Search results for: wealth status prediction
5115 Assessing the Efficiency of Pre-Hospital Scoring System with Conventional Coagulation Tests Based Definition of Acute Traumatic Coagulopathy
Authors: Venencia Albert, Arulselvi Subramanian, Hara Prasad Pati, Asok K. Mukhophadhyay
Abstract:
Acute traumatic coagulopathy in an endogenous dysregulation of the intrinsic coagulation system in response to the injury, associated with three-fold risk of poor outcome, and is more amenable to corrective interventions, subsequent to early identification and management. Multiple definitions for stratification of the patients' risk for early acute coagulopathy have been proposed, with considerable variations in the defining criteria, including several trauma-scoring systems based on prehospital data. We aimed to develop a clinically relevant definition for acute coagulopathy of trauma based on conventional coagulation assays and to assess its efficacy in comparison to recently established prehospital prediction models. Methodology: Retrospective data of all trauma patients (n = 490) presented to our level I trauma center, in 2014, was extracted. Receiver operating characteristic curve analysis was done to establish cut-offs for conventional coagulation assays for identification of patients with acute traumatic coagulopathy was done. Prospectively data of (n = 100) adult trauma patients was collected and cohort was stratified by the established definition and classified as "coagulopathic" or "non-coagulopathic" and correlated with the Prediction of acute coagulopathy of trauma score and Trauma-Induced Coagulopathy Clinical Score for identifying trauma coagulopathy and subsequent risk for mortality. Results: Data of 490 trauma patients (average age 31.85±9.04; 86.7% males) was extracted. 53.3% had head injury, 26.6% had fractures, 7.5% had chest and abdominal injury. Acute traumatic coagulopathy was defined as international normalized ratio ≥ 1.19; prothrombin time ≥ 15.5 s; activated partial thromboplastin time ≥ 29 s. Of the 100 adult trauma patients (average age 36.5±14.2; 94% males), 63% had early coagulopathy based on our conventional coagulation assay definition. Overall prediction of acute coagulopathy of trauma score was 118.7±58.5 and trauma-induced coagulopathy clinical score was 3(0-8). Both the scores were higher in coagulopathic than non-coagulopathic patients (prediction of acute coagulopathy of trauma score 123.2±8.3 vs. 110.9±6.8, p-value = 0.31; trauma-induced coagulopathy clinical score 4(3-8) vs. 3(0-8), p-value = 0.89), but not statistically significant. Overall mortality was 41%. Mortality rate was significantly higher in coagulopathic than non-coagulopathic patients (75.5% vs. 54.2%, p-value = 0.04). High prediction of acute coagulopathy of trauma score also significantly associated with mortality (134.2±9.95 vs. 107.8±6.82, p-value = 0.02), whereas trauma-induced coagulopathy clinical score did not vary be survivors and non-survivors. Conclusion: Early coagulopathy was seen in 63% of trauma patients, which was significantly associated with mortality. Acute traumatic coagulopathy defined by conventional coagulation assays (international normalized ratio ≥ 1.19; prothrombin time ≥ 15.5 s; activated partial thromboplastin time ≥ 29 s) demonstrated good ability to identify coagulopathy and subsequent mortality, in comparison to the prehospital parameter-based scoring systems. Prediction of acute coagulopathy of trauma score may be more suited for predicting mortality rather than early coagulopathy. In emergency trauma situations, where immediate corrective measures need to be taken, complex multivariable scoring algorithms may cause delay, whereas coagulation parameters and conventional coagulation tests will give highly specific results.Keywords: trauma, coagulopathy, prediction, model
Procedia PDF Downloads 1765114 Improve Student Performance Prediction Using Majority Vote Ensemble Model for Higher Education
Authors: Wade Ghribi, Abdelmoty M. Ahmed, Ahmed Said Badawy, Belgacem Bouallegue
Abstract:
In higher education institutions, the most pressing priority is to improve student performance and retention. Large volumes of student data are used in Educational Data Mining techniques to find new hidden information from students' learning behavior, particularly to uncover the early symptom of at-risk pupils. On the other hand, data with noise, outliers, and irrelevant information may provide incorrect conclusions. By identifying features of students' data that have the potential to improve performance prediction results, comparing and identifying the most appropriate ensemble learning technique after preprocessing the data, and optimizing the hyperparameters, this paper aims to develop a reliable students' performance prediction model for Higher Education Institutions. Data was gathered from two different systems: a student information system and an e-learning system for undergraduate students in the College of Computer Science of a Saudi Arabian State University. The cases of 4413 students were used in this article. The process includes data collection, data integration, data preprocessing (such as cleaning, normalization, and transformation), feature selection, pattern extraction, and, finally, model optimization and assessment. Random Forest, Bagging, Stacking, Majority Vote, and two types of Boosting techniques, AdaBoost and XGBoost, are ensemble learning approaches, whereas Decision Tree, Support Vector Machine, and Artificial Neural Network are supervised learning techniques. Hyperparameters for ensemble learning systems will be fine-tuned to provide enhanced performance and optimal output. The findings imply that combining features of students' behavior from e-learning and students' information systems using Majority Vote produced better outcomes than the other ensemble techniques.Keywords: educational data mining, student performance prediction, e-learning, classification, ensemble learning, higher education
Procedia PDF Downloads 1085113 Combining the Deep Neural Network with the K-Means for Traffic Accident Prediction
Authors: Celso L. Fernando, Toshio Yoshii, Takahiro Tsubota
Abstract:
Understanding the causes of a road accident and predicting their occurrence is key to preventing deaths and serious injuries from road accident events. Traditional statistical methods such as the Poisson and the Logistics regressions have been used to find the association of the traffic environmental factors with the accident occurred; recently, an artificial neural network, ANN, a computational technique that learns from historical data to make a more accurate prediction, has emerged. Although the ability to make accurate predictions, the ANN has difficulty dealing with highly unbalanced attribute patterns distribution in the training dataset; in such circumstances, the ANN treats the minority group as noise. However, in the real world data, the minority group is often the group of interest; e.g., in the road traffic accident data, the events of the accident are the group of interest. This study proposes a combination of the k-means with the ANN to improve the predictive ability of the neural network model by alleviating the effect of the unbalanced distribution of the attribute patterns in the training dataset. The results show that the proposed method improves the ability of the neural network to make a prediction on a highly unbalanced distributed attribute patterns dataset; however, on an even distributed attribute patterns dataset, the proposed method performs almost like a standard neural network.Keywords: accident risks estimation, artificial neural network, deep learning, k-mean, road safety
Procedia PDF Downloads 1635112 Applying Artificial Neural Networks to Predict Speed Skater Impact Concussion Risk
Authors: Yilin Liao, Hewen Li, Paula McConvey
Abstract:
Speed skaters often face a risk of concussion when they fall on the ice floor and impact crash mats during practices and competitive races. Several variables, including those related to the skater, the crash mat, and the impact position (body side/head/feet impact), are believed to influence the severity of the skater's concussion. While computer simulation modeling can be employed to analyze these accidents, the simulation process is time-consuming and does not provide rapid information for coaches and teams to assess the skater's injury risk in competitive events. This research paper promotes the exploration of the feasibility of using AI techniques for evaluating skater’s potential concussion severity, and to develop a fast concussion prediction tool using artificial neural networks to reduce the risk of treatment delays for injured skaters. The primary data is collected through virtual tests and physical experiments designed to simulate skater-mat impact. It is then analyzed to identify patterns and correlations; finally, it is used to train and fine-tune the artificial neural networks for accurate prediction. The development of the prediction tool by employing machine learning strategies contributes to the application of AI methods in sports science and has theoretical involvements for using AI techniques in predicting and preventing sports-related injuries.Keywords: artificial neural networks, concussion, machine learning, impact, speed skater
Procedia PDF Downloads 1095111 An Alternative Credit Scoring System in China’s Consumer Lendingmarket: A System Based on Digital Footprint Data
Authors: Minjuan Sun
Abstract:
Ever since the late 1990s, China has experienced explosive growth in consumer lending, especially in short-term consumer loans, among which, the growth rate of non-bank lending has surpassed bank lending due to the development in financial technology. On the other hand, China does not have a universal credit scoring and registration system that can guide lenders during the processes of credit evaluation and risk control, for example, an individual’s bank credit records are not available for online lenders to see and vice versa. Given this context, the purpose of this paper is three-fold. First, we explore if and how alternative digital footprint data can be utilized to assess borrower’s creditworthiness. Then, we perform a comparative analysis of machine learning methods for the canonical problem of credit default prediction. Finally, we analyze, from an institutional point of view, the necessity of establishing a viable and nationally universal credit registration and scoring system utilizing online digital footprints, so that more people in China can have better access to the consumption loan market. Two different types of digital footprint data are utilized to match with bank’s loan default records. Each separately captures distinct dimensions of a person’s characteristics, such as his shopping patterns and certain aspects of his personality or inferred demographics revealed by social media features like profile image and nickname. We find both datasets can generate either acceptable or excellent prediction results, and different types of data tend to complement each other to get better performances. Typically, the traditional types of data banks normally use like income, occupation, and credit history, update over longer cycles, hence they can’t reflect more immediate changes, like the financial status changes caused by the business crisis; whereas digital footprints can update daily, weekly, or monthly, thus capable of providing a more comprehensive profile of the borrower’s credit capabilities and risks. From the empirical and quantitative examination, we believe digital footprints can become an alternative information source for creditworthiness assessment, because of their near-universal data coverage, and because they can by and large resolve the "thin-file" issue, due to the fact that digital footprints come in much larger volume and higher frequency.Keywords: credit score, digital footprint, Fintech, machine learning
Procedia PDF Downloads 1625110 Positivity Rate of Person under Surveillance among Institut Jantung Negara’s Patients with Various Vaccination Statuses in the First Quarter of 2022, Malaysia
Authors: Mohd Izzat Md. Nor, Norfazlina Jaffar, Noor Zaitulakma Md. Zain, Nur Izyanti Mohd Suppian, Subhashini Balakrishnan, Geetha Kandavello
Abstract:
During the Coronavirus (COVID-19) pandemic, Malaysia has been focusing on building herd immunity by introducing vaccination programs into the community. Hospital Standard Operating Procedures (SOP) were developed to prevent inpatient transmission. Objective: In this study, we focus on the positivity rate of inpatient Person Under Surveillance (PUS) becoming COVID-19 positive and compare this to the National rate in order to see the outcomes of the patient who becomes COVID-19 positive in relation to their vaccination status. Methodology: This is a retrospective observational study carried out from 1 January until 30 March 2022 in Institut Jantung Negara (IJN). There were 5,255 patients admitted during the time of this study. Pre-admission Polymerase Chain Reaction (PCR) swab was done for all patients. Patients with positive PCR on pre-admission screening were excluded. The patient who had exposure to COVID-19-positive staff or patients during hospitalization was defined as PUS and were quarantined and monitored for potential COVID-19 infection. Their frequency and risk of exposure (WHO definition) were recorded. A repeat PCR swab was done for PUS patients that have clinical deterioration with or without COVID symptoms and on their last day of quarantine. The severity of COVID-19 infection was defined as category 1-5A. All patients' vaccination status was recorded, and they were divided into three groups: fully immunised, partially immunised, and unvaccinated. We analyzed the positivity rate of PUS patients becoming COVID-positive, outcomes, and correlation with the vaccination status. Result: Total inpatient PUS to patients and staff was 492; only 13 became positive, giving a positivity rate of 2.6%. Eight (62%) had multiple exposures. The majority, 8/13(72.7%), had a high-risk exposure, and the remaining 5 had medium-risk exposure. Four (30.8%) were boostered, 7(53.8%) were fully vaccinated, and 2(15.4%) were partial/unvaccinated. Eight patients were in categories 1-2, whilst 38% were in categories 3-5. Vaccination status did not correlate with COVID-19 Category (P=0.641). One (7.7%) patient died due to COVID-19 complications and sepsis. Conclusion: Within the first quarter of 2022, our institution's positivity rate (2.6%) is significantly lower than the country's (14.4%). High-risk exposure and multiple exposures to positive COVID-19 cases increased the risk of PUS becoming COVID-19 positive despite their underlying vaccination status.Keywords: COVID-19, boostered, high risk, Malaysia, quarantine, vaccination status
Procedia PDF Downloads 885109 Wildland Fire in Terai Arc Landscape of Lesser Himalayas Threatning the Tiger Habitat
Authors: Amit Kumar Verma
Abstract:
The present study deals with fire prediction model in Terai Arc Landscape, one of the most dramatic ecosystems in Asia where large, wide-ranging species such as tiger, rhinos, and elephant will thrive while bringing economic benefits to the local people. Forest fires cause huge economic and ecological losses and release considerable quantities of carbon into the air and is an important factor inflating the global burden of carbon emissions. Forest fire is an important factor of behavioral cum ecological habit of tiger in wild. Post fire changes i.e. micro and macro habitat directly affect the tiger habitat or land. Vulnerability of fire depicts the changes in microhabitat (humus, soil profile, litter, vegetation, grassland ecosystem). Microorganism like spider, annelids, arthropods and other favorable microorganism directly affect by the forest fire and indirectly these entire microorganisms are responsible for the development of tiger (Panthera tigris) habitat. On the other hand, fire brings depletion in prey species and negative movement of tiger from wild to human- dominated areas, which may leads the conflict i.e. dangerous for both tiger & human beings. Early forest fire prediction through mapping the risk zones can help minimize the fire frequency and manage forest fires thereby minimizing losses. Satellite data plays a vital role in identifying and mapping forest fire and recording the frequency with which different vegetation types are affected. Thematic hazard maps have been generated by using IDW technique. A prediction model for fire occurrence is developed for TAL. The fire occurrence records were collected from state forest department from 2000 to 2014. Disciminant function models was used for developing a prediction model for forest fires in TAL, random points for non-occurrence of fire have been generated. Based on the attributes of points of occurrence and non-occurrence, the model developed predicts the fire occurrence. The map of predicted probabilities classified the study area into five classes very high (12.94%), high (23.63%), moderate (25.87%), low(27.46%) and no fire (10.1%) based upon the intensity of hazard. model is able to classify 78.73 percent of points correctly and hence can be used for the purpose with confidence. Overall, also the model works correctly with almost 69% of points. This study exemplifies the usefulness of prediction model of forest fire and offers a more effective way for management of forest fire. Overall, this study depicts the model for conservation of tiger’s natural habitat and forest conservation which is beneficial for the wild and human beings for future prospective.Keywords: fire prediction model, forest fire hazard, GIS, landsat, MODIS, TAL
Procedia PDF Downloads 3525108 Allometric Models for Biomass Estimation in Savanna Woodland Area, Niger State, Nigeria
Authors: Abdullahi Jibrin, Aishetu Abdulkadir
Abstract:
The development of allometric models is crucial to accurate forest biomass/carbon stock assessment. The aim of this study was to develop a set of biomass prediction models that will enable the determination of total tree aboveground biomass for savannah woodland area in Niger State, Nigeria. Based on the data collected through biometric measurements of 1816 trees and destructive sampling of 36 trees, five species specific and one site specific models were developed. The sample size was distributed equally between the five most dominant species in the study site (Vitellaria paradoxa, Irvingia gabonensis, Parkia biglobosa, Anogeissus leiocarpus, Pterocarpus erinaceous). Firstly, the equations were developed for five individual species. Secondly these five species were mixed and were used to develop an allometric equation of mixed species. Overall, there was a strong positive relationship between total tree biomass and the stem diameter. The coefficient of determination (R2 values) ranging from 0.93 to 0.99 P < 0.001 were realised for the models; with considerable low standard error of the estimates (SEE) which confirms that the total tree above ground biomass has a significant relationship with the dbh. The F-test value for the biomass prediction models were also significant at p < 0.001 which indicates that the biomass prediction models are valid. This study recommends that for improved biomass estimates in the study site, the site specific biomass models should preferably be used instead of using generic models.Keywords: allometriy, biomass, carbon stock , model, regression equation, woodland, inventory
Procedia PDF Downloads 4485107 The Effort of Nutrition Status Improvement through Partnership with Early Age Education Institution on Urban Region, City of Semarang, Indonesia
Authors: Oktia Woro Kasmini Handayani, Sri Ratna Rahayu, Efa Nugroho, Bertakalswa Hermawati
Abstract:
In Indonesia, from 2007 until 2013, the prevalence of overnutrition in children under five years and school age tends to increase. Clean and Health Life Behavior of school children supporting nutrition status still below the determined target. On the other side, school institution is an ideal place to educate and form health behavior, that should be initiated as early as possible (Early Age Education/PAUD level). The objective of this research was to find out the effectivity of education model through partnership with school institution in urban region, city of Semarang, Central Java Province, Indonesia. The research used quantitative approach supported with qualitative data. The population consist of all mother having school children of ages 3-5 years within the research region; sampling technique was purposive sampling, as many as 237 mothers. Research instrument was Clean and Health Life Behavior evaluation questionaire, and video as education media. The research used experimental design. Data analysis used effectivity criteria from Sugiyono and 2 paired sampel t test. Education model optimalization in the effort to improve nutrition status indicates t test result with signification < 0.05 (there was significant effect before and after model intervention), with effectivity test result of 79% (effective), but still below expected target which is 80%. Education model need to be utilized and optimallized the implementation so that expected target reached.Keywords: nutrition status, early age education, clean dan health life behavior, education model
Procedia PDF Downloads 3855106 Rocket Launch Simulation for a Multi-Mode Failure Prediction Analysis
Authors: Mennatallah M. Hussein, Olivier de Weck
Abstract:
The advancement of space exploration demands a robust space launch services program capable of reliably propelling payloads into orbit. Despite rigorous testing and quality assurance, launch failures still occur, leading to significant financial losses and jeopardizing mission objectives. Traditional failure prediction methods often lack the sophistication to account for multi-mode failure scenarios, as well as the predictive capability in complex dynamic systems. Traditional approaches also rely on expert judgment, leading to variability in risk prioritization and mitigation strategies. Hence, there is a pressing need for robust approaches that enhance launch vehicle reliability from lift-off until it reaches its parking orbit through comprehensive simulation techniques. In this study, the developed model proposes a multi-mode launch vehicle simulation framework for predicting failure scenarios when incorporating new technologies, such as new propulsion systems or advanced staging separation mechanisms in the launch system. To this end, the model combined a 6-DOF system dynamics with comprehensive data analysis to simulate multiple failure modes impacting launch performance. The simulator utilizes high-fidelity physics-based simulations to capture the complex interactions between different subsystems and environmental conditions.Keywords: launch vehicle, failure prediction, propulsion anomalies, rocket launch simulation, rocket dynamics
Procedia PDF Downloads 315105 Indian Premier League (IPL) Score Prediction: Comparative Analysis of Machine Learning Models
Authors: Rohini Hariharan, Yazhini R, Bhamidipati Naga Shrikarti
Abstract:
In the realm of cricket, particularly within the context of the Indian Premier League (IPL), the ability to predict team scores accurately holds significant importance for both cricket enthusiasts and stakeholders alike. This paper presents a comprehensive study on IPL score prediction utilizing various machine learning algorithms, including Support Vector Machines (SVM), XGBoost, Multiple Regression, Linear Regression, K-nearest neighbors (KNN), and Random Forest. Through meticulous data preprocessing, feature engineering, and model selection, we aimed to develop a robust predictive framework capable of forecasting team scores with high precision. Our experimentation involved the analysis of historical IPL match data encompassing diverse match and player statistics. Leveraging this data, we employed state-of-the-art machine learning techniques to train and evaluate the performance of each model. Notably, Multiple Regression emerged as the top-performing algorithm, achieving an impressive accuracy of 77.19% and a precision of 54.05% (within a threshold of +/- 10 runs). This research contributes to the advancement of sports analytics by demonstrating the efficacy of machine learning in predicting IPL team scores. The findings underscore the potential of advanced predictive modeling techniques to provide valuable insights for cricket enthusiasts, team management, and betting agencies. Additionally, this study serves as a benchmark for future research endeavors aimed at enhancing the accuracy and interpretability of IPL score prediction models.Keywords: indian premier league (IPL), cricket, score prediction, machine learning, support vector machines (SVM), xgboost, multiple regression, linear regression, k-nearest neighbors (KNN), random forest, sports analytics
Procedia PDF Downloads 535104 Reconstructability Analysis for Landslide Prediction
Authors: David Percy
Abstract:
Landslides are a geologic phenomenon that affects a large number of inhabited places and are constantly being monitored and studied for the prediction of future occurrences. Reconstructability analysis (RA) is a methodology for extracting informative models from large volumes of data that work exclusively with discrete data. While RA has been used in medical applications and social science extensively, we are introducing it to the spatial sciences through applications like landslide prediction. Since RA works exclusively with discrete data, such as soil classification or bedrock type, working with continuous data, such as porosity, requires that these data are binned for inclusion in the model. RA constructs models of the data which pick out the most informative elements, independent variables (IVs), from each layer that predict the dependent variable (DV), landslide occurrence. Each layer included in the model retains its classification data as a primary encoding of the data. Unlike other machine learning algorithms that force the data into one-hot encoding type of schemes, RA works directly with the data as it is encoded, with the exception of continuous data, which must be binned. The usual physical and derived layers are included in the model, and testing our results against other published methodologies, such as neural networks, yields accuracy that is similar but with the advantage of a completely transparent model. The results of an RA session with a data set are a report on every combination of variables and their probability of landslide events occurring. In this way, every combination of informative state combinations can be examined.Keywords: reconstructability analysis, machine learning, landslides, raster analysis
Procedia PDF Downloads 665103 Status Report of the Express Delivery Industry in China
Authors: Ying Bo Xie, Hisa Yuki Kurokawa
Abstract:
Due to the fast development, China's express delivery industry has involved in a dilemma that the service quality are keeping decreasing while the construction rate of delivery network cannot meet the customers’ demand. In order to get out of this dilemma and enjoy a succession development rate, it is necessary to understand the current situation of China's express delivery industry. Firstly, the evolution of China's express delivery industry was systematical presented. Secondly, according to the number of companies and the amount of parcels they has dealt each year, the merits and faults of tow kind of operating pattern was analyzed. Finally, based on the characteristics of these express companies, the problems of China's express delivery industry was divided into several types and the countermeasures were given out respectively.Keywords: China, express delivery industry, status, problem
Procedia PDF Downloads 3645102 Resale Housing Development Board Price Prediction Considering Covid-19 through Sentiment Analysis
Authors: Srinaath Anbu Durai, Wang Zhaoxia
Abstract:
Twitter sentiment has been used as a predictor to predict price values or trends in both the stock market and housing market. The pioneering works in this stream of research drew upon works in behavioural economics to show that sentiment or emotions impact economic decisions. Latest works in this stream focus on the algorithm used as opposed to the data used. A literature review of works in this stream through the lens of data used shows that there is a paucity of work that considers the impact of sentiments caused due to an external factor on either the stock or the housing market. This is despite an abundance of works in behavioural economics that show that sentiment or emotions caused due to an external factor impact economic decisions. To address this gap, this research studies the impact of Twitter sentiment pertaining to the Covid-19 pandemic on resale Housing Development Board (HDB) apartment prices in Singapore. It leverages SNSCRAPE to collect tweets pertaining to Covid-19 for sentiment analysis, lexicon based tools VADER and TextBlob are used for sentiment analysis, Granger Causality is used to examine the relationship between Covid-19 cases and the sentiment score, and neural networks are leveraged as prediction models. Twitter sentiment pertaining to Covid-19 as a predictor of HDB price in Singapore is studied in comparison with the traditional predictors of housing prices i.e., the structural and neighbourhood characteristics. The results indicate that using Twitter sentiment pertaining to Covid19 leads to better prediction than using only the traditional predictors and performs better as a predictor compared to two of the traditional predictors. Hence, Twitter sentiment pertaining to an external factor should be considered as important as traditional predictors. This paper demonstrates the real world economic applications of sentiment analysis of Twitter data.Keywords: sentiment analysis, Covid-19, housing price prediction, tweets, social media, Singapore HDB, behavioral economics, neural networks
Procedia PDF Downloads 1175101 Combined Effect of Heat Stimulation and Delay Addition of Superplasticizer with Slag on Fresh and Hardened Property of Mortar
Authors: Antoni Wibowo, Harry Pujianto, Dewi Retno Sari Saputro
Abstract:
The stock market can provide huge profits in a relatively short time in financial sector; however, it also has a high risk for investors and traders if they are not careful to look the factors that affect the stock market. Therefore, they should give attention to the dynamic fluctuations and movements of the stock market to optimize profits from their investment. In this paper, we present a nonlinear autoregressive exogenous model (NARX) to predict the movements of stock market; especially, the movements of the closing price index. As case study, we consider to predict the movement of the closing price in Indonesia composite index (IHSG) and choose the best structures of NARX for IHSG’s prediction.Keywords: NARX (Nonlinear Autoregressive Exogenous Model), prediction, stock market, time series
Procedia PDF Downloads 2445100 Waste Scavenging as a Waste-to-Wealth Strategy for Waste Reduction in Port Harcourt City Nigeria: A Mixed Method Study
Authors: Osungwu Emeka
Abstract:
Until recently, Port Harcourt was known as the “Garden City of Nigeria” because of its neatness and the overwhelming presence of vegetation all over the metropolis. But today, the presence of piles of refuse dotting the entire city may have turned Port Harcourt into a “Garbage City”. Indiscriminate dumping of industrial, commercial and household wastes such as food waste, paper, polythene, textiles, scrap metals, glasses, wood, plastic, etc. at street corners and gutters, is still very common. The waste management problem in the state affects the citizens both directly and indirectly. The dumping of waste along the roadside obstructs traffic and, after mixing with rain water may sip underground with the possibility of the leachate contaminating the groundwater. The basic solid waste management processes of collection, transportation, segregation and final disposal appear to be very inefficient. This study was undertaken to assess waste utilization using metal waste scavengers. Highlighting their activities as a part of the informal sector of the solid waste management system with a view to identifying their challenges, prospects and possible contributions to the solid waste management system in the Port Harcourt metropolis. Therefore, the aim was to understand and assess scavenging as a system of solid waste management in Port Harcourt and to identify the main bottlenecks to its efficiency and the way forward. This study targeted people who engage in scavenging metal scraps across 5 major waste dump sites across Port Harcourt. To achieve this, a mixed method study was conducted to provide both experiential evidence on this waste utilization method using a qualitative study and a survey to collect numeric evidence on this subject. The findings from the qualitative string of this study provided insight on scavenging as a waste utilization activity and how their activities can reduce the gross waste generated and collected from the subject areas. It further showed the nature and characteristics of scavengers in the waste recycling system as a means of achieving the millennium development goals towards poverty alleviation, job creation and the development of a sustainable, cleaner environment. The study showed that in Port Harcourt, the waste management practice involves the collection, transportation and disposal of waste by refuse contractors using cart pushers and disposal vehicles at designated dumpsites where the scavengers salvage metal scraps for recycling and reuse. This study further indicates that there is a great demand for metal waste materials/products that are clearly identified as genuinely sustainable, even though they may be perceived as waste. The market for these waste materials shall promote entrepreneurship as a profitable venture for waste recovery and recycling in Port Harcourt. Therefore, the benefit of resource recovery and recycling as a means of the solid waste management system will enhance waste to wealth that will reduce pollution, create job opportunities thereby alleviate poverty.Keywords: scavengers, metal waste, waste-to-wealth, recycle, Port Harcourt, Nigeria, waste reduction, garden city, waste
Procedia PDF Downloads 985099 Prediction of the Behavior of 304L Stainless Steel under Uniaxial and Biaxial Cyclic Loading
Authors: Aboussalih Amira, Zarza Tahar, Fedaoui Kamel, Hammoudi Saleh
Abstract:
This work focuses on the simulation of the prediction of the behaviour of austenitic stainless steel (SS) 304L under complex loading in stress and imposed strain. The Chaboche model is a cable to describe the response of the material by the combination of two isotropic and nonlinear kinematic work hardening, the model is implemented in the ZébuLon computer code. First, we represent the evolution of the axial stress as a function of the plastic strain through hysteresis loops revealing a hardening behaviour caused by the increase in stress by stress in the direction of tension/compression. In a second step, the study of the ratcheting phenomenon takes a key place in this work by the appearance of the average stress. In addition to the solicitation of the material in the biaxial direction in traction / torsion.Keywords: damage, 304L, Ratcheting, plastic strain
Procedia PDF Downloads 945098 Prediction of Conducted EMI Noise in a Converter
Abstract:
Due to higher switching frequencies, the conducted Electromagnetic interference (EMI) noise is generated in a converter. It degrades the performance of a switching converter. Therefore, it is an essential requirement to mitigate EMI noise of high performance converter. Moreover, it includes two types of emission such as common mode (CM) and differential mode (DM) noise. CM noise is due to parasitic capacitance present in a converter and DM noise is caused by switching current. However, there is dire need to understand the main cause of EMI noise. Hence, we propose a novel method to predict conducted EMI noise of different converter topologies during early stage. This paper also presents the comparison of conducted electromagnetic interference (EMI) noise due to different SMPS topologies. We also make an attempt to develop an EMI noise model for a converter which allows detailed performance analysis. The proposed method is applied to different converter, as an example, and experimental results are verified the novel prediction technique.Keywords: EMI, electromagnetic interference, SMPS, switch-mode power supply, common mode, CM, differential mode, DM, noise
Procedia PDF Downloads 12095097 Homeless Population Modeling and Trend Prediction Through Identifying Key Factors and Machine Learning
Authors: Shayla He
Abstract:
Background and Purpose: According to Chamie (2017), it’s estimated that no less than 150 million people, or about 2 percent of the world’s population, are homeless. The homeless population in the United States has grown rapidly in the past four decades. In New York City, the sheltered homeless population has increased from 12,830 in 1983 to 62,679 in 2020. Knowing the trend on the homeless population is crucial at helping the states and the cities make affordable housing plans, and other community service plans ahead of time to better prepare for the situation. This study utilized the data from New York City, examined the key factors associated with the homelessness, and developed systematic modeling to predict homeless populations of the future. Using the best model developed, named HP-RNN, an analysis on the homeless population change during the months of 2020 and 2021, which were impacted by the COVID-19 pandemic, was conducted. Moreover, HP-RNN was tested on the data from Seattle. Methods: The methodology involves four phases in developing robust prediction methods. Phase 1 gathered and analyzed raw data of homeless population and demographic conditions from five urban centers. Phase 2 identified the key factors that contribute to the rate of homelessness. In Phase 3, three models were built using Linear Regression, Random Forest, and Recurrent Neural Network (RNN), respectively, to predict the future trend of society's homeless population. Each model was trained and tuned based on the dataset from New York City for its accuracy measured by Mean Squared Error (MSE). In Phase 4, the final phase, the best model from Phase 3 was evaluated using the data from Seattle that was not part of the model training and tuning process in Phase 3. Results: Compared to the Linear Regression based model used by HUD et al (2019), HP-RNN significantly improved the prediction metrics of Coefficient of Determination (R2) from -11.73 to 0.88 and MSE by 99%. HP-RNN was then validated on the data from Seattle, WA, which showed a peak %error of 14.5% between the actual and the predicted count. Finally, the modeling results were collected to predict the trend during the COVID-19 pandemic. It shows a good correlation between the actual and the predicted homeless population, with the peak %error less than 8.6%. Conclusions and Implications: This work is the first work to apply RNN to model the time series of the homeless related data. The Model shows a close correlation between the actual and the predicted homeless population. There are two major implications of this result. First, the model can be used to predict the homeless population for the next several years, and the prediction can help the states and the cities plan ahead on affordable housing allocation and other community service to better prepare for the future. Moreover, this prediction can serve as a reference to policy makers and legislators as they seek to make changes that may impact the factors closely associated with the future homeless population trend.Keywords: homeless, prediction, model, RNN
Procedia PDF Downloads 1215096 Performance Prediction Methodology of Slow Aging Assets
Authors: M. Ben Slimene, M.-S. Ouali
Abstract:
Asset management of urban infrastructures faces a multitude of challenges that need to be overcome to obtain a reliable measurement of performances. Predicting the performance of slowly aging systems is one of those challenges, which helps the asset manager to investigate specific failure modes and to undertake the appropriate maintenance and rehabilitation interventions to avoid catastrophic failures as well as to optimize the maintenance costs. This article presents a methodology for modeling the deterioration of slowly degrading assets based on an operating history. It consists of extracting degradation profiles by grouping together assets that exhibit similar degradation sequences using an unsupervised classification technique derived from artificial intelligence. The obtained clusters are used to build the performance prediction models. This methodology is applied to a sample of a stormwater drainage culvert dataset.Keywords: artificial Intelligence, clustering, culvert, regression model, slow degradation
Procedia PDF Downloads 1125095 The Use of Venous Glucose, Serum Lactate and Base Deficit as Biochemical Predictors of Mortality in Polytraumatized Patients: Acomparative with Trauma and Injury Severity Score and Acute Physiology and Chronic Health Evalution IV
Authors: Osama Moustafa Zayed
Abstract:
Aim of the work: To evaluate the effectiveness of venous glucose, levels of serum lactate and base deficit in polytraumatized patients as simple parameters to predict the mortality in these patients. Compared to the predictive value of Trauma and injury severity (TRISS) and Acute Physiology And Chronic Health Evaluation IV (APACHE IV). Introduction: Trauma is a serious global health problem, accounting for approximately one in 10 deaths worldwide. Trauma accounts for 5 million deaths per year. Prediction of mortality in trauma patients is an important part of trauma care. Several trauma scores have been devised to predict injury severity and risk of mortality. The trauma and injury severity score (TRISS) was most common used. Regardless of the accuracy of trauma scores, is based on an anatomical description of every injury and cannot be assigned to the patients until a full diagnostic procedure has been performed. So we hypothesized that alterations in admission glucose, lactate levels and base deficit would be an early and easy rapid predictor of mortality. Patient and Method: a comparative cross-sectional study. 282 Polytraumatized patients attended to the Emergency Department(ED) of the Suez Canal university Hospital constituted. The period from 1/1/2012 to 1/4/2013 was included. Results: We found that the best cut off value of TRISS probability of survival score for prediction of mortality among poly-traumatized patients is = 90, with 77% sensitivity and 89% specificity using area under the ROC curve (0.89) at (95%CI). APACHE IV demonstrated 67% sensitivity and 95% specificity at 95% CI at cut off point 99. The best cutoff value of Random Blood Sugar (RBS) for prediction of mortality was>140 mg/dl, with 89%, sensitivity, 49% specificity. The best cut off value of base deficit for prediction of mortality was less than -5.6 with 64% sensitivity, 93% specificity. The best cutoff point of lactate for prediction of mortality was > 2.6 mmol/L with 92%, sensitivity, 42% specificity. Conclusion: According to our results from all evaluated predictors of mortality (laboratory and scores) and mortality based on the estimated cutoff values using ROC curves analysis, the highest risk of mortality was found using a cutoff value of 90 in TRISS score while with laboratory parameters the highest risk of mortality was with serum lactate > 2.6 . Although that all of the three parameter are accurate in predicting mortality in poly-traumatized patients and near with each other, as in serum lactate the area under the curve 0.82, in BD 0.79 and 0.77 in RBS.Keywords: APACHE IV, emergency department, polytraumatized patients, serum lactate
Procedia PDF Downloads 2955094 Setswana Speech Rhythm Development in High-Socioeconomic Status Setswana-English Bilingual Children
Authors: Boikanyego Sebina
Abstract:
The present study investigates the effects of socioeconomic status (SES) and bilingualism on the Setswana speech rhythm of Batswana (citizens) children aged 6-7 years with typical development born and residing in Botswana. Botswana is a country in which there is a diglossic Setswana/English language setting, where English is the dominant high-status language in educational and public contexts. Generally, children from low SES have lower linguistic and cognitive profiles than their age-matched peers from high SES. A greater understanding of these variables would allow educators to distinguish between underdeveloped language skills in children due to impairment and environmental issues for them to successfully enroll children in language development enhancement programs specific to the child’s needs. There are 20 participants: 10 high SES private English-medium educated early sequential Setswana-English bilingual children, taught full-time in English (L2) from the age of 3 years, and for whom English has become dominant; and 10 low SES children who are educated in public schools for whom English is considered a learner language, i.e., L1 Setswana is dominant. The aim is to see whether SES and bilingualism, have had an effect on the Setswana speech rhythm of children in either group. The study primarily uses semi-spontaneous speech based on the telling of the wordless picture storybook. A questionnaire is used to elicit the language use pattern of the children and that of their parents, as well as the education level of the parents and the school the children attend. A comparison of the rhythm shows that children from high SES have a lower durational variability than those from low SES. The findings of the study are that the low durational variability by children from high SES may suggest an underdeveloped rhythm. In conclusion, the results of the present study are against the notion that children from high SES outperform those from low SES in linguistic development.Keywords: bilingualism, Setswana English, socio-economic status, speech-rhythm
Procedia PDF Downloads 675093 Psychological Capital as Pathways to Social Well-Being Among International Faculty in UAE: A Mediated-Moderated Study
Authors: Ejoke U. P., Smitha Dev., Madwuke Ann, DuPlessis E. D.
Abstract:
The study examines the relationship between psychological capital (PsyCap) and social well-being among international faculty members in the United Arab Emirates (UAE). The UAE has become a significant destination for global academic talent, yet challenges related to social integration, acceptance, and overall well-being persist among its international faculty. The study focuses on the predictive role of PsyCap, encompassing hope, efficacy, resilience, and optimism, in determining various dimensions of social well-being, including social integration, acceptance, contribution, actualization, and coherence. Additionally, the research investigates the potential moderating or mediating effects of institutional support and Faculty Job-Status position on the relationship between PsyCap and social well-being. Through structural equation modeling, we found that institutional support mediated the positive relationship between PsyCap and SWB and the permanent Faculty job-status position type strengthens the relationship between PsyCap and SWB. Our findings uncover the pathways through which PsyCap influences the social well-being outcomes of international faculty in the UAE. The findings will contribute to the development of tailored interventions and support systems aimed at enhancing the integration experiences and overall well-being of international faculty within the UAE academic community. Thus, fostering a more inclusive and thriving academic environment in the UAE.Keywords: faculty job-status, institutional-faculty, psychological capital, social well-being, UAE
Procedia PDF Downloads 535092 Prediction of Oxygen Transfer and Gas Hold-Up in Pneumatic Bioreactors Containing Viscous Newtonian Fluids
Authors: Caroline E. Mendes, Alberto C. Badino
Abstract:
Pneumatic reactors have been widely employed in various sectors of the chemical industry, especially where are required high heat and mass transfer rates. This study aimed to obtain correlations that allow the prediction of gas hold-up (Ԑ) and volumetric oxygen transfer coefficient (kLa), and compare these values, for three models of pneumatic reactors on two scales utilizing Newtonian fluids. Values of kLa were obtained using the dynamic pressure-step method, while was used for a new proposed measure. Comparing the three models of reactors studied, it was observed that the mass transfer was superior to draft-tube airlift, reaching of 0.173 and kLa of 0.00904s-1. All correlations showed good fit to the experimental data (R2≥94%), and comparisons with correlations from the literature demonstrate the need for further similar studies due to shortage of data available, mainly for airlift reactors and high viscosity fluids.Keywords: bubble column, internal loop airlift, gas hold-up, kLa
Procedia PDF Downloads 2745091 A Geographical Study of Women Status in an Emerging Urban Industrial Economy: Experiences from the Asansol Sub-Division and Durgapur Sub-Division of West Bengal, India
Authors: Mohana Basu, Snehamanju Basu
Abstract:
Urbanization has an immense impact on the holistic development of a region. In that same context, the level of women empowerment plays a significant role in the development of any region, particularly a region belonging to a developing country. The present study investigates the status of women empowerment in the Asansol Durgapur Planning Area of the state of West Bengal, India by investigating the status of women and their access to various facilities and awareness about the various governmental and non-governmental schemes meant for their elevation. Through this study, an attempt has been to made to understand the perception of the respondents on the context of women's empowerment. The study integrates multiple sources of qualitative and quantitative data collected from various reports, field-based measurements, questionnaire survey and community based participatory appraisals. Results reveal that women of the rural parts of the region are relatively disempowered due to the various restrictions imposed on them and enjoy lower socioeconomic clout than their male counterparts in spite of the several remedial efforts taken by the government and NGOs to elevate their position in the society. A considerable gender gap still exists regarding access to education, employment and decision-making power in the family and significant differences in attitude towards women are observable in the rural and urban areas. Freedom of women primarily vary according to their age group, educational level, employment and income status and also on the degree of urbanization. Asansol Durgapur Planning Area is primarily an industrial region where huge employment generation scope exists. But these disparities are quite alarming and indicate that economic development does not always usher in socially justifiable rights and access to resources for both men and women alike in its awake. In this backdrop, this study will attempt to forward relevant suggestions which can be followed for betterment of the status of women.Keywords: development, disempowered, economic development, urbanization, women empowerment
Procedia PDF Downloads 1465090 Water Access and Food Security: A Cross-Sectional Study of SSA Countries in 2017
Authors: Davod Ahmadi, Narges Ebadi, Ethan Wang, Hugo Melgar-Quiñonez
Abstract:
Compared to the other Least Developed Countries (LDCs), major countries in sub-Saharan Africa (SSA) have limited access to the clean water. People in this region, and more specifically females, suffer from acute water scarcity problems. They are compelled to spend too much of their time bringing water for domestic use like drinking and washing. Apart from domestic use, water through affecting agriculture and livestock contributes to the food security status of people in vulnerable regions like SSA. Livestock needs water to grow, and agriculture requires enormous quantities of water for irrigation. The main objective of this study is to explore the association between access to water and individuals’ food security status. Data from 2017 Gallup World Poll (GWP) for SSA were analyzed (n=35,000). The target population in GWP is the entire civilian, non-institutionalized, aged 15 and older population. All samples selection is probability based and nationally representative. The Gallup surveys an average of 1,000 samples of individuals per country. Three questions related to water (i.e., water quality, availability of water for crops and availability of water for livestock) were used as the exposure variables. Food Insecurity Experience Scale (FIES) was used as the outcome variable. FIES measures individuals’ food security status, and it is composed of eight questions with simple dichotomous responses (1=Yes and 0=No). Different statistical analyses such as descriptive, crosstabs and binary logistic regression, form the basis of this study. Results from descriptive analyses showed that more than 50% of the respondents had no access to enough water for crops and livestock. More than 85% of respondents were categorized as “food insecure”. Findings from cross-tabulation analyses showed that food security status was significantly associated with water quality (0.135; P=0.000), water for crops (0.106; P=0.000) and water for livestock (0.112; P=0.000). In regression analyses, the probability of being food insecure increased among people who expressed no satisfaction with water quality (OR=1.884 (OR=1.768-2.008)), not enough water for crops (OR=1.721 (1.616-1.834)) and not enough water for livestock (OR=1.706 (1.819)). In conclusion, it should note that water access affects food security status in SSA.Keywords: water access, agriculture, livestock, FIES
Procedia PDF Downloads 1505089 Association between Caries Status of First Permanent Molar with Oral Health Care Practice in Children Aged 9-12 Years in Lubuk Kilangan, Padang City
Authors: Cytha Nilam Chairani, Ditha Noviantika, Hidayati Amir, Nurul Khairiyah, Siti Rahmadita, Fadila Khairani
Abstract:
Background: Dental caries is one of the most common diseases with high prevalence in children. The first permanent molar (FPM) has an essential role in establishing the occlusion. Nevertheless, FPM is very prone to caries because of various factors, such as their anatomical structure and early emergence in oral cavity. It is due to the little knowledge from parents and children regarding the timing of emergence of FPM in oral cavity which is still considered as primary teeth. Furthermore, the lack of knowledge from parents and children may affect their oral hygiene practice resulting to carious process. Objective: The aim of this study was to assess the status of FPM caries and its association with children’s oral hygiene practice in 9-12-year-old school children in Lubuk Kilangan Community Health Centre, Padang City. Methods: A cross-sectional study was performed in 50 school children (9-12 years old) using random sampling technique from two randomly selected schools in Lubuk Kilangan Community Health Centre, Padang City. A questionnaire was developed from other studies consisting of four closed ended questions regarding oral health practice. The data obtained were analyzed statistically using Mann-Whitney Test to assess the status of FPM caries and its association with children’s oral hygiene practice. Results: The results showed that 32% of children had FPMs sound and the remaining 68% had FPMs carious which were grouped into 1-2 FPMs carious (60%) and 3-4 FPMs carious (8%). The caries status of mandibular FPM (64%) was higher compared to maxillary FPM (10%). Conclusion: There was significant association in subject who did not visit dentist in the last 6 months which had more carious FPMs compared to subject who visited dentist (p < 0.05). There was no significant association between the status of FPM caries and knowledge of the timing eruption of FPM, oral hygiene instruction from parents and tooth brushing (p > 0.05).Keywords: dental caries, children, first permanent molar, oral hygiene practice
Procedia PDF Downloads 2755088 Calibration of Site Effect Parameters in the GMPM BSSA 14 for the Region of Spain
Authors: Gonzalez Carlos, Martinez Fransisco
Abstract:
The creation of a seismic prediction model that considers all the regional variations and perfectly adjusts its results to the response spectra is very complicated. To achieve statistically acceptable results, it is necessary to process a sufficiently robust data set, and even if high efficiencies are achieved, this model will only work properly in this region. However, when using it in other regions, differences are found due to different parameters that have not been calibrated to other regions, such as the site effect. The fact that impedance contrasts, as well as other factors belonging to the site, have a great influence on the local response is well known, which is why this work, using the residual method, is intended to establish a regional calibration of the corresponding parameters site effect for the Spain region in the global GMPM BSSA 14.Keywords: GMPM, seismic prediction equations, residual method, response spectra, impedance contrast
Procedia PDF Downloads 845087 Comparing Machine Learning Estimation of Fuel Consumption of Heavy-Duty Vehicles
Authors: Victor Bodell, Lukas Ekstrom, Somayeh Aghanavesi
Abstract:
Fuel consumption (FC) is one of the key factors in determining expenses of operating a heavy-duty vehicle. A customer may therefore request an estimate of the FC of a desired vehicle. The modular design of heavy-duty vehicles allows their construction by specifying the building blocks, such as gear box, engine and chassis type. If the combination of building blocks is unprecedented, it is unfeasible to measure the FC, since this would first r equire the construction of the vehicle. This paper proposes a machine learning approach to predict FC. This study uses around 40,000 vehicles specific and o perational e nvironmental c onditions i nformation, such as road slopes and driver profiles. A ll v ehicles h ave d iesel engines and a mileage of more than 20,000 km. The data is used to investigate the accuracy of machine learning algorithms Linear regression (LR), K-nearest neighbor (KNN) and Artificial n eural n etworks (ANN) in predicting fuel consumption for heavy-duty vehicles. Performance of the algorithms is evaluated by reporting the prediction error on both simulated data and operational measurements. The performance of the algorithms is compared using nested cross-validation and statistical hypothesis testing. The statistical evaluation procedure finds that ANNs have the lowest prediction error compared to LR and KNN in estimating fuel consumption on both simulated and operational data. The models have a mean relative prediction error of 0.3% on simulated data, and 4.2% on operational data.Keywords: artificial neural networks, fuel consumption, friedman test, machine learning, statistical hypothesis testing
Procedia PDF Downloads 1785086 Challenges Facing Farmers in the Governorate of Al-Baha, Saudi Arabia
Authors: Mohammed Alghamdi, Ghanem Al-Ghamdi
Abstract:
The Governorate of Al-Baha is known for a history of farming that focused on plant products such as Date Palm, olives, figs, pomegranate and cereals as well as raising cattle, sheep, goats and to some extent camels for many decades. However, farmers have been facing with very significant natural and artificial challenges lately. The goal of this study was to determine the most significant challenges facing farmers in the Governorate of Al-Baha. Sixty farms were surveyed during the year of 2013. Farm survey focused on the farm management, farm financial status and governmental support. Our results showed that most farms were dedicated to farming with limited number of farms used parts of its premises for recreation. About 90% of farms were engaged in exclusively farming business. The financial status was good in most of the farms (80%), stable in 16% and hardly standing in less than 5%. Nearly 60% of the farms marketed 1-3 products and 23% marketed up to 6 products, 14% of the farms marketed up to 9 products and 4% marketed more than 9 products. Less than 14% had a chance to market their products over seven times per year while about 11% market their products and 32% of farms market 3-4 per year and 43% of farms market 1-2 per year. Our data showed that most farmers are in good financial status producing healthy food.Keywords: farming system, Al-Baha, healthy food, Saudi Arabia
Procedia PDF Downloads 280