiratory volume in the first second and Forced Vital Capacity, and daily change in the afternoon–morning may be associated with the concentration level of pollutants. Also, dyspnoea symptoms recorded that 60% of patients were on grade 3, 25% grade 2 and 15% grade 1. Daily frequency of the number of patients in the cohort that cough /brought sputum is 78%. Air pollution in the city is higher than Nigerian and WHO standards with NOx and PM10 concentrations of 693.59ug/m-3 and 748ugm-3 being measured respectively. The result shows that air pollution may increase occurrence and exacerbation of respiratory disease. Conclusion: High temperature and local climatic conditions in urban Nigeria encourages formation of Ozone, the major constituent of photochemical smog, resulting also in the formation of secondary air pollutants associated with health challenges. In this study we confirm the likely potency of the pattern of secondary air pollution in exacerbating COPD symptoms in vulnerable patient group in urban Nigeria. There is need for better regulation and measures to reduce ozone, particularly when local climatic conditions favour development of photochemical smog in such settings. Climate change and likely increasing temperatures add impetus and urgency for better air quality standards and measures (traffic-restrictions and emissions standards) in developing world settings such as Nigeria.

Keywords: Abuja-Nigeria, effect, photochemical smog, respiratory health

Procedia PDF Downloads 224
3127 An Improved Single Point Closure Model Based on Dissipation Anisotropy for Geophysical Turbulent Flows

Authors: A. P. Joshi, H. V. Warrior, J. P. Panda

Abstract:

This paper is a continuation of the work carried out by various turbulence modelers in Oceanography on the topic of oceanic turbulent mixing. It evaluates the evolution of ocean water temperature and salinity by the appropriate modeling of turbulent mixing utilizing proper prescription of eddy viscosity. Many modelers in past have suggested including terms like shear, buoyancy and vorticity to be the parameters that decide the slow pressure strain correlation. We add to it the fact that dissipation anisotropy also modifies the correlation through eddy viscosity parameterization. This recalibrates the established correlation constants slightly and gives improved results. This anisotropization of dissipation implies that the critical Richardson’s number increases much beyond unity (to 1.66) to accommodate enhanced mixing, as is seen in reality. The model is run for a couple of test cases in the General Ocean Turbulence Model (GOTM) and the results are presented here.

Keywords: Anisotropy, GOTM, pressure-strain correlation, Richardson critical number

Procedia PDF Downloads 167
3126 Colorimetric Detection of Melamine in Milk Sample by Using In-Situ Formed Silver Nanoparticles by Tannic Acid

Authors: Md Fazle Alam, Amaj Ahmed Laskar, Hina Younus

Abstract:

Melamine toxicity which causes renal failure and death of humans and animals have recently attracted worldwide attention. Developing an easy, fast and sensitive method for the routine melamine detection is the need of the hour. Herein, we have developed a rapid, sensitive, one step and selective colorimetric method for the detection of melamine in milk samples based upon in-situ formation of silver nanoparticles (AgNPs) via tannic acid at room temperature. These AgNPs thus formed were characterized by UV-VIS spectrophotometer, transmission electron microscope (TEM), zetasizer and dynamic light scattering (DLS). Under optimal conditions, melamine could be selectively detected within the concentration range of 0.05-1.4 µM with a limit of detection (LOD) of 10.1 nM, which is lower than the strictest melamine safety requirement of 1 ppm. This assay does not utilize organic cosolvents, enzymatic reactions, light sensitive dye molecules and sophisticated instrumentation, thereby overcoming some of the limitations of conventional methods.

Keywords: milk adulteration, melamine, silver nanoparticles, tannic acid

Procedia PDF Downloads 246
3125 Surface Nanocrystalline and Hardening Effects of Ti–Al–V Alloy by Electropulsing Ultrasonic Shock

Authors: Xiaoxin Ye, Guoyi Tang

Abstract:

The effect of electropulsing ultrasonic shock (EUS) on the surface hardening and microstructure of Ti6Al4V alloy was studied. It was found that electropulsing improved the microhardness dramatically both in the influential depth and maximum value, compared with the only ultrasonic-shocked sample. It’s indicated that refined surface layer with nanocrystalline and improved microhardness were obtained on account of surface severe plastic deformation, dynamic recrystallization (DRX) and phase change, which was implemented at relative low temperature and high strain rate/capacity due to the coupling of the thermal and athermal effects of EUS. It’s different from conventional experiments and theory. It’s discussed that the positive contributions of EPT in the thermodynamics and kinetics of microstructure and properties change were attributed to the reduction of nucleation energy barrier and acceleration of atomic diffusion. Therefore, it’s supposed that EUS is an energy-saving and high-efficiency method of surface treatment technique with the help of high-energy electropulses, which is promising in cost reduction of the surface engineering and energy management.

Keywords: titanium alloys, electropulsing, ultrasonic shock, microhardness, nanocrystalline

Procedia PDF Downloads 291
3124 Challenges in Self-Managing Vitality: A Qualitative Study about Staying Vital at Work among Dutch Office Workers

Authors: Violet Petit-Steeghs, Jochem J. R. Van Roon, Jacqueline E. W. Broerse

Abstract:

Last decennia the retirement age in Europe is gradually increasing. As a result, people have to continue working for a longer period of time. Health problems due to increased sedentary behavior and mental conditions like burn-out, pose a threat in fulfilling employees’ working life. In order to stimulate the ability and willingness to work in the present and future, it is important to stay vital. Vitality is regarded in literature as a sense of energy, motivation and resilience. It is assumed that by increasing their vitality, employees will stay healthier and be more satisfied with their job, leading to a more sustainable employment and less absenteeism in the future. The aim of this project is to obtain insights into the experiences and barriers of employees, and specifically office workers, with regard to their vitality. These insights are essential in order to develop appropriate measures in the future. To get more insights in the experiences of office workers on their vitality, 8 focus group discussions were organized with 6-10 office workers from 4 different employers (an university, a national construction company and a large juridical and care service organization) in the Netherlands. The discussions were transcribed and analyzed via open coding. This project is part of a larger consortium project Provita2, and conducted in collaboration with University of Technology Eindhoven. Results showed that a range of interdependent factors form a complex network that influences office workers’ vitality. These factors can be divided in three overarching groups: (1) personal (2) organizational and (3) environmental factors. Personal intrinsic factors, relating to the office worker, comprise someone’s physical health, coping style, life style, needs, and private life. Organizational factors, relating to the employer, are the workload, management style and the structure, vision and culture of the organization. Lastly, environmental factors consist of the air, light, temperature at the workplace and whether the workplace is inspiring and workable. Office workers experienced barriers to improve their own vitality due to a lack of autonomy. On the one hand, because most factors were not only intrinsic but extrinsic, like work atmosphere or the temperature in the room. On the other hand, office workers were restricted in adapting both intrinsic as well as extrinsic factors. Restrictions to for instance the flexibility of working times and the workload, can set limitations for improving vitality through personal factors like physical activity and mental relaxation. In conclusion, a large range of interdependent factors influence the vitality of office workers. Office workers are often regarded to have a responsibility to improve their vitality, but are limitedly autonomous in adapting these factors. Measures to improve vitality should therefore not only focus on increasing awareness among office workers, but also on empowering them to fulfill this responsibility. A holistic approach that takes the complex mutual dependencies between the different factors and actors (like managers, employees and HR personnel) into account is highly recommended.

Keywords: occupational health, perspectives office workers, sustainable employment, vitality at work, work & wellbeing

Procedia PDF Downloads 138
3123 Effects of the Non-Newtonian Viscosity of Blood on Flow Field in a Constricted Artery with a Porous Plaque

Authors: Maedeh Shojaeizadeh, Amirreza Yeganegi

Abstract:

Nowadays many people lose their lives due to cardiovascular diseases. Inappropriate food habits and lack of exercise expedite deposit process of fatty substances on inner surface of blood arteries. This abnormal lump disturbs uniform blood flow and reduces oxygen delivery to active organs. This work presents a numerical simulation of Non-Newtonian blood flow in a stenosis vessel. The vessel is considered as two dimensional channel and plaque area is modelled as a homogenous porous medium. To simulate blood flow reaction around stenosis region, we use C++ code and solve coupled Cauchy, Darcy, governing continuity and energy equations. The analyses results show that viscosity power (n) plays an important role in flow separation and the size of the eddy at the downstream edge of the plaque. It is also observed that with increasing (n) value, temperature discontinuity and likelihood of vessel rupture declined.

Keywords: blood flow, computational fluid dynamic, porosity, power law fluid

Procedia PDF Downloads 460
3122 An Investigation of Water Atomizer in Ejected Gas of a Vehicle Engine

Authors: Chun-Wei Liu, Feng-Tsai Weng

Abstract:

People faced pollution threaten in modern age although the standard of exhaust gas of vehicles has been established. The goal of this study is to investigate the effect of water atomizer in a vehicle emission system. Diluted 20% ammonia water was used in spraying system. Micro particles produced by exhausted gas from engine of vehicle which were cumulated through atomized spray in a self-development collector. In experiments, a self-designed atomization model plate and a gas tank controlled by the micro-processor using Pulse Width Modulation (PWM) logic was prepared for exhaust test. The gas from gasoline-engine of vehicle was purified with the model panel collector. A soft well named ANSYS was utilized for analyzing the distribution condition of rejected gas. Micro substance and percentage of CO, HC, CO2, NOx in exhausted gas were investigated at different engine speed, and atomizer vibration frequency. Exceptional results in the vehicle engine emissions measurement were obtained. The temperature of exhausted gas can be decreased 3oC. Micro substances PM10 can be decreased and the percentage of CO can be decreased more than 55% at 2500RPM by proposed system. Value of CO, HC, CO2 and NOX was all decreased when atomizers were used with water.

Keywords: atomizer, CO, HC, NOx, PM2.5

Procedia PDF Downloads 457
3121 Clinical and Molecular Characterization of Ichthyosis at King Abdulaziz Medical City, Riyadh KSA

Authors: Reema K. AlEssa, Sahar Alshomer, Abdullah Alfaleh, Sultan ALkhenaizan, Mohammed Albalwi

Abstract:

Ichthyosis is a disorder of abnormal keratinization, characterized by excessive scaling, and consists of more than twenty subtypes varied in severity, mode of inheritance, and the genes involved. There is insufficient data in the literature about the epidemiology and characteristics of ichthyosis locally. Our aim is to identify the histopathological features and genetic profile of ichthyosis. Method: It is an observational retrospective case series study conducted in March 2020, included all patients who were diagnosed with Ichthyosis and confirmed by histological and molecular findings over the last 20 years in King Abdulaziz Medical City (KAMC), Riyadh, Saudi Arabia. Molecular analysis was performed by testing genomic DNA and checking genetic variations using the AmpliSeq panel. All disease-causing variants were checked against HGMD, ClinVar, Genome Aggregation Database (gnomAD), and Exome Aggregation Consortium (ExAC) databases. Result: A total of 60 cases of Ichthyosis were identified with a mean age of 13 ± 9.2. There is an almost equal distribution between female patients 29 (48%) and males 31 (52%). The majority of them were Saudis, 94%. More than half of patients presented with general scaling 33 (55%), followed by dryness and coarse skin 19 (31.6%) and hyperlinearity 5 (8.33%). Family history and history of consanguinity were seen in 26 (43.3% ), 13 (22%), respectively. History of colloidal babies was found in 6 (10%) cases of ichthyosis. The most frequent genes were ALOX12B, ALOXE3, CERS3, CYP4F22, DOLK, FLG2, GJB2, PNPLA1, SLC27A4, SPINK5, STS, SUMF1, TGM1, TGM5, VPS33B. Most frequent variations were detected in CYP4F22 in 16 cases (26.6%) followed by ALOXE3 6 (10%) and STS 6 (10%) then TGM1 5 (8.3) and ALOX12B 5 (8.3). The analysis of molecular genetic identified 23 different genetic variations in the genes of ichthyosis, of which 13 were novel mutations. Homozygous mutations were detected in the majority of ichthyosis cases, 54 (90%), and only 1 case was heterozygous. Few cases, 4 (6.6%) had an unknown type of ichthyosis with a negative genetic result. Conclusion: 13 novel mutations were discovered. Also, about half of ichthyosis patients had a positive history of consanguinity.

Keywords: ichthyosis, genetic profile, molecular characterization, congenital ichthyosis

Procedia PDF Downloads 197
3120 Rapid Detection of MBL Genes by SYBR Green Based Real-Time PCR

Authors: Taru Singh, Shukla Das, V. G. Ramachandran

Abstract:

Objectives: To develop SYBR green based real-time PCR assay to detect carbapenemases (NDM, IMP) genes in E. coli. Methods: A total of 40 E. coli from stool samples were tested. Six were previously characterized as resistant to carbapenems and documented by PCR. The remaining 34 isolates previously tested susceptible to carbapenems and were negative for these genes. Bacterial RNA was extracted using manual method. The real-time PCR was performed using the Light Cycler III 480 instrument (Roche) and specific primers for each carbapenemase target were used. Results: Each one of the two carbapenemase gene tested presented a different melting curve after PCR amplification. The melting temperature (Tm) analysis of the amplicons identified was as follows: blaIMP type (Tm 82.18°C), blaNDM-1 (Tm 78.8°C). No amplification was detected among the negative samples. The results showed 100% concordance with the genotypes previously identified. Conclusions: The new assay was able to detect the presence of two different carbapenemase gene type by real-time PCR.

Keywords: resistance, b-lactamases, E. coli, real-time PCR

Procedia PDF Downloads 411
3119 Analytical Response Characterization of High Mobility Transistor Channels

Authors: F. Z. Mahi, H. Marinchio, C. Palermo, L. Varani

Abstract:

We propose an analytical approach for the admittance response calculation of the high mobility InGaAs channel transistors. The development of the small-signal admittance takes into account the longitudinal and transverse electric fields through a pseudo two-dimensional approximation of the Poisson equation. The total currents and the potentials matrix relation between the gate and the drain terminals determine the frequency-dependent small-signal admittance response. The analytical results show that the admittance spectrum exhibits a series of resonant peaks corresponding to the excitation of plasma waves. The appearance of the resonance is discussed and analyzed as functions of the channel length and the temperature. The model can be used, on one hand, to control the appearance of plasma resonances, and on the other hand, can give significant information about the admittance phase frequency dependence.

Keywords: small-signal admittance, Poisson equation, currents and potentials matrix, the drain and the gate terminals, analytical model

Procedia PDF Downloads 540
3118 Learning Physics Concepts through Language Syntagmatic Paradigmatic Relations

Authors: C. E. Laburu, M. A. Barros, A. F. Zompero, O. H. M. Silva

Abstract:

The work presents a teaching strategy that employs syntagmatic and paradigmatic linguistic relations in order to monitor the understanding of physics students’ concepts. Syntagmatic and paradigmatic relations are theoretical elements of semiotics studies and our research circumstances and justified them within the research program of multi-modal representations. Among the multi-modal representations to learning scientific knowledge, the scope of action of syntagmatic and paradigmatic relations belongs to the discursive writing form. The use of such relations has the purpose to seek innovate didactic work with discourse representation in the write form before translate to another different representational form. The research was conducted with a sample of first year high school students. The students were asked to produce syntagmatic and paradigmatic of Newton’ first law statement. This statement was delivered in paper for each student that should individually write the relations. The student’s records were collected for analysis. It was possible observed in one student used here as example that their monemes replaced and rearrangements produced by, respectively, syntagmatic and paradigmatic relations, kept the original meaning of the law. In paradigmatic production he specified relevant significant units of the linguistic signs, the monemas, which constitute the first articulation and each word substituted kept equivalence to the original meaning of original monema. Also, it was noted a number of diverse and many monemas were chosen, with balanced combination of grammatical (grammatical monema is what changes the meaning of a word, in certain positions of the syntagma, along with a relatively small number of other monemes. It is the smallest linguistic unit that has grammatical meaning) and lexical (lexical monema is what belongs to unlimited inventories; is the monema endowed with lexical meaning) monemas. In syntagmatic production, monemas ordinations were syntactically coherent, being linked with semantic conservation and preserved number. In general, the results showed that the written representation mode based on linguistic relations paradigmatic and syntagmatic qualifies itself to be used in the classroom as a potential identifier and accompanist of meanings acquired from students in the process of scientific inquiry.

Keywords: semiotics, language, high school, physics teaching

Procedia PDF Downloads 131
3117 Surface Water Quality in Orchard Area, Amphawa District, Samut Songkram Province, Thailand

Authors: Sisuwan Kaseamsawat, Sivapan Choo-In

Abstract:

This study aimed to evaluated the surface water quality for agriculture and consumption in the district. Surface water quality parameters in this study in cluding water temperature, turbidity, conductivity. salinity, pH, dissolved oxygen, BOD, nitrate, Suspended solids, phosphorus. Total dissolve solids, iron, copper, zinc, manganese, lead and cadmium. Water samples were collected from small excavation, Lychee, Pomelo, and Coconut orchard for 3 season during January to December 2011. The surface water quality from small excavation, Lychee, pomelo, and coconut orchard are meet the type III of surface water quality standard issued by the National Environmental Quality Act B. E. 1992. except the concentration of heavy metal. And did not differ significantly at 0.05 level, except dissolved oxygen. The water is suitable for consumption by the usual sterile and generally improving water quality through the process before. And is suitable for agriculture.

Keywords: water quality, surface water quality, Thailand, water

Procedia PDF Downloads 356
3116 Performance of Reinforced Concrete Wall with Opening Using Analytical Model

Authors: Alaa Morsy, Youssef Ibrahim

Abstract:

Earthquake is one of the most catastrophic events, which makes enormous harm to properties and human lives. As a piece of a safe building configuration, reinforced concrete walls are given in structures to decrease horizontal displacements under seismic load. Shear walls are additionally used to oppose the horizontal loads that might be incited by the impact of wind. Reinforced concrete walls in residential buildings might have openings that are required for windows in outside walls or for doors in inside walls or different states of openings due to architectural purposes. The size, position, and area of openings may fluctuate from an engineering perspective. Shear walls can encounter harm around corners of entryways and windows because of advancement of stress concentration under the impact of vertical or horizontal loads. The openings cause a diminishing in shear wall capacity. It might have an unfavorable impact on the stiffness of reinforced concrete wall and on the seismic reaction of structures. Finite Element Method using software package ‘ANSYS ver. 12’ becomes an essential approach in analyzing civil engineering problems numerically. Now we can make various models with different parameters in short time by using ANSYS instead of doing it experimentally, which consumes a lot of time and money. Finite element modeling approach has been conducted to study the effect of opening shape, size and position in RC wall with different thicknesses under axial and lateral static loads. The proposed finite element approach has been verified with experimental programme conducted by the researchers and validated by their variables. A very good correlation has been observed between the model and experimental results including load capacity, failure mode, and lateral displacement. A parametric study is applied to investigate the effect of opening size, shape, position on different reinforced concrete wall thicknesses. The results may be useful for improving existing design models and to be applied in practice, as it satisfies both the architectural and the structural requirements.

Keywords: Ansys, concrete walls, openings, out of plane behavior, seismic, shear wall

Procedia PDF Downloads 169
3115 Structural, Optical and Electrical Properties of Gd Doped ZnO Thin Films Prepared by a Sol-Gel Method

Authors: S. M. AL-Shomar, N. B. Ibrahim, Sahrim Hj. Ahmad

Abstract:

ZnO thin films with various Gd doping concentration (0, 0.01, 0.03 and 0.05 mol/L) have been synthesized by sol–gel method on quartz substrates at annealing temperature of 600 ºC. X-ray analysis reveals that ZnO(Gd) films have hexagonal wurtzite structure. No peaks that correspond to Gd metal clusters or gadolinium acetylacetonate are detected in the patterns. The position of the main peak (101) shifts to higher angles after doping. The surface morphologies studied using a field emission scanning electron microscope (FESEM) showed that the grain size and the films thickness reduced gradually with the increment of Gd concentration. The roughness of ZnO film investigated by an atomic force microscopy (AFM) showed that the films are smooth and high dense grain. The roughness of doped films decreased from 6.05 to 4.84 rms with the increment of dopant concentration.The optical measurements using a UV-Vis-NIR spectroscopy showed that the Gd doped ZnO thin films have high transmittance (above 80%) in the visible range and the optical band gap increase with doping concentration from 3.13 to 3.39 eV. The doped films show low electrical resistivity 2.6 × 10-3Ω.cm.at high doping concentration.

Keywords: Gd doped ZnO, electric, optics, microstructure

Procedia PDF Downloads 472
3114 Physiological Effects on Scientist Astronaut Candidates: Hypobaric Training Assessment

Authors: Pedro Llanos, Diego García

Abstract:

This paper is addressed to expanding our understanding of the effects of hypoxia training on our bodies to better model its dynamics and leverage some of its implications and effects on human health. Hypoxia training is a recommended practice for military and civilian pilots that allow them to recognize their early hypoxia signs and symptoms, and Scientist Astronaut Candidates (SACs) who underwent hypobaric hypoxia (HH) exposure as part of a training activity for prospective suborbital flight applications. This observational-analytical study describes physiologic responses and symptoms experienced by a SAC group before, during and after HH exposure and proposes a model for assessing predicted versus observed physiological responses. A group of individuals with diverse Science Technology Engineering Mathematics (STEM) backgrounds conducted a hypobaric training session to an altitude up to 22,000 ft (FL220) or 6,705 meters, where heart rate (HR), breathing rate (BR) and core temperature (Tc) were monitored with the use of a chest strap sensor pre and post HH exposure. A pulse oximeter registered levels of saturation of oxygen (SpO2), number and duration of desaturations during the HH chamber flight. Hypoxia symptoms as described by the SACs during the HH training session were also registered. This data allowed to generate a preliminary predictive model of the oxygen desaturation and O2 pressure curve for each subject, which consists of a sixth-order polynomial fit during exposure, and a fifth or fourth-order polynomial fit during recovery. Data analysis showed that HR and BR showed no significant differences between pre and post HH exposure in most of the SACs, while Tc measures showed slight but consistent decrement changes. All subjects registered SpO2 greater than 94% for the majority of their individual HH exposures, but all of them presented at least one clinically significant desaturation (SpO2 < 85% for more than 5 seconds) and half of the individuals showed SpO2 below 87% for at least 30% of their HH exposure time. Finally, real time collection of HH symptoms presented temperature somatosensory perceptions (SP) for 65% of individuals, and task-focus issues for 52.5% of individuals as the most common HH indications. 95% of the subjects experienced HH onset symptoms below FL180; all participants achieved full recovery of HH symptoms within 1 minute of donning their O2 mask. The current HH study performed on this group of individuals suggests a rapid and fully reversible physiologic response after HH exposure as expected and obtained in previous studies. Our data showed consistent results between predicted versus observed SpO2 curves during HH suggesting a mathematical function that may be used to model HH performance deficiencies. During the HH study, real-time HH symptoms were registered providing evidenced SP and task focusing as the earliest and most common indicators. Finally, an assessment of HH signs of symptoms in a group of heterogeneous, non-pilot individuals showed similar results to previous studies in homogeneous populations of pilots.

Keywords: slow onset hypoxia, hypobaric chamber training, altitude sickness, symptoms and altitude, pressure cabin

Procedia PDF Downloads 116
3113 Nutrient in River Ecosystems Follows Human Activities More Than Climate Warming

Authors: Mohammed Abdulridha Hamdan

Abstract:

To face the water crisis, understanding the role of human activities on nutrient concentrations in aquatic ecosystems needs more investigations to compare to extensively studies which have been carried out to understand these impacts on the water quality of different aquatic ecosystems. We hypothesized human activates on the catchments of Tigris river may change nutrient concentrations in water along the river. The results showed that phosphate concentration differed significantly among the studied sites due to distributed human activities, while nitrate concentration did not. Phosphate and nitrate concentrations were not affected by water temperature. We concluded that human activities on the surrounding landscapes could be more essential sources for nutrients of aquatic ecosystems than role of ongoing climate warming. Despite the role of warming in driving nutrients availability in aquatic ecosystems, our findings suggest to take the different activities on the surrounding catchments into account in the studies caring about the trophic status classification of aquatic ecosystems.

Keywords: nitrate, phosphate, anthropogenic, warming

Procedia PDF Downloads 82
3112 Monitoring the Production of Large Composite Structures Using Dielectric Tool Embedded Capacitors

Authors: Galatee Levadoux, Trevor Benson, Chris Worrall

Abstract:

With the rise of public awareness on climate change comes an increasing demand for renewable sources of energy. As a result, the wind power sector is striving to manufacture longer, more efficient and reliable wind turbine blades. Currently, one of the leading causes of blade failure in service is improper cure of the resin during manufacture. The infusion process creating the main part of the composite blade structure remains a critical step that is yet to be monitored in real time. This stage consists of a viscous resin being drawn into a mould under vacuum, then undergoing a curing reaction until solidification. Successful infusion assumes the resin fills all the voids and cures completely. Given that the electrical properties of the resin change significantly during its solidification, both the filling of the mould and the curing reaction are susceptible to be followed using dieletrometry. However, industrially available dielectrics sensors are currently too small to monitor the entire surface of a wind turbine blade. The aim of the present research project is to scale up the dielectric sensor technology and develop a device able to monitor the manufacturing process of large composite structures, assessing the conformity of the blade before it even comes out of the mould. An array of flat copper wires acting as electrodes are embedded in a polymer matrix fixed in an infusion mould. A multi-frequency analysis from 1 Hz to 10 kHz is performed during the filling of the mould with an epoxy resin and the hardening of the said resin. By following the variations of the complex admittance Y*, the filling of the mould and curing process are monitored. Results are compared to numerical simulations of the sensor in order to validate a virtual cure-monitoring system. The results obtained by drawing glycerol on top of the copper sensor displayed a linear relation between the wetted length of the sensor and the complex admittance measured. Drawing epoxy resin on top of the sensor and letting it cure at room temperature for 24 hours has provided characteristic curves obtained when conventional interdigitated sensor are used to follow the same reaction. The response from the developed sensor has shown the different stages of the polymerization of the resin, validating the geometry of the prototype. The model created and analysed using COMSOL has shown that the dielectric cure process can be simulated, so long as a sufficient time and temperature dependent material properties can be determined. The model can be used to help design larger sensors suitable for use with full-sized blades. The preliminary results obtained with the sensor prototype indicate that the infusion and curing process of an epoxy resin can be followed with the chosen configuration on a scale of several decimeters. Further work is to be devoted to studying the influence of the sensor geometry and the infusion parameters on the results obtained. Ultimately, the aim is to develop a larger scale sensor able to monitor the flow and cure of large composite panels industrially.

Keywords: composite manufacture, dieletrometry, epoxy, resin infusion, wind turbine blades

Procedia PDF Downloads 166
3111 Modelling of Polymeric Fluid Flows between Two Coaxial Cylinders Taking into Account the Heat Dissipation

Authors: Alexander Blokhin, Ekaterina Kruglova, Boris Semisalov

Abstract:

Mathematical model based on the mesoscopic theory of polymer dynamics is developed for numerical simulation of the flows of polymeric liquid between two coaxial cylinders. This model is a system of nonlinear partial differential equations written in the cylindrical coordinate system and coupled with the heat conduction equation including a specific dissipation term. The stationary flows similar to classical Poiseuille ones are considered, and the resolving equations for the velocity of flow and for the temperature are obtained. For solving them, a fast pseudospectral method is designed based on Chebyshev approximations, that enables one to simulate the flows through the channels with extremely small relative values of the radius of inner cylinder. The numerical analysis of the dependance of flow on this radius and on the values of dissipation constant is done.

Keywords: dynamics of polymeric liquid, heat dissipation, singularly perturbed problem, pseudospectral method, Chebyshev polynomials, stabilization technique

Procedia PDF Downloads 290
3110 Parametric Study of Vertical Diffusion Stills for Water Desalination

Authors: A. Seleem, M. Mortada, M. El-Morsi, M. Younan

Abstract:

Diffusion stills have been effective in water desalination. The present work represents a model of the distillation process by using vertical single-effect diffusion stills. A semi-analytical model has been developed to model the process. A software computer code using Engineering Equation Solver EES software has been developed to solve the equations of the developed model. An experimental setup has been constructed, and used for the validation of the model. The model is also validated against former literature results. The results obtained from the present experimental test rig, and the data from the literature, have been compared with the results of the code to find its best range of validity. In addition, a parametric analysis of the system has been developed using the model to determine the effect of operating conditions on the system's performance. The dominant parameters that affect the productivity of the still are the hot plate temperature that ranges from (55-90 °C) and feed flow rate in range of (0.00694-0.0211 kg/m2-s).

Keywords: analytical model, solar distillation, sustainable water systems, vertical diffusion still

Procedia PDF Downloads 405
3109 Measurement of Thermal Protrusion Profile in Magnetic Recording Heads via Wyko Interferometry

Authors: Joseph Christopher R. Ragasa, Paolo Gabriel P. Casas, Nemesio S. Mangila, Maria Emma C. Villamin, Myra G. Bungag

Abstract:

A procedure in measuring the thermal protrusion profiles of magnetic recording heads was developed using a Wyko HD-8100 optical interference-based instrument. The protrusions in the heads were made by the application of a constant power through the thermal flying height controller pads. It was found that the thermally-induced bubble is confined to form in the same head locations, primarily in the reader and writer regions, regardless of the direction of approach of temperature. An application of power to the thermal flying height control pads ranging from 0 to 50 milliWatts showed that the protrusions demonstrate a linear dependence with the supplied power. The efficiencies calculated using this method were compared to that obtained through Guzik and found to be 19.57% greater due to the static testing environment used in the testing.

Keywords: thermal protrusion profile, magnetic recording heads, wyko interferometry, thermal flying height control

Procedia PDF Downloads 469
3108 Numerical Investigation of Heat Transfer in Laser Irradiated Biological Samplebased on Dual-Phase-Lag Heat Conduction Model Using Lattice Boltzmann Method

Authors: Shashank Patidar, Sumit Kumar, Atul Srivastava, Suneet Singh

Abstract:

Present work is concerned with the numerical investigation of thermal response of biological tissues during laser-based photo-thermal therapy for destroying cancerous/abnormal cells with minimal damage to the surrounding normal cells. Light propagation through the biological sample is mathematically modelled by transient radiative transfer equation. In the present work, application of the Lattice Boltzmann Method is extended to analyze transport of short-pulse radiation in a participating medium.In order to determine the two-dimensional temperature distribution inside the tissue medium, the RTE has been coupled with Penne’s bio-heat transfer equation based on Fourier’s law by several researchers in last few years.

Keywords: lattice Boltzmann method, transient radiation transfer equation, dual phase lag model

Procedia PDF Downloads 353
3107 Estimation of Carbon Dioxide Absorption in DKI Jakarta Green Space

Authors: Mario Belseran

Abstract:

The issue of climate change become world attention where one of them increase in air temperature due to greenhouse gas emissions. This climate change is caused by gases in the atmosphere, one of which is CO2. DKI Jakarta as the capital has a dense population with a variety of existing land use. Land use that is dominated by settlements resulting in fewer green space, which functions to absorb atmospheric CO2. Image interpretation SPOT-7 is used to determine the greenness level of vegetation on a green space using the vegetation index NDVI, EVI, GNDVI and OSAVI. Measuring the diameter and height of trees were also performed to obtain the value of biomass that will be used as the CO2 absorption value. The CO2 absorption value that spread in Jakarta are classified into three classes: high, medium, and low. The distribution pattern of CO2 absorption value at green space in Jakarta dominance in the medium class with the distribution pattern is located in South Jakarta, East Jakarta, North Jakarta and West Jakarta. The distribution pattern of green space in Jakarta scattered randomly and more dominate in East Jakarta and South Jakarta

Keywords: carbon dioxide, DKI Jakarta, green space, SPOT-7, vegetation index

Procedia PDF Downloads 281
3106 Comparative Analysis of Different Land Use Land Cover (LULC) Maps in WRF Modelling Over Indian Region

Authors: Sen Tanmoy, Jain Sarika, Panda Jagabandhu

Abstract:

The studies regarding the impact of urbanization using the WRF-ARW model rely heavily on the static geographical information selected, including domain configuration and land use land cover (LULC) data. Accurate representation of LULC data provides essential information for understanding urban growth and simulating meteorological parameters such as temperature, precipitation etc. Researchers are using different LULC data as per availability and their requirements. As far as India is concerned, we have very limited resources and data availability. So, it is important to understand how we can optimize our results using limited LULC data. In this review article, we explored how a LULC map is generated from different sources in the Indian context and what its significance is in WRF-ARW modeling to study urbanization/Climate change or any other meteorological parameters. Bibliometric analyses were also performed in this review article based on countries of study and indexed keywords. Finally, some key points are marked out for selecting the most suitable LULC map for any urbanization-related study.

Keywords: LULC, LULC mapping, LANDSAT, WRF-ARW, ISRO, bibliometric Analysis.

Procedia PDF Downloads 28
3105 Experimental Design and Optimization of Diesel Oil Desulfurization Process by Adsorption Processes

Authors: M. Firoz Kalam, Wilfried Schuetz, Jan Hendrik Bredehoeft

Abstract:

Thiophene sulfur compounds' removal from diesel oil by batch adsorption process using commercial powdered activated carbon was designed and optimized in two-level factorial design method. This design analysis was used to find out the effects of operating parameters directing the adsorption process, such as amount of adsorbent, temperature and stirring time. The desulfurization efficiency was considered the response or output variable. Results showed that the stirring time had the largest effects on sulfur removal efficiency as compared with other operating parameters and their interactions under the experimental ranges studied. A regression model was generated to observe the closeness between predicted and experimental values. The three-dimensional plots and contour plots of main factors were generated according to the regression results to observe the optimal points.

Keywords: activated carbon, adsorptive desulfurization, factorial design, process optimization

Procedia PDF Downloads 162
3104 Phytoplankton Structure and Invasive Cyanobacterial Species of Polish Temperate Lakes: Their Associations with Environmental Parameters and Findings About Their Toxic Properties

Authors: Tumer Orhun Aykut, Robin Michael Crucitti-Thoo, Agnieszka Rudak, Iwona Jasser

Abstract:

Due to eutrophication connected to the growing human population, intensive agriculture, industrialization, and reinforcement of global warming, freshwater resources are changing negatively in every region of the World. This change also concerns the replacement of native species by invasive ones that can spread in many ways. Biological invasions are a developing problem to ecosystem continuity and their presence is mostly common in freshwater bodies. The occurrence and potential invasion of the species depends on associations between abiotic and biotic variables. Due to climate change, many species can extend their range from low to high latitudes and differ in their geographic ranges. In addition, the hydrological issues strongly influence the physicochemical parameters and biological processes, especially the growth rates of species and bloom formation of Cyanobacteria. Among tropical invasive species noted in temperate Europe, Raphidiopsis raciborskii, Chrysosporum bergii, and Sphaerospermopsis aphanizomenoides are considered a serious threat. R. raciborskii being the most important one as it is already known as a highly invasive species in almost all around the World, is a freshwater, planktonic, filamentous, potentially toxic, and nitrogen-fixing Cyanobacteria. This study aimed to investigate the presence of invasive cyanobacterial species in temperate lakes in Northeastern Poland, reveal the composition of phytoplankton communities, determine the effect of environmental variables, and identify the toxic properties of invasive Cyanobacteria and other phytoplankton groups. Our study was conducted in twenty-five lakes in August 2023. The lakes represent a geographical gradient from central Poland to the Northeast and have different depths, sizes, and trophic statuses. According to performed analyses, the presence of R. raciborskii was recorded in five lakes: Szczęśliwickie (Warsaw), Mikołajskie, Rekąty, Sztynorckie (Masurian Lakeland), and further East, in Pobondzie (Suwałki Lakeland). On the other hand, C. bergii was found in three lakes: Rekąty (Masurian Lakeland), Żabinki, and Pobondzie (Suwałki Lakeland), while S. aphanizomenoides only in Pobondzie (Suwałki Lakeland). Maximum phytoplankton diversity was found in Lake Rekąty, a small and shallow lake mentioned above. The highest phytoplankton biomass was detected in highly eutrophic Lake Suskie, followed by Lake Sztynorckie. In this last lake, which is also strongly eutrophic, the highest biomass of R. raciborskii was found. Cyanophyceae had the highest biovolume and was followed by Chlorophyceae in the entire study. Numerous environmental parameters, including nutrients, were studied, and their relationships with the invasive species and the whole phytoplankton community will be presented. In addition, toxic properties of environmental DNA results from each lake will also be shown. In conclusion, investigated invasive cyanobacterial species were found in a few Northeastern Polish temperate lakes, but the number of individuals was quite low, so the biomass was quite low. It has been observed that the structure of phytoplankton changed based on lakes and environmental parameters.

Keywords: biological invasion, cyanobacteria, cyanotoxins, phytoplankton ecology, sanger sequencing

Procedia PDF Downloads 43
3103 2D and 3D Unsteady Simulation of the Heat Transfer in the Sample during Heat Treatment by Moving Heat Source

Authors: Zdeněk Veselý, Milan Honner, Jiří Mach

Abstract:

The aim of the performed work is to establish the 2D and 3D model of direct unsteady task of sample heat treatment by moving source employing computer model on the basis of finite element method. The complex boundary condition on heat loaded sample surface is the essential feature of the task. Computer model describes heat treatment of the sample during heat source movement over the sample surface. It is started from the 2D task of sample cross section as a basic model. Possibilities of extension from 2D to 3D task are discussed. The effect of the addition of third model dimension on the temperature distribution in the sample is showed. Comparison of various model parameters on the sample temperatures is observed. Influence of heat source motion on the depth of material heat treatment is shown for several velocities of the movement. Presented computer model is prepared for the utilization in laser treatment of machine parts.

Keywords: computer simulation, unsteady model, heat treatment, complex boundary condition, moving heat source

Procedia PDF Downloads 394