Search results for: quantification accuracy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4196

Search results for: quantification accuracy

3596 Inferring Human Mobility in India Using Machine Learning

Authors: Asra Yousuf, Ajaykumar Tannirkulum

Abstract:

Inferring rural-urban migration trends can help design effective policies that promote better urban planning and rural development. In this paper, we describe how machine learning algorithms can be applied to predict internal migration decisions of people. We consider data collected from household surveys in Tamil Nadu to train our model. To measure the performance of the model, we use data on past migration from National Sample Survey Organisation of India. The factors for training the model include socioeconomic characteristic of each individual like age, gender, place of residence, outstanding loans, strength of the household, etc. and his past migration history. We perform a comparative analysis of the performance of a number of machine learning algorithm to determine their prediction accuracy. Our results show that machine learning algorithms provide a stronger prediction accuracy as compared to statistical models. Our goal through this research is to propose the use of data science techniques in understanding human decisions and behaviour in developing countries.

Keywords: development, migration, internal migration, machine learning, prediction

Procedia PDF Downloads 271
3595 Identification and Quantification of Lisinopril from Pure, Formulated and Urine Samples by Micellar Thin Layer Chromatography

Authors: Sudhanshu Sharma

Abstract:

Lisinopril, 1-[N-{(s)-I-carboxy-3 phenyl propyl}-L-proline dehydrate is a lysine analog of enalaprilat, the active metabolite of enalapril. It is long-acting, non-sulhydryl angiotensin-converting enzyme (ACE) inhibitor that is used for the treatment of hypertension and congestive heart failure in daily dosage 10-80 mg. Pharmacological activity of lisinopril has been proved in various experimental and clinical studies. Owing to its importance and widespread use, efforts have been made towards the development of simple and reliable analytical methods. As per our literature survey, lisinopril in pharmaceutical formulations has been determined by various analytical methodologies like polaragraphy, potentiometry, and spectrophotometry, but most of these analytical methods are not too suitable for the Identification of lisinopril from clinical samples because of the interferences caused by the amino acids and amino groups containing metabolites present in biological samples. This report is an attempt in the direction of developing a simple and reliable method for on plate identification and quantification of lisinopril in pharmaceutical formulations as well as from human urine samples using silica gel H layers developed with a new mobile phase comprising of micellar solutions of N-cetyl-N, N, N-trimethylammonium bromide (CTAB). Micellar solutions have found numerous practical applications in many areas of separation science. Micellar liquid chromatography (MLC) has gained immense popularity and wider applicability due to operational simplicity, cost effectiveness, relatively non-toxicity and enhanced separation efficiency, low aggressiveness. Incorporation of aqueous micellar solutions as mobile phase was pioneered by Armstrong and Terrill as they accentuated the importance of TLC where simultaneous separation of ionic or non-ionic species in a variety of matrices is required. A peculiarity of the micellar mobile phases (MMPs) is that they have no macroscopic analogues, as a result the typical separations can be easily achieved by using MMPs than aqueous organic mobile phases. Previously MMPs were successfully employed in TLC based critical separations of aromatic hydrocarbons, nucleotides, vitamin K1 and K5, o-, m- and p- aminophenol, amino acids, separation of penicillins. The human urine analysis for identification of selected drugs and their metabolites has emerged as an important investigation tool in forensic drug analysis. Among all chromatographic methods available only thin layer chromatography (TLC) enables a simple fast and effective separation of the complex mixtures present in various biological samples and is recommended as an approved testing for forensic drug analysis by federal Law. TLC proved its applicability during successful separation of bio-active amines, carbohydrates, enzymes, porphyrins, and their precursors, alkaloid and drugs from urine samples.

Keywords: lisnopril, surfactant, chromatography, micellar solutions

Procedia PDF Downloads 367
3594 Automated Tracking and Statistics of Vehicles at the Signalized Intersection

Authors: Qiang Zhang, Xiaojian Hu1

Abstract:

Intersection is the place where vehicles and pedestrians must pass through, turn and evacuate. Obtaining the motion data of vehicles near the intersection is of great significance for transportation research. Since there are usually many targets and there are more conflicts between targets, this makes it difficult to obtain vehicle motion parameters in traffic videos of intersections. According to the characteristics of traffic videos, this paper applies video technology to realize the automated track, count and trajectory extraction of vehicles to collect traffic data by roadside surveillance cameras installed near the intersections. Based on the video recognition method, the vehicles in each lane near the intersection are tracked with extracting trajectory and counted respectively in various degrees of occlusion and visibility. The performances are compared with current recognized CPU-based algorithms of real-time tracking-by-detection. The speed of the presented system is higher than the others and the system has a better real-time performance. The accuracy of direction has reached about 94.99% on average, and the accuracy of classification and statistics has reached about 75.12% on average.

Keywords: tracking and statistics, vehicle, signalized intersection, motion parameter, trajectory

Procedia PDF Downloads 221
3593 Spatial Working Memory Is Enhanced by the Differential Outcome Procedure in a Group of Participants with Mild Cognitive Impairment

Authors: Ana B. Vivas, Antonia Ypsilanti, Aristea I. Ladas, Angeles F. Estevez

Abstract:

Mild Cognitive Impairment (MCI) is considered an intermediate stage between normal and pathological aging, as a substantial percentage of people diagnosed with MCI converts later to dementia of the Alzheimer’s type. Memory is of the first cognitive processes to deteriorate in this condition. In the present study we employed the differential outcomes procedure (DOP) to improve visuospatial memory in a group of participants with MCI. The DOP requires the structure of a conditional discriminative learning task in which a correct choice response to a specific stimulus-stimulus association is reinforced with a particular reinforcer or outcome. A group of 10 participants with MCI, and a matched control group had to learn and keep in working memory four target locations out of eight possible locations where a shape could be presented. Results showed that participants with MCI had a statistically significant better terminal accuracy when a unique outcome was paired with a location (76% accuracy) as compared to a non differential outcome condition (64%). This finding suggests that the DOP is useful in improving working memory in MCI patients, which may delay their conversion to dementia.

Keywords: mild cognitive impairment, working memory, differential outcomes, cognitive process

Procedia PDF Downloads 460
3592 Spatiotemporal Neural Network for Video-Based Pose Estimation

Authors: Bin Ji, Kai Xu, Shunyu Yao, Jingjing Liu, Ye Pan

Abstract:

Human pose estimation is a popular research area in computer vision for its important application in human-machine interface. In recent years, 2D human pose estimation based on convolution neural network has got great progress and development. However, in more and more practical applications, people often need to deal with tasks based on video. It’s not far-fetched for us to consider how to combine the spatial and temporal information together to achieve a balance between computing cost and accuracy. To address this issue, this study proposes a new spatiotemporal model, namely Spatiotemporal Net (STNet) to combine both temporal and spatial information more rationally. As a result, the predicted keypoints heatmap is potentially more accurate and spatially more precise. Under the condition of ensuring the recognition accuracy, the algorithm deal with spatiotemporal series in a decoupled way, which greatly reduces the computation of the model, thus reducing the resource consumption. This study demonstrate the effectiveness of our network over the Penn Action Dataset, and the results indicate superior performance of our network over the existing methods.

Keywords: convolutional long short-term memory, deep learning, human pose estimation, spatiotemporal series

Procedia PDF Downloads 148
3591 The Change of Urban Land Use/Cover Using Object Based Approach for Southern Bali

Authors: I. Gusti A. A. Rai Asmiwyati, Robert J. Corner, Ashraf M. Dewan

Abstract:

Change on land use/cover (LULC) dominantly affects spatial structure and function. It can have such impacts by disrupting social culture practice and disturbing physical elements. Thus, it has become essential to understand of the dynamics in time and space of LULC as it can be used as a critical input for developing sustainable LULC. This study was an attempt to map and monitor the LULC change in Bali Indonesia from 2003 to 2013. Using object based classification to improve the accuracy, and change detection, multi temporal land use/cover data were extracted from a set of ASTER satellite image. The overall accuracies of the classification maps of 2003 and 2013 were 86.99% and 80.36%, respectively. Built up area and paddy field were the dominant type of land use/cover in both years. Patch increase dominantly in 2003 illustrated the rapid paddy field fragmentation and the huge occurring transformation. This approach is new for the case of diverse urban features of Bali that has been growing fast and increased the classification accuracy than the manual pixel based classification.

Keywords: land use/cover, urban, Bali, ASTER

Procedia PDF Downloads 541
3590 Assessing the Influence of Station Density on Geostatistical Prediction of Groundwater Levels in a Semi-arid Watershed of Karnataka

Authors: Sakshi Dhumale, Madhushree C., Amba Shetty

Abstract:

The effect of station density on the geostatistical prediction of groundwater levels is of critical importance to ensure accurate and reliable predictions. Monitoring station density directly impacts the accuracy and reliability of geostatistical predictions by influencing the model's ability to capture localized variations and small-scale features in groundwater levels. This is particularly crucial in regions with complex hydrogeological conditions and significant spatial heterogeneity. Insufficient station density can result in larger prediction uncertainties, as the model may struggle to adequately represent the spatial variability and correlation patterns of the data. On the other hand, an optimal distribution of monitoring stations enables effective coverage of the study area and captures the spatial variability of groundwater levels more comprehensively. In this study, we investigate the effect of station density on the predictive performance of groundwater levels using the geostatistical technique of Ordinary Kriging. The research utilizes groundwater level data collected from 121 observation wells within the semi-arid Berambadi watershed, gathered over a six-year period (2010-2015) from the Indian Institute of Science (IISc), Bengaluru. The dataset is partitioned into seven subsets representing varying sampling densities, ranging from 15% (12 wells) to 100% (121 wells) of the total well network. The results obtained from different monitoring networks are compared against the existing groundwater monitoring network established by the Central Ground Water Board (CGWB). The findings of this study demonstrate that higher station densities significantly enhance the accuracy of geostatistical predictions for groundwater levels. The increased number of monitoring stations enables improved interpolation accuracy and captures finer-scale variations in groundwater levels. These results shed light on the relationship between station density and the geostatistical prediction of groundwater levels, emphasizing the importance of appropriate station densities to ensure accurate and reliable predictions. The insights gained from this study have practical implications for designing and optimizing monitoring networks, facilitating effective groundwater level assessments, and enabling sustainable management of groundwater resources.

Keywords: station density, geostatistical prediction, groundwater levels, monitoring networks, interpolation accuracy, spatial variability

Procedia PDF Downloads 58
3589 A Comparative Assessment of Industrial Composites Using Thermography and Ultrasound

Authors: Mosab Alrashed, Wei Xu, Stephen Abineri, Yifan Zhao, Jörn Mehnen

Abstract:

Thermographic inspection is a relatively new technique for Non-Destructive Testing (NDT) which has been gathering increasing interest due to its relatively low cost hardware and extremely fast data acquisition properties. This technique is especially promising in the area of rapid automated damage detection and quantification. In collaboration with a major industry partner from the aerospace sector advanced thermography-based NDT software for impact damaged composites is introduced. The software is based on correlation analysis of time-temperature profiles in combination with an image enhancement process. The prototype software is aiming to a) better visualise the damages in a relatively easy-to-use way and b) automatically and quantitatively measure the properties of the degradation. Knowing that degradation properties play an important role in the identification of degradation types, tests and results on specimens which were artificially damaged have been performed and analyzed.

Keywords: NDT, correlation analysis, image processing, damage, inspection

Procedia PDF Downloads 547
3588 A Phishing Email Detection Approach Using Machine Learning Techniques

Authors: Kenneth Fon Mbah, Arash Habibi Lashkari, Ali A. Ghorbani

Abstract:

Phishing e-mails are a security issue that not only annoys online users, but has also resulted in significant financial losses for businesses. Phishing advertisements and pornographic e-mails are difficult to detect as attackers have been becoming increasingly intelligent and professional. Attackers track users and adjust their attacks based on users’ attractions and hot topics that can be extracted from community news and journals. This research focuses on deceptive Phishing attacks and their variants such as attacks through advertisements and pornographic e-mails. We propose a framework called Phishing Alerting System (PHAS) to accurately classify e-mails as Phishing, advertisements or as pornographic. PHAS has the ability to detect and alert users for all types of deceptive e-mails to help users in decision making. A well-known email dataset has been used for these experiments and based on previously extracted features, 93.11% detection accuracy is obtainable by using J48 and KNN machine learning techniques. Our proposed framework achieved approximately the same accuracy as the benchmark while using this dataset.

Keywords: phishing e-mail, phishing detection, anti phishing, alarm system, machine learning

Procedia PDF Downloads 341
3587 Age–Related Changes of the Sella Turcica Morphometry in Adults Older Than 20-25 Years

Authors: Yu. I. Pigolkin, M. A. Garcia Corro

Abstract:

Age determination of unknown dead bodies in forensic personal identification is a complicated process which involves the application of numerous methods and techniques. Skeletal remains are less exposed to influences of environmental factors. In order to enhance the accuracy of forensic age estimation additional properties of bones correlating with age are required to be revealed. Material and Methods: Dimensional examination of the sella turcica was carried out on cadavers with the cranium opened by a circular vibrating saw. The sample consisted of a total of 90 Russian subjects, ranging in age from two months and 87 years. Results: The tendency of dimensional variations throughout life was detected. There were no observed gender differences in the morphometry of the sella turcica. The shared use of the sella turcica depth and length values revealed the possibility to categorize an examined sample in a certain age period. Conclusions: Based on the results of existing methods of age determination, the morphometry of the sella turcica can be an additional characteristic, amplifying the received values, and accordingly, increasing the accuracy of forensic biological age diagnosis.

Keywords: age–related changes in bone structures, forensic personal identification, sella turcica morphometry, body identification

Procedia PDF Downloads 275
3586 Classification of Foliar Nitrogen in Common Bean (Phaseolus Vulgaris L.) Using Deep Learning Models and Images

Authors: Marcos Silva Tavares, Jamile Raquel Regazzo, Edson José de Souza Sardinha, Murilo Mesquita Baesso

Abstract:

Common beans are a widely cultivated and consumed legume globally, serving as a staple food for humans, especially in developing countries, due to their nutritional characteristics. Nitrogen (N) is the most limiting nutrient for productivity, and foliar analysis is crucial to ensure balanced nitrogen fertilization. Excessive N applications can cause, either isolated or cumulatively, soil and water contamination, plant toxicity, and increase their susceptibility to diseases and pests. However, the quantification of N using conventional methods is time-consuming and costly, demanding new technologies to optimize the adequate supply of N to plants. Thus, it becomes necessary to establish constant monitoring of the foliar content of this macronutrient in plants, mainly at the V4 stage, aiming at precision management of nitrogen fertilization. In this work, the objective was to evaluate the performance of a deep learning model, Resnet-50, in the classification of foliar nitrogen in common beans using RGB images. The BRS Estilo cultivar was sown in a greenhouse in a completely randomized design with four nitrogen doses (T1 = 0 kg N ha-1, T2 = 25 kg N ha-1, T3 = 75 kg N ha-1, and T4 = 100 kg N ha-1) and 12 replications. Pots with 5L capacity were used with a substrate composed of 43% soil (Neossolo Quartzarênico), 28.5% crushed sugarcane bagasse, and 28.5% cured bovine manure. The water supply of the plants was done with 5mm of water per day. The application of urea (45% N) and the acquisition of images occurred 14 and 32 days after sowing, respectively. A code developed in Matlab© R2022b was used to cut the original images into smaller blocks, originating an image bank composed of 4 folders representing the four classes and labeled as T1, T2, T3, and T4, each containing 500 images of 224x224 pixels obtained from plants cultivated under different N doses. The Matlab© R2022b software was used for the implementation and performance analysis of the model. The evaluation of the efficiency was done by a set of metrics, including accuracy (AC), F1-score (F1), specificity (SP), area under the curve (AUC), and precision (P). The ResNet-50 showed high performance in the classification of foliar N levels in common beans, with AC values of 85.6%. The F1 for classes T1, T2, T3, and T4 was 76, 72, 74, and 77%, respectively. This study revealed that the use of RGB images combined with deep learning can be a promising alternative to slow laboratory analyses, capable of optimizing the estimation of foliar N. This can allow rapid intervention by the producer to achieve higher productivity and less fertilizer waste. Future approaches are encouraged to develop mobile devices capable of handling images using deep learning for the classification of the nutritional status of plants in situ.

Keywords: convolutional neural network, residual network 50, nutritional status, artificial intelligence

Procedia PDF Downloads 19
3585 Automatic LV Segmentation with K-means Clustering and Graph Searching on Cardiac MRI

Authors: Hae-Yeoun Lee

Abstract:

Quantification of cardiac function is performed by calculating blood volume and ejection fraction in routine clinical practice. However, these works have been performed by manual contouring,which requires computational costs and varies on the observer. In this paper, an automatic left ventricle segmentation algorithm on cardiac magnetic resonance images (MRI) is presented. Using knowledge on cardiac MRI, a K-mean clustering technique is applied to segment blood region on a coil-sensitivity corrected image. Then, a graph searching technique is used to correct segmentation errors from coil distortion and noises. Finally, blood volume and ejection fraction are calculated. Using cardiac MRI from 15 subjects, the presented algorithm is tested and compared with manual contouring by experts to show outstanding performance.

Keywords: cardiac MRI, graph searching, left ventricle segmentation, K-means clustering

Procedia PDF Downloads 399
3584 Virtual Chemistry Laboratory as Pre-Lab Experiences: Stimulating Student's Prediction Skill

Authors: Yenni Kurniawati

Abstract:

Students Prediction Skill in chemistry experiments is an important skill for pre-service chemistry students to stimulate students reflective thinking at each stage of many chemistry experiments, qualitatively and quantitatively. A Virtual Chemistry Laboratory was designed to give students opportunities and times to practicing many kinds of chemistry experiments repeatedly, everywhere and anytime, before they do a real experiment. The Virtual Chemistry Laboratory content was constructed using the Model of Educational Reconstruction and developed to enhance students ability to predicted the experiment results and analyzed the cause of error, calculating the accuracy and precision with carefully in using chemicals. This research showed students changing in making a decision and extremely beware with accuracy, but still had a low concern in precision. It enhancing students level of reflective thinking skill related to their prediction skill 1 until 2 stage in average. Most of them could predict the characteristics of the product in experiment, and even the result will going to be an error. In addition, they take experiments more seriously and curiously about the experiment results. This study recommends for a different subject matter to provide more opportunities for students to learn about other kinds of chemistry experiments design.

Keywords: virtual chemistry laboratory, chemistry experiments, prediction skill, pre-lab experiences

Procedia PDF Downloads 340
3583 The Best Prediction Data Mining Model for Breast Cancer Probability in Women Residents in Kabul

Authors: Mina Jafari, Kobra Hamraee, Saied Hossein Hosseini

Abstract:

The prediction of breast cancer disease is one of the challenges in medicine. In this paper we collected 528 records of women’s information who live in Kabul including demographic, life style, diet and pregnancy data. There are many classification algorithm in breast cancer prediction and tried to find the best model with most accurate result and lowest error rate. We evaluated some other common supervised algorithms in data mining to find the best model in prediction of breast cancer disease among afghan women living in Kabul regarding to momography result as target variable. For evaluating these algorithms we used Cross Validation which is an assured method for measuring the performance of models. After comparing error rate and accuracy of three models: Decision Tree, Naive Bays and Rule Induction, Decision Tree with accuracy of 94.06% and error rate of %15 is found the best model to predicting breast cancer disease based on the health care records.

Keywords: decision tree, breast cancer, probability, data mining

Procedia PDF Downloads 138
3582 Optimized Deep Learning-Based Facial Emotion Recognition System

Authors: Erick C. Valverde, Wansu Lim

Abstract:

Facial emotion recognition (FER) system has been recently developed for more advanced computer vision applications. The ability to identify human emotions would enable smart healthcare facility to diagnose mental health illnesses (e.g., depression and stress) as well as better human social interactions with smart technologies. The FER system involves two steps: 1) face detection task and 2) facial emotion recognition task. It classifies the human expression in various categories such as angry, disgust, fear, happy, sad, surprise, and neutral. This system requires intensive research to address issues with human diversity, various unique human expressions, and variety of human facial features due to age differences. These issues generally affect the ability of the FER system to detect human emotions with high accuracy. Early stage of FER systems used simple supervised classification task algorithms like K-nearest neighbors (KNN) and artificial neural networks (ANN). These conventional FER systems have issues with low accuracy due to its inefficiency to extract significant features of several human emotions. To increase the accuracy of FER systems, deep learning (DL)-based methods, like convolutional neural networks (CNN), are proposed. These methods can find more complex features in the human face by means of the deeper connections within its architectures. However, the inference speed and computational costs of a DL-based FER system is often disregarded in exchange for higher accuracy results. To cope with this drawback, an optimized DL-based FER system is proposed in this study.An extreme version of Inception V3, known as Xception model, is leveraged by applying different network optimization methods. Specifically, network pruning and quantization are used to enable lower computational costs and reduce memory usage, respectively. To support low resource requirements, a 68-landmark face detector from Dlib is used in the early step of the FER system.Furthermore, a DL compiler is utilized to incorporate advanced optimization techniques to the Xception model to improve the inference speed of the FER system. In comparison to VGG-Net and ResNet50, the proposed optimized DL-based FER system experimentally demonstrates the objectives of the network optimization methods used. As a result, the proposed approach can be used to create an efficient and real-time FER system.

Keywords: deep learning, face detection, facial emotion recognition, network optimization methods

Procedia PDF Downloads 118
3581 A Comparative Analysis of Classification Models with Wrapper-Based Feature Selection for Predicting Student Academic Performance

Authors: Abdullah Al Farwan, Ya Zhang

Abstract:

In today’s educational arena, it is critical to understand educational data and be able to evaluate important aspects, particularly data on student achievement. Educational Data Mining (EDM) is a research area that focusing on uncovering patterns and information in data from educational institutions. Teachers, if they are able to predict their students' class performance, can use this information to improve their teaching abilities. It has evolved into valuable knowledge that can be used for a wide range of objectives; for example, a strategic plan can be used to generate high-quality education. Based on previous data, this paper recommends employing data mining techniques to forecast students' final grades. In this study, five data mining methods, Decision Tree, JRip, Naive Bayes, Multi-layer Perceptron, and Random Forest with wrapper feature selection, were used on two datasets relating to Portuguese language and mathematics classes lessons. The results showed the effectiveness of using data mining learning methodologies in predicting student academic success. The classification accuracy achieved with selected algorithms lies in the range of 80-94%. Among all the selected classification algorithms, the lowest accuracy is achieved by the Multi-layer Perceptron algorithm, which is close to 70.45%, and the highest accuracy is achieved by the Random Forest algorithm, which is close to 94.10%. This proposed work can assist educational administrators to identify poor performing students at an early stage and perhaps implement motivational interventions to improve their academic success and prevent educational dropout.

Keywords: classification algorithms, decision tree, feature selection, multi-layer perceptron, Naïve Bayes, random forest, students’ academic performance

Procedia PDF Downloads 166
3580 Investigation a New Approach "AGM" to Solve of Complicate Nonlinear Partial Differential Equations at All Engineering Field and Basic Science

Authors: Mohammadreza Akbari, Pooya Soleimani Besheli, Reza Khalili, Davood Domiri Danji

Abstract:

In this conference, our aims are accuracy, capabilities and power at solving of the complicated non-linear partial differential. Our purpose is to enhance the ability to solve the mentioned nonlinear differential equations at basic science and engineering field and similar issues with a simple and innovative approach. As we know most of engineering system behavior in practical are nonlinear process (especially basic science and engineering field, etc.) and analytical solving (no numeric) these problems are difficult, complex, and sometimes impossible like (Fluids and Gas wave, these problems can't solve with numeric method, because of no have boundary condition) accordingly in this symposium we are going to exposure an innovative approach which we have named it Akbari-Ganji's Method or AGM in engineering, that can solve sets of coupled nonlinear differential equations (ODE, PDE) with high accuracy and simple solution and so this issue will emerge after comparing the achieved solutions by Numerical method (Runge-Kutta 4th). Eventually, AGM method will be proved that could be created huge evolution for researchers, professors and students in whole over the world, because of AGM coding system, so by using this software we can analytically solve all complicated linear and nonlinear partial differential equations, with help of that there is no difficulty for solving all nonlinear differential equations. Advantages and ability of this method (AGM) as follow: (a) Non-linear Differential equations (ODE, PDE) are directly solvable by this method. (b) In this method (AGM), most of the time, without any dimensionless procedure, we can solve equation(s) by any boundary or initial condition number. (c) AGM method always is convergent in boundary or initial condition. (d) Parameters of exponential, Trigonometric and Logarithmic of the existent in the non-linear differential equation with AGM method no needs Taylor expand which are caused high solve precision. (e) AGM method is very flexible in the coding system, and can solve easily varieties of the non-linear differential equation at high acceptable accuracy. (f) One of the important advantages of this method is analytical solving with high accuracy such as partial differential equation in vibration in solids, waves in water and gas, with minimum initial and boundary condition capable to solve problem. (g) It is very important to present a general and simple approach for solving most problems of the differential equations with high non-linearity in engineering sciences especially at civil engineering, and compare output with numerical method (Runge-Kutta 4th) and Exact solutions.

Keywords: new approach, AGM, sets of coupled nonlinear differential equation, exact solutions, numerical

Procedia PDF Downloads 463
3579 Leveraging Remote Assessments and Central Raters to Optimize Data Quality in Rare Neurodevelopmental Disorders Clinical Trials

Authors: Pamela Ventola, Laurel Bales, Sara Florczyk

Abstract:

Background: Fully remote or hybrid administration of clinical outcome measures in rare neurodevelopmental disorders trials is increasing due to the ongoing pandemic and recognition that remote assessments reduce the burden on families. Many assessments in rare neurodevelopmental disorders trials are complex; however, remote/hybrid trials readily allow for the use of centralized raters to administer and score the scales. The use of centralized raters has many benefits, including reducing site burden; however, a specific impact on data quality has not yet been determined. Purpose: The current study has two aims: a) evaluate differences in data quality between administration of a standardized clinical interview completed by centralized raters compared to those completed by site raters and b) evaluate improvement in accuracy of scoring standardized developmental assessments when scored centrally compared to when scored by site raters. Methods: For aim 1, the Vineland-3, a widely used measure of adaptive functioning, was administered by site raters (n= 52) participating in one of four rare disease trials. The measure was also administered as part of two additional trials that utilized central raters (n=7). Each rater completed a comprehensive training program on the assessment. Following completion of the training, each clinician completed a Vineland-3 with a mock caregiver. Administrations were recorded and reviewed by a neuropsychologist for administration and scoring accuracy. Raters were able to certify for the trials after demonstrating an accurate administration of the scale. For site raters, 25% of each rater’s in-study administrations were reviewed by a neuropsychologist for accuracy of administration and scoring. For central raters, the first two administrations and every 10th administration were reviewed. Aim 2 evaluated the added benefit of centralized scoring on the accuracy of scoring of the Bayley-3, a comprehensive developmental assessment widely used in rare neurodevelopmental disorders trials. Bayley-3 administrations across four rare disease trials were centrally scored. For all administrations, the site rater who administered the Bayley-3 scored the scale, and a centralized rater reviewed the video recordings of the administrations and also scored the scales to confirm accuracy. Results: For aim 1, site raters completed 138 Vineland-3 administrations. Of the138 administrations, 53 administrations were reviewed by a neuropsychologist. Four of the administrations had errors that compromised the validity of the assessment. The central raters completed 180 Vineland-3 administrations, 38 administrations were reviewed, and none had significant errors. For aim 2, 68 administrations of the Bayley-3 were reviewed and scored by both a site rater and a centralized rater. Of these administrations, 25 had errors in scoring that were corrected by the central rater. Conclusion: In rare neurodevelopmental disorders trials, sample sizes are often small, so data quality is critical. The use of central raters inherently decreases site burden, but it also decreases rater variance, as illustrated by the small team of central raters (n=7) needed to conduct all of the assessments (n=180) in these trials compared to the number of site raters (n=53) required for even fewer assessments (n=138). In addition, the use of central raters dramatically improves the quality of scoring the assessments.

Keywords: neurodevelopmental disorders, clinical trials, rare disease, central raters, remote trials, decentralized trials

Procedia PDF Downloads 172
3578 Prediction and Analysis of Human Transmembrane Transporter Proteins Based on SCM

Authors: Hui-Ling Huang, Tamara Vasylenko, Phasit Charoenkwan, Shih-Hsiang Chiu, Shinn-Ying Ho

Abstract:

The knowledge of the human transporters is still limited due to technically demanding procedure of crystallization for the structural characterization of transporters by spectroscopic methods. It is desirable to develop bioinformatics tools for effective analysis of available sequences in order to identify human transmembrane transporter proteins (HMTPs). This study proposes a scoring card method (SCM) based method for predicting HMTPs. We estimated a set of propensity scores of dipeptides to be HMTPs using SCM from the training dataset (HTS732) consisting of 366 HMTPs and 366 non-HMTPs. SCM using the estimated propensity scores of 20 amino acids and 400 dipeptides -as HMTPs, has a training accuracy of 87.63% and a test accuracy of 66.46%. The five top-ranked dipeptides include LD, NV, LI, KY, and MN with scores 996, 992, 989, 987, and 985, respectively. Five amino acids with the highest propensity scores are Ile, Phe, Met, Gly, and Leu, that hydrophobic residues are mostly highly-scored. Furthermore, obtained propensity scores were used to analyze physicochemical properties of human transporters.

Keywords: dipeptide composition, physicochemical property, human transmembrane transporter proteins, human transmembrane transporters binding propensity, scoring card method

Procedia PDF Downloads 369
3577 Machine Learning-Driven Prediction of Cardiovascular Diseases: A Supervised Approach

Authors: Thota Sai Prakash, B. Yaswanth, Jhade Bhuvaneswar, Marreddy Divakar Reddy, Shyam Ji Gupta

Abstract:

Across the globe, there are a lot of chronic diseases, and heart disease stands out as one of the most perilous. Sadly, many lives are lost to this condition, even though early intervention could prevent such tragedies. However, identifying heart disease in its initial stages is not easy. To address this challenge, we propose an automated system aimed at predicting the presence of heart disease using advanced techniques. By doing so, we hope to empower individuals with the knowledge needed to take proactive measures against this potentially fatal illness. Our approach towards this problem involves meticulous data preprocessing and the development of predictive models utilizing classification algorithms such as Support Vector Machines (SVM), Decision Tree, and Random Forest. We assess the efficiency of every model based on metrics like accuracy, ensuring that we select the most reliable option. Additionally, we conduct thorough data analysis to reveal the importance of different attributes. Among the models considered, Random Forest emerges as the standout performer with an accuracy rate of 96.04% in our study.

Keywords: support vector machines, decision tree, random forest

Procedia PDF Downloads 40
3576 KCBA, A Method for Feature Extraction of Colonoscopy Images

Authors: Vahid Bayrami Rad

Abstract:

In recent years, the use of artificial intelligence techniques, tools, and methods in processing medical images and health-related applications has been highlighted and a lot of research has been done in this regard. For example, colonoscopy and diagnosis of colon lesions are some cases in which the process of diagnosis of lesions can be improved by using image processing and artificial intelligence algorithms, which help doctors a lot. Due to the lack of accurate measurements and the variety of injuries in colonoscopy images, the process of diagnosing the type of lesions is a little difficult even for expert doctors. Therefore, by using different software and image processing, doctors can be helped to increase the accuracy of their observations and ultimately improve their diagnosis. Also, by using automatic methods, the process of diagnosing the type of disease can be improved. Therefore, in this paper, a deep learning framework called KCBA is proposed to classify colonoscopy lesions which are composed of several methods such as K-means clustering, a bag of features and deep auto-encoder. Finally, according to the experimental results, the proposed method's performance in classifying colonoscopy images is depicted considering the accuracy criterion.

Keywords: colorectal cancer, colonoscopy, region of interest, narrow band imaging, texture analysis, bag of feature

Procedia PDF Downloads 57
3575 Multimedia Data Fusion for Event Detection in Twitter by Using Dempster-Shafer Evidence Theory

Authors: Samar M. Alqhtani, Suhuai Luo, Brian Regan

Abstract:

Data fusion technology can be the best way to extract useful information from multiple sources of data. It has been widely applied in various applications. This paper presents a data fusion approach in multimedia data for event detection in twitter by using Dempster-Shafer evidence theory. The methodology applies a mining algorithm to detect the event. There are two types of data in the fusion. The first is features extracted from text by using the bag-ofwords method which is calculated using the term frequency-inverse document frequency (TF-IDF). The second is the visual features extracted by applying scale-invariant feature transform (SIFT). The Dempster - Shafer theory of evidence is applied in order to fuse the information from these two sources. Our experiments have indicated that comparing to the approaches using individual data source, the proposed data fusion approach can increase the prediction accuracy for event detection. The experimental result showed that the proposed method achieved a high accuracy of 0.97, comparing with 0.93 with texts only, and 0.86 with images only.

Keywords: data fusion, Dempster-Shafer theory, data mining, event detection

Procedia PDF Downloads 410
3574 Selection of Optimal Reduced Feature Sets of Brain Signal Analysis Using Heuristically Optimized Deep Autoencoder

Authors: Souvik Phadikar, Nidul Sinha, Rajdeep Ghosh

Abstract:

In brainwaves research using electroencephalogram (EEG) signals, finding the most relevant and effective feature set for identification of activities in the human brain is a big challenge till today because of the random nature of the signals. The feature extraction method is a key issue to solve this problem. Finding those features that prove to give distinctive pictures for different activities and similar for the same activities is very difficult, especially for the number of activities. The performance of a classifier accuracy depends on this quality of feature set. Further, more number of features result in high computational complexity and less number of features compromise with the lower performance. In this paper, a novel idea of the selection of optimal feature set using a heuristically optimized deep autoencoder is presented. Using various feature extraction methods, a vast number of features are extracted from the EEG signals and fed to the autoencoder deep neural network. The autoencoder encodes the input features into a small set of codes. To avoid the gradient vanish problem and normalization of the dataset, a meta-heuristic search algorithm is used to minimize the mean square error (MSE) between encoder input and decoder output. To reduce the feature set into a smaller one, 4 hidden layers are considered in the autoencoder network; hence it is called Heuristically Optimized Deep Autoencoder (HO-DAE). In this method, no features are rejected; all the features are combined into the response of responses of the hidden layer. The results reveal that higher accuracy can be achieved using optimal reduced features. The proposed HO-DAE is also compared with the regular autoencoder to test the performance of both. The performance of the proposed method is validated and compared with the other two methods recently reported in the literature, which reveals that the proposed method is far better than the other two methods in terms of classification accuracy.

Keywords: autoencoder, brainwave signal analysis, electroencephalogram, feature extraction, feature selection, optimization

Procedia PDF Downloads 114
3573 A Local Invariant Generalized Hough Transform Method for Integrated Circuit Visual Positioning

Authors: Wei Feilong

Abstract:

In this study, an local invariant generalized Houghtransform (LI-GHT) method is proposed for integrated circuit (IC) visual positioning. The original generalized Hough transform (GHT) is robust to external noise; however, it is not suitable for visual positioning of IC chips due to the four-dimensionality (4D) of parameter space which leads to the substantial storage requirement and high computational complexity. The proposed LI-GHT method can reduce the dimensionality of parameter space to 2D thanks to the rotational invariance of local invariant geometric feature and it can estimate the accuracy position and rotation angle of IC chips in real-time under noise and blur influence. The experiment results show that the proposed LI-GHT can estimate position and rotation angle of IC chips with high accuracy and fast speed. The proposed LI-GHT algorithm was implemented in IC visual positioning system of radio frequency identification (RFID) packaging equipment.

Keywords: Integrated Circuit Visual Positioning, Generalized Hough Transform, Local invariant Generalized Hough Transform, ICpacking equipment

Procedia PDF Downloads 264
3572 A Quantification Method of Attractiveness of Stations and an Estimation Method of Number of Passengers Taking into Consideration the Attractiveness of the Station

Authors: Naoya Ozaki, Takuya Watanabe, Ryosuke Matsumoto, Noriko Fukasawa

Abstract:

In the metropolitan areas in Japan, in many stations, shopping areas are set up, and escalators and elevators are installed to make the stations be barrier-free. Further, many areas around the stations are being redeveloped. Railway business operators want to know how much effect these circumstances have on attractiveness of the station or number of passengers using the station. So, we performed a questionnaire survey of the station users in the metropolitan areas for finding factors to affect the attractiveness of stations. Then, based on the analysis of the survey, we developed a method to quantitatively evaluate attractiveness of the stations. We also developed an estimation method for number of passengers based on combination of attractiveness of the station quantitatively evaluated and the residential and labor population around the station. Then, we derived precise linear regression models estimating the attractiveness of the station and number of passengers of the station.

Keywords: attractiveness of the station, estimation method, number of passengers of the station, redevelopment around the station, renovation of the station

Procedia PDF Downloads 287
3571 Digital Image Correlation: Metrological Characterization in Mechanical Analysis

Authors: D. Signore, M. Ferraiuolo, P. Caramuta, O. Petrella, C. Toscano

Abstract:

The Digital Image Correlation (DIC) is a newly developed optical technique that is spreading in all engineering sectors because it allows the non-destructive estimation of the entire surface deformation without any contact with the component under analysis. These characteristics make the DIC very appealing in all the cases the global deformation state is to be known without using strain gages, which are the most used measuring device. The DIC is applicable to any material subjected to distortion caused by either thermal or mechanical load, allowing to obtain high-definition mapping of displacements and deformations. That is why in the civil and the transportation industry, DIC is very useful for studying the behavior of metallic materials as well as of composite materials. DIC is also used in the medical field for the characterization of the local strain field of the vascular tissues surface subjected to uniaxial tensile loading. DIC can be carried out in the two dimension mode (2D DIC) if a single camera is used or in a three dimension mode (3D DIC) if two cameras are involved. Each point of the test surface framed by the cameras can be associated with a specific pixel of the image, and the coordinates of each point are calculated knowing the relative distance between the two cameras together with their orientation. In both arrangements, when a component is subjected to a load, several images related to different deformation states can be are acquired through the cameras. A specific software analyzes the images via the mutual correlation between the reference image (obtained without any applied load) and those acquired during the deformation giving the relative displacements. In this paper, a metrological characterization of the digital image correlation is performed on aluminum and composite targets both in static and dynamic loading conditions by comparison between DIC and strain gauges measures. In the static test, interesting results have been obtained thanks to an excellent agreement between the two measuring techniques. In addition, the deformation detected by the DIC is compliant with the result of a FEM simulation. In the dynamic test, the DIC was able to follow with a good accuracy the periodic deformation of the specimen giving results coherent with the ones given by FEM simulation. In both situations, it was seen that the DIC measurement accuracy depends on several parameters such as the optical focusing, the parameters chosen to perform the mutual correlation between the images and, finally, the reference points on image to be analyzed. In the future, the influence of these parameters will be studied, and a method to increase the accuracy of the measurements will be developed in accordance with the requirements of the industries especially of the aerospace one.

Keywords: accuracy, deformation, image correlation, mechanical analysis

Procedia PDF Downloads 311
3570 Improving Chest X-Ray Disease Detection with Enhanced Data Augmentation Using Novel Approach of Diverse Conditional Wasserstein Generative Adversarial Networks

Authors: Malik Muhammad Arslan, Muneeb Ullah, Dai Shihan, Daniyal Haider, Xiaodong Yang

Abstract:

Chest X-rays are instrumental in the detection and monitoring of a wide array of diseases, including viral infections such as COVID-19, tuberculosis, pneumonia, lung cancer, and various cardiac and pulmonary conditions. To enhance the accuracy of diagnosis, artificial intelligence (AI) algorithms, particularly deep learning models like Convolutional Neural Networks (CNNs), are employed. However, these deep learning models demand a substantial and varied dataset to attain optimal precision. Generative Adversarial Networks (GANs) can be employed to create new data, thereby supplementing the existing dataset and enhancing the accuracy of deep learning models. Nevertheless, GANs have their limitations, such as issues related to stability, convergence, and the ability to distinguish between authentic and fabricated data. In order to overcome these challenges and advance the detection and classification of CXR normal and abnormal images, this study introduces a distinctive technique known as DCWGAN (Diverse Conditional Wasserstein GAN) for generating synthetic chest X-ray (CXR) images. The study evaluates the effectiveness of this Idiosyncratic DCWGAN technique using the ResNet50 model and compares its results with those obtained using the traditional GAN approach. The findings reveal that the ResNet50 model trained on the DCWGAN-generated dataset outperformed the model trained on the classic GAN-generated dataset. Specifically, the ResNet50 model utilizing DCWGAN synthetic images achieved impressive performance metrics with an accuracy of 0.961, precision of 0.955, recall of 0.970, and F1-Measure of 0.963. These results indicate the promising potential for the early detection of diseases in CXR images using this Inimitable approach.

Keywords: CNN, classification, deep learning, GAN, Resnet50

Procedia PDF Downloads 88
3569 Extraction of Urban Land Features from TM Landsat Image Using the Land Features Index and Tasseled Cap Transformation

Authors: R. Bouhennache, T. Bouden, A. A. Taleb, A. Chaddad

Abstract:

In this paper we propose a method to map the urban areas. The method uses an arithmetic calculation processed from the land features indexes and Tasseled cap transformation TC of multi spectral Thematic Mapper Landsat TM image. For this purpose the derived indexes image from the original image such SAVI the soil adjusted vegetation index, UI the urban Index, and EBBI the enhanced built up and bareness index were staked to form a new image and the bands were uncorrelated, also the Spectral Angle Mapper (SAM) and Spectral Information Divergence (SID) supervised classification approaches were first applied on the new image TM data using the reference spectra of the spectral library and subsequently the four urban, vegetation, water and soil land cover categories were extracted with their accuracy assessment.The urban features were represented using a logic calculation applied to the brightness, UI-SAVI, NDBI-greenness and EBBI- brightness data sets. The study applied to Blida and mentioned that the urban features can be mapped with an accuracy ranging from 92 % to 95%.

Keywords: EBBI, SAVI, Tasseled Cap Transformation, UI

Procedia PDF Downloads 482
3568 Partially Knowing of Least Support Orthogonal Matching Pursuit (PKLS-OMP) for Recovering Signal

Authors: Israa Sh. Tawfic, Sema Koc Kayhan

Abstract:

Given a large sparse signal, great wishes are to reconstruct the signal precisely and accurately from lease number of measurements as possible as it could. Although this seems possible by theory, the difficulty is in built an algorithm to perform the accuracy and efficiency of reconstructing. This paper proposes a new proved method to reconstruct sparse signal depend on using new method called Least Support Matching Pursuit (LS-OMP) merge it with the theory of Partial Knowing Support (PSK) given new method called Partially Knowing of Least Support Orthogonal Matching Pursuit (PKLS-OMP). The new methods depend on the greedy algorithm to compute the support which depends on the number of iterations. So to make it faster, the PKLS-OMP adds the idea of partial knowing support of its algorithm. It shows the efficiency, simplicity, and accuracy to get back the original signal if the sampling matrix satisfies the Restricted Isometry Property (RIP). Simulation results also show that it outperforms many algorithms especially for compressible signals.

Keywords: compressed sensing, lest support orthogonal matching pursuit, partial knowing support, restricted isometry property, signal reconstruction

Procedia PDF Downloads 241
3567 Flexible Capacitive Sensors Based on Paper Sheets

Authors: Mojtaba Farzaneh, Majid Baghaei Nejad

Abstract:

This article proposes a new Flexible Capacitive Tactile Sensors based on paper sheets. This method combines the parameters of sensor's material and dielectric, and forms a new model of flexible capacitive sensors. The present article tries to present a practical explanation of this method's application and advantages. With the use of this new method, it is possible to make a more flexibility and accurate sensor in comparison with the current models. To assess the performance of this model, the common capacitive sensor is simulated and the proposed model of this article and one of the existing models are assessed. The results of this article indicate that the proposed model of this article can enhance the speed and accuracy of tactile sensor and has less error in comparison with the current models. Based on the results of this study, it can be claimed that in comparison with the current models, the proposed model of this article is capable of representing more flexibility and more accurate output parameters for touching the sensor, especially in abnormal situations and uneven surfaces, and increases accuracy and practicality.

Keywords: capacitive sensor, paper sheets, flexible, tactile, uneven

Procedia PDF Downloads 353