Search results for: pressure shock
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4289

Search results for: pressure shock

3689 Effects of Inlet Filtration Pressure Loss on Single and Two-Spool Gas Turbine

Authors: Enyia James Diwa, Dodeye Ina Igbong, Archibong Archibong Eso

Abstract:

Gas turbine operators have been faced with the dramatic financial setback resulting from compressor fouling. In a highly deregulated power industry where there is stiffness in the market competition, has made it imperative to improvise means of reducing maintenance cost in other to yield maximum profit. Compressor fouling results from the deposition of contaminants in the presence of oil and moisture on the compressor blade or annulus surfaces, which leads to a loss in flow capacity and compressor efficiency. These combined effects reduce power output, increase heat rate and cause creep life reduction. This paper also contains a model of two gas turbine engines via Cranfield University software known as TURBOMATCH, which is simulation software for detecting engine fouling rate. The model engines are of different configurations and capacities, and are operating in two different modes of constant output power and turbine inlet temperature for a two and three stage filter system. The idea is to investigate the more economically viable filtration systems by gas turbine users based on performance only. It has been demonstrated in the results that the two spool engine is a little more beneficial compared to the single spool. This is as a result of a higher pressure ratio of the two spools as well as the deceleration of the high-pressure compressor and high-pressure turbine speed in a constant TET. Meanwhile, the inlet filtration system was properly designed and balanced with a well-timed and economical compressor washing regime/scheme to control compressor fouling. The different technologies of inlet air filtration and compressor washing are considered and an attempt at optimization with respect to the cost of a combination of both control measures are made.

Keywords: inlet filtration, pressure loss, single spool, two spool

Procedia PDF Downloads 312
3688 Non-Reacting Numerical Simulation of Axisymmetric Trapped Vortex Combustor

Authors: Heval Serhat Uluk, Sam M. Dakka, Kuldeep Singh, Richard Jefferson-Loveday

Abstract:

This paper will focus on the suitability of a trapped vortex combustor as a candidate for gas turbine combustor objectives to minimize pressure drop across the combustor and investigate aerodynamic performance. Non-reacting simulation of axisymmetric cavity trapped vortex combustors were simulated to investigate the pressure drop for various cavity aspect ratios of 0.3, 0.6, and 1 and for air mass flow rates of 14 m/s, 28 m/s, and 42 m/s. A numerical study of an axisymmetric trapped vortex combustor was carried out by using two-dimensional and three-dimensional computational domains. A comparison study was conducted between Reynolds Averaged Navier Stokes (RANS) k-ε Realizable with enhanced wall treatment and RANS k-ω Shear Stress Transport (SST) models to find the most suitable turbulence model. It was found that the k-ω SST model gives relatively close results to experimental outcomes. The numerical results were validated and showed good agreement with the experimental data. Pressure drop rises with increasing air mass flow rate, and the lowest pressure drop was observed at 0.6 cavity aspect ratio for all air mass flow rates tested, which agrees with the experimental outcome. A mixing enhancement study showed that 30-degree angle air injectors provide improved fuel-air mixing.

Keywords: aerodynamic, computational fluid dynamics, propulsion, trapped vortex combustor

Procedia PDF Downloads 76
3687 Analysing the Degree of Climate Risk Perception and Response Strategies of Farm Household Typologies in Northern Ghana

Authors: David Ahiamadia, Ramilan Thiagarajah, Peter Tozer

Abstract:

In Sub Saharan Africa, farm typologies have been used as a practical way to address heterogeneity among farming systems which is mostly done by grouping farms into subsets with similar characteristics. Due to the complexity in farming systems among farm households, it is not possible to formulate policy recommendations for individual farmers. As a result, this study employs a multivariate statistical approach using Principal Component Analysis (PCA) coupled with cluster analysis to reduce heterogeneity in a 615-household data set from the Africa Rising Baseline Evaluation Survey for 25 farming communities in Northern Ghana. Variables selected for the study were mostly socio-economic, production potential, production intensity, production orientation, crop diversity, food security, resource endowments, and climate risk variables. To avoid making some individuals in the subpopulation worse off when aclimate risk intervention is broadly implemented, the findings of the study also account for diversity in climate risk perception among the different farm types identified and their response strategies towards climate risk. The climate risk variables used in this study involve the most severeclimate shock types perceived by the household, household response to climate shock type, and reason for crop failure (i.e., maize, rice, and groundnut). Eventually, four farm types, each with an adequate level of homogeneity in climate risk perception and response strategies, were identified. Farm type 1 and 3 were wealthy with a lower degree of climate risk perception compared to farm type 2 and 4. Also, relatively wealthy farmers used asset liquidation as a climate risk management strategy, whereas poor farmers resorted to engaging in spiritual activities such as prayers, sacrifices, and divine consultations.

Keywords: smallholder, households, climate risk, variables, typologies

Procedia PDF Downloads 77
3686 The Effectiveness of Multiphase Flow in Well- Control Operations

Authors: Ahmed Borg, Elsa Aristodemou, Attia Attia

Abstract:

Well control involves managing the circulating drilling fluid within the wells and avoiding kicks and blowouts as these can lead to losses in human life and drilling facilities. Current practices for good control incorporate predictions of pressure losses through computational models. Developing a realistic hydraulic model for a good control problem is a very complicated process due to the existence of a complex multiphase region, which usually contains a non-Newtonian drilling fluid and the miscibility of formation gas in drilling fluid. The current approaches assume an inaccurate flow fluid model within the well, which leads to incorrect pressure loss calculations. To overcome this problem, researchers have been considering the more complex two-phase fluid flow models. However, even these more sophisticated two-phase models are unsuitable for applications where pressure dynamics are important, such as in managed pressure drilling. This study aims to develop and implement new fluid flow models that take into consideration the miscibility of fluids as well as their non-Newtonian properties for enabling realistic kick treatment. furthermore, a corresponding numerical solution method is built with an enriched data bank. The research work considers and implements models that take into consideration the effect of two phases in kick treatment for well control in conventional drilling. In this work, a corresponding numerical solution method is built with an enriched data bank. Software STARCCM+ for the computational studies to study the important parameters to describe wellbore multiphase flow, the mass flow rate, volumetric fraction, and velocity of each phase. Results showed that based on the analysis of these simulation studies, a coarser full-scale model of the wellbore, including chemical modeling established. The focus of the investigations was put on the near drill bit section. This inflow area shows certain characteristics that are dominated by the inflow conditions of the gas as well as by the configuration of the mud stream entering the annulus. Without considering the gas solubility effect, the bottom hole pressure could be underestimated by 4.2%, while the bottom hole temperature is overestimated by 3.2%. and without considering the heat transfer effect, the bottom hole pressure could be overestimated by 11.4% under steady flow conditions. Besides, larger reservoir pressure leads to a larger gas fraction in the wellbore. However, reservoir pressure has a minor effect on the steady wellbore temperature. Also as choke pressure increases, less gas will exist in the annulus in the form of free gas.

Keywords: multiphase flow, well- control, STARCCM+, petroleum engineering and gas technology, computational fluid dynamic

Procedia PDF Downloads 107
3685 Giant Achievements in Food Processing

Authors: Farnaz Amidi Fazli

Abstract:

After long period of human experience about food processing from raw eating to canning of food in the last century now it is time to use novel technologies which are sometimes completely different from common technologies. It is possible to decontaminate food without using heat or the foods are stored without using cold chain. Pulsed electric field (PEF) processing is a non-thermal method of food preservation that uses short bursts of electricity, PEF can be used for processing liquid and semi-liquid food products. PEF processing offers high quality fresh-like liquid foods with excellent flavor, nutritional value, and shelf-life. High pressure processing (HPP) technology has the potential to fulfill both consumer and scientific requirements. The use of HPP for over 50 years has found applications in non-food industries. For food applications, ‘high pressure’ can be generally considered to be up to 600 MPa for most food products. After years, freezing has its high potential to food preservation due to new and quick freezing methods. Foods which are prepared by this technology have more acceptability and high quality comparing with old fashion slow freezing. Thus, quick freezing has further been adopted as a widespread commercial method for long-term preservation of perishable foods which improved both the health and convenience of everyone in the industrialised countries. Above parameters are achieved by Fluidised-bed freezing systems, freezing by immersion and Hydrofluidisation on the other hand new thawing methods like high-pressure, microwave, ohmic, and acoustic thawing have a key role in quality and adaptability of final product.

Keywords: quick freezing, thawing, high pressure, pulse electric, hydrofluidisation

Procedia PDF Downloads 311
3684 A Statistical Energy Analysis Model of an Automobile for the Prediction of the Internal Sound Pressure Level

Authors: El Korchi Ayoub, Cherif Raef

Abstract:

Interior noise in vehicles is an essential factor affecting occupant comfort. Over recent decades, much work has been done to develop simulation tools for vehicle NVH. At the medium high-frequency range, the statistical energy analysis method (SEA) shows significant effectiveness in predicting noise and vibration responses of mechanical systems. In this paper, the evaluation of the sound pressure level (SPL) inside an automobile cabin has been performed numerically using the statistical energy analysis (SEA) method. A test car cabin was performed using a monopole source as a sound source. The decay rate method was employed to obtain the damping loss factor (DLF) of each subsystem of the developed SEA model. These parameters were then used to predict the sound pressure level in the interior cabin. The results show satisfactory agreement with the directly measured SPL. The developed SEA vehicle model can be used in early design phases and allows the engineer to identify sources contributing to the total noise and transmission paths.

Keywords: SEA, SPL, DLF, NVH

Procedia PDF Downloads 82
3683 Systolic Blood Pressure and Its Determinants: Study in a Population Attending Pharmacies in a Portuguese Coastal City

Authors: M. J. Reis Lima, J. Oliveira, M. Brito, C. Lemos, A. Mascarenhas, E. Teixeira Lemos

Abstract:

Hypertension is a common condition causing cardio and cerebrovascular complications. Portugal has one of the highest mortality rates from stroke and a high prevalence of hypertension. Systolic blood pressure (SBP) is an important risk factor for cardiovascular events (myocardial infarction and stroke) and premature mortality, particularly in the elderly population. The present study aims to estimate the prevalence of hypertension in a Portuguese population living in a coastal city and to identify some of its determinants (namely gender, age, the body mass index and physical activity frequency). A total of 91 adults who attended three pharmacies of a coastal city in the center of Portugal, between May and August of 2013 were evaluated. Attendants who reported to have diabetes or taking antihypertensive drugs in the 2 previous weeks were excluded from the study. Sociodemographic factors, BMI, habits of exercise and BP were assessed. Hypertension was defined as blood pressure ≥140/90 mmHg. The majority of the studied population was constituted by women (75.8%), with a mean age of 54.2±1.6 years old, married or living in civil union and that had completed secondary school or had higher education (40%). They presented a mean BMI of 26.2±4.76 Kg/m2. and were sedentary. The mean BP was 127.0±17.77mmHg- 74.69 ± 9.53. In this population, we found 4.3% of people with hypertension and 16.1% with normal high blood pressure. Men exhibit a tendency to present higher systolic blood pressure values than women. Of all the factors considered, SBP values also tended to be higher with age and higher BMI values. Despite the fact that the mean values of SBP did not present values higher than 140 mmHg we must be concerned because the studied population is undiagnosed for hypertension. Our study even with some limitations might be a prelude to the upcoming research about the underlying factors responsible for the occurrence of SBP.

Keywords: hypertension, age, exercise, obesity and gender

Procedia PDF Downloads 534
3682 Investigation of Effect of Mixture Ratio and Compaction Pressure of Reinforced with Miscanthus Fibre Brake Pad Samples

Authors: M. Unaldi, R. Kus

Abstract:

Brake pads are important parts of the braking system and they are made of different materials. Use of asbestos fibre can cause health risks. The goal of this study is to determine the effect of ecological brake pad samples which are produced under different compaction pressure values and mixture ratios by using miscanthus as reinforcement component on the density, hardness, wear rate and compression strength properties, and friction coefficients changes of ecological brake pad samples. Miscanthus powder, cashew powder, alumina powder, phenolic resin powder, and calcite powder mixtures were used to produce ecological brake pad samples. The physical properties of the brake pad samples produced under different mixture ratios and compaction pressures values were determined to assign their effects on them by using Taguchi experimental design. Mixture ratios and compaction pressures values were chosen as the factors with three-levels. Experiments are conducted to L₉(3⁴) Taguchi orthogonal array design. The results showed that hardness value is very much affected both compaction pressure values and mixture ratios than the other physical properties. When reinforcing component ratio within the mixture and compaction pressure value is increased, hardness and compression strength values of the all samples are also increased. All test results taking into account, the ideal compaction value for used components and mixture ratios were determined as 200 MPa.

Keywords: brake pad, eco-friendly materials, hardness, Miscanthus, Taguchi method

Procedia PDF Downloads 315
3681 Investigating the Effect of High Intensity Laser and Dry Needling in Patients with Chronic Neck Pain

Authors: Marzieh Yassin, Azizeh Parandnia, Javad Sarrafzadeh, Reza Salehi

Abstract:

Background: Myofascial trigger points (MTrPs) are one of the main causes of musculoskeletal pain syndromes and are associated with pain, tenderness, and limited range of motion (ROM). This study compared the effectiveness of high-intensity laser therapy (HILT) and dry needling (DN) on pain intensity, pain pressure threshold, cervical range of motion and disability in people with chronic neck pain. Method and Material: 30 patients with chronic neck pain were randomly divided into two groups: a HILT group (n=15) and a DN group (n=15). Treatment sessions were performed for three weeks, and all participants received related intervention twice a week (5 sessions). The pain level was measured using a Visual Analog Scale (VAS); the pain pressure threshold (PPT) was measured using a digital algometer; perceived disability was measured using the neck disability index (NDI); and cervical range of movements (CROMs) were measured using an iPhone app (lateral flexion) and a goniometer (Rotation). Results: In both the dry needling and high-intensity laser therapy groups, the pain and neck disability were significantly decreased (P < 0.05). Also, the pain pressure threshold and cervical range of motions were significantly increased in both groups. However, there was no significant difference between the two groups (P > 0.05). Conclusion: Both high-intensity laser therapy and dry needling can be used to treat chronic neck pain.

Keywords: chronic neck pain, dry needling, high intensity laser therapy (HILT), pain, pain pressure threshold

Procedia PDF Downloads 65
3680 The Performance of PtSn/Al₂O₃ with Cylindrical Particles for Acetic Acid Hydrogenation

Authors: Mingchuan Zhou, Haitao Zhang, Hongfang Ma, Weiyong Ying

Abstract:

Alumina supported PtSn catalysts with cylindrical particles were prepared and characterized by using low temperature N2 adsorption/desorption and X-ray diffraction. Low temperature N2 adsorption/desorption demonstrate that the tableting changed the texture properties of catalysts. XRD pattern indicate that the crystal structure of supports had no change after reaction. The performances over particles of PtSn/Al2O3 catalysts were investigated with regards to reaction temperature, pressure, and H2/AcOH mole ratio. After tableting, the conversion of acetic acid and selectivity of ethanol and acetyl acetate decreased. High reaction temperature and pressure can improve conversion of acetic acid. H2/AcOH mole ratio of 9.36 showed the best performance on acetic acid hydrogenation. High pressure had benefits for the selectivity of ethanol and other two parameters had no obvious effect on selectivity.  

Keywords: acetic acid hydrogenation, cylindrical particles, ethanol, PtSn

Procedia PDF Downloads 308
3679 Post-Anesthetic Recovery: The Best Moment to Apply Positive Pressure in Airway in Postoperative Bariatric Surgery

Authors: Eli Maria Pazzianotto-Forti, Patrícia Brigatto, Letícia Baltieri, Carolina Moraes Da Costa, Maura Rigoldi Simoes Da Rocha, Irineu Rasera Jr

Abstract:

The application of positive pressure in airway can contribute to the restoration of lung volumes, capacities and prevent respiratory complications. The aim was to investigate the use of Bilevel Positive Airway Pressure (BIPAP) in morbidly obese in two moments in postoperative bariatric surgery: In the post-anesthetic recovery (PAR) and on the 1st postoperative day (1stPO). Twenty morbidly obese, aged between 25 and 55 years, underwent pulmonary function test and chest X-ray preoperatively and on the day of discharge (2nd day after surgery). They were randomly allocated in groups. GPAR: received BIPAP treatment in PAR, for an hour and G1stPO: received BIPAP for one hour, on the 1stPO. There were significant reductions in slow vital capacity (SVC) (p=0.0007), inspiratory reserve volume (IRV) (p=0.0016) and forced vital capacity (FVC) (p=0.0013) in the postoperative in GPAR and the expiratory reserve volume (ERV) remained (p=0.4446). In the G1stPO, there were significant reductions for: SVC p=<0.0001, ERV p=0.0191, IRV p= 0.0026 and FVC p=<0.0001. Comparing between groups, the SVC (p=0.0027) and FVC (p=0.0028) showed significant difference between the treatments. However, the GPAR showed fewer declines of these capacities. To the ERV (p= 0.1646) and IRV (p=0.3973) there was no significant difference between groups. The atelectasis prevalence was 10% for the GPAR and 30% for G1stPO, with significant difference between the proportions (p = 0.0027). The lowest reduction in SVC and FVC happens when positive pressure is applied in PAR. Thus, the use of BIPAP in the PAR can promote a restoration of ERV and contribute to the reduction of atelectasis. FAPESP 2013/06334-8.

Keywords: atelectasis, bariatric surgery, physiotherapy, pulmonary function, positive pressure

Procedia PDF Downloads 392
3678 Effects of Different Processing Methods of Typha Grass on Feed Intake Milk Yield/Composition and Blood Parameters of Diry Cows

Authors: Alhaji Musa Abdullahi, Usman Abdullahi, Adamu Lawan, Aminu Maidala

Abstract:

Abstract 16 healthy lactating cows will be randomly selected for the trial and will be randomly divided in to 4 groups with 4 cows in each. They will be kept under similar management condition (conventional management system). Animals of relatively same weight and age will be used. After 11days for adaptation, feed intake and performance of the experimental animals will be determine. Milk sample will be collected at each milking in the morning and afternoon to determine; Milk yield, Milk fat percentage, Solid not fat percentage, Total solid percentage of milk. Cows dung will be observe to determine; Score 1 very loose watery stool, Score 2 semi solid with undigested raw material, Score 3 semi solid with less undigested raw material, Score 4 solid with very less undigested raw material, Score 5 good dung no undigested raw material. At the end of the experiment, blood samples will be analyzed for full blood counts and differentials {White Blood Cells (WBC), Red Blood Cells (RBC), Hemoglobin (Hb), Packed Cell Volume (PCV), Mean Corpuscular Volume (MCV), Mean Corpuscular Hemoglobin (MCH), Mean Corpuscular Hemoglobin Concentration (MCHC), Platelets (PLT), Lymphocytes (LYM), Basophils, Eosinophils and Monocytes Proportion (MXD) and Neutrophils (NEUT)} using automated hematology analyzer. Serum samples will be analyzed for heat shock transcription factors, heat shock proteins and hormones (Serum glucocorticoid, prolactin and cortisol). Moreover, biochemical analysis will also be conducted to check for Total protein (TP), Albumen (ALB), Globulin (GBL), Total cholesterol (TCH), glucose (G), sodium (Na+), potassium (K+), chloride (Cl-) and pH. Keywords: Lactating cows, milk composition, dung score and blood parameters.

Keywords: Lactating cows , Milk yield , Dung score , Blood parameters

Procedia PDF Downloads 170
3677 Nursery Treatments May Improve Restoration Outcomes by Reducing Seedling Transplant Shock

Authors: Douglas E. Mainhart, Alejandro Fierro-Cabo, Bradley Christoffersen, Charlotte Reemts

Abstract:

Semi-arid ecosystems across the globe have faced land conversion for agriculture and resource extraction activities, posing a threat to the important ecosystem services they provide. Revegetation-centered restoration efforts in these regions face low success rates due to limited soil water availability and high temperatures leading to elevated seedling mortality after planting. Typical methods to alleviate these stresses require costly post-planting interventions aimed at improving soil moisture status. We set out to evaluate the efficacy of applying in-nursery treatments to address transplant shock. Four native Tamaulipan thornscrub species were compared. Three treatments were applied: elevated CO2, drought hardening (four-week exposure each), and antitranspirant foliar spray (the day prior to planting). Our goal was to answer two primary questions: (1) Do treatments improve survival and growth of seedlings in the early period post-planting? (2) If so, what underlying physiological changes are associated with this improved performance? To this end, we measured leaf gas exchange (stomatal conductance, light saturated photosynthetic rate, water use efficiency), leaf morphology (specific leaf area), and osmolality before and upon the conclusion of treatments. A subset of seedlings from all treatments have been planted, which will be monitored in coming months for in-field survival and growth.First month field survival for all treatment groups were high due to ample rainfall following planting (>85%). Growth data was unreliable due to high herbivory (68% of all sampled plants). While elevated CO2 had infrequent or no detectable influence on all aspects of leaf gas exchange, drought hardening reduced stomatal conductance in three of the four species measured without negatively impacting photosynthesis. Both CO2 and drought hardening elevated leaf osmolality in two species. Antitranspirant application significantly reduced conductance in all species for up to four days and reduced photosynthesis in two species. Antitranspirants also increased the variability of water use efficiency compared to controls. Collectively, these results suggest that antitranspirants and drought hardening are viable treatments for reducing short-term water loss during the transplant shock period. Elevated CO2, while not effective at reducing water loss, may be useful for promoting more favorable water status via osmotic adjustment. These practices could improve restoration outcomes in Tamaulipan thornscrub and other semi-arid systems. Further research should focus on evaluating combinations of these treatments and their species-specific viability.

Keywords: conservation, drought conditioning, semi-arid restoration, plant physiology

Procedia PDF Downloads 78
3676 The Modification of the Mixed Flow Pump with Respect to Stability of the Head Curve

Authors: Roman Klas, František Pochylý, Pavel Rudolf

Abstract:

This paper is focused on the CFD simulation of the radiaxial pump (i.e. mixed flow pump) with the aim to detect the reasons of Y-Q characteristic instability. The main reasons of pressure pulsations were detected by means of the analysis of velocity and pressure fields within the pump combined with the theoretical approach. Consequently, the modifications of spiral case and pump suction area were made based on the knowledge of flow conditions and the shape of dissipation function. The primary design of pump geometry was created as the base model serving for the comparison of individual modification influences. The basic experimental data are available for this geometry. This approach replaced the more complicated and with respect to convergence of all computational tasks more difficult calculation for the compressible liquid flow. The modification of primary pump consisted in inserting the three fins types. Subsequently, the evaluation of pressure pulsations, specific energy curves and visualization of velocity fields were chosen as the criterion for successful design.

Keywords: CFD, radiaxial pump, spiral case, stability

Procedia PDF Downloads 389
3675 Geometrical Fluid Model for Blood Rheology and Pulsatile Flow in Stenosed Arteries

Authors: Karan Kamboj, Vikramjeet Singh, Vinod Kumar

Abstract:

Considering blood to be a non-Newtonian Carreau liquid, this indirect numerical model investigates the pulsatile blood flow in a constricted restricted conduit that has numerous gentle stenosis inside the view of an increasing body speed. Asymptotic answers are obtained for the flow rate, pressure inclination, speed profile, sheer divider pressure, and longitudinal impedance to stream after the use of the twofold irritation approach to the problem of the succeeding non-straight limit esteem. It has been observed that the speed of the blood increases when there is an increase in the point of tightening of the conduit, the body speed increase, and the power regulation file. However, this rheological manner of behaving changes to one of longitudinal impedance to stream and divider sheer pressure when each of the previously mentioned boundaries increases. It has also been seen that the sheer divider pressure in the bloodstream greatly increases when there is an increase in the maximum depth of the stenosis but that it significantly decreases when there is an increase in the pulsatile Reynolds number. This is an interesting phenomenon. The assessments of the amount of growth in the longitudinal resistance to flow increase overall with the increment of the maximum depth of the stenosis and the Weissenberg number. Additionally, it is noted that the average speed of blood increases noticeably with the growth of the point of tightening of the corridor, and body speed increases border. This is something that can be observed.

Keywords: geometry of artery, pulsatile blood flow, numerous stenosis

Procedia PDF Downloads 88
3674 Performance Improvement in a Micro Compressor for Micro Gas Turbine Using Computational Fluid Dynamics

Authors: Kamran Siddique, Hiroyuki Asada, Yoshifumi Ogami

Abstract:

Micro gas turbine (MGT) nowadays has a wide variety of applications from drones to hybrid electric vehicles. As microfabrication technology getting better, the size of MGT is getting smaller. Overall performance of MGT is dependent on the individual components. Each component’s performance is dependent and interrelated with another component. Therefore, careful consideration needs to be given to each and every individual component of MGT. In this study, the focus is on improving the performance of the compressor in order to improve the overall performance of MGT. Computational Fluid Dynamics (CFD) is being performed using the software FLUENT to analyze the design of a micro compressor. Operating parameters like mass flow rate and RPM, and design parameters like inner blade angle (IBA), outer blade angle (OBA), blade thickness and number of blades are varied to study its effect on the performance of the compressor. Pressure ratio is used as a tool to measure the performance of the compressor. Higher the pressure ratio, better the design is. In the study, target mass flow rate is 0.2 g/s and RPM to be less than or equal to 900,000. So far, a pressure ratio of above 3 has been achieved at 0.2 g/s mass flow rate with 5 rotor blades, 0.36 mm blade thickness, 94.25 degrees OBA and 10.46 degrees IBA. The design in this study differs from a regular centrifugal compressor used in conventional gas turbines such that compressor is designed keeping in mind ease of manufacturability. So, this study proposes a compressor design which has a good pressure ratio, and at the same time, it is easy to manufacture using current microfabrication technologies.

Keywords: computational fluid dynamics, FLUENT microfabrication, RPM

Procedia PDF Downloads 146
3673 Temperature Measurements of Corona Discharge in the SF6-N2 Gas Mixture

Authors: A. Lemzadmi

Abstract:

Rotational and vibrational temperatures of the SF6-N2 gas mixture are spectroscopically measured over a pressure range of 2-14 bars. The spectra obtained of the light emission of the corona discharge were recorded with different values of pressure, voltage and current together with the variation of the position of the tip electrode. The emission of N2 is very dominant for different gas concentration and the second positive system 2S+ is the most important. The convolution method is used for the determination of the temperature. The Rotational temperature measurements of the plasma reveal gas temperatures in the range of 450-650°K and vibrational temperatures in the range of 1800-2200°K.

Keywords: rotational temperatures, corona discharges, SF6-N2 gas mixture, vibrational temperatures

Procedia PDF Downloads 452
3672 Air Flow Characteristics and Pressure Distributions for Staggered Wing Shaped Tubes Bundle

Authors: Sayed A. Elsayed, Emad Z. Ibrahim, Osama M. Mesalhy, Mohamed A. Abdelatief

Abstract:

An experimental and numerical study has been conducted to clarify fluid flow characteristics and pressure drop distributions of a cross-flow heat exchanger employing staggered wing-shaped tubes at different angels of attack. The water-side Rew and the air-side Rea were at 5 x 102 and at from 1.8 x 103 to 9.7 x 103, respectively. Three cases of the tubes arrangements with various angles of attack, row angles of attack and 90° cone angles were employed at the considered Rea range. Correlation of pressure drop coefficient Pdc in terms of Rea, design parameters for the studied cases were presented. The flow pattern around the staggered wing-shaped tubes bundle were predicted by using commercial CFD FLUENT 6.3.26 software package. Results indicated that the values of Pdc were increased by increasing the angle of attack from 0° to 45°, while the opposite was true for angles of attack from 135° to 180°. Comparisons between the experimental and numerical results of the present study and those, previously, obtained for similar available studies showed good agreements.

Keywords: wing-shaped tubes, cross-flow cooling, staggered arrangement, CFD

Procedia PDF Downloads 366
3671 Tehran Province Water and Wastewater Company Approach on Energy Efficiency by the Development of Renewable Energy to Achieving the Sustainable Development Legal Principle

Authors: Mohammad Parvaresh, Mahdi Babaee, Bahareh Arghand, Roushanak Fahimi Hanzaee, Davood Nourmohammadi

Abstract:

Today, the intelligent network of water and wastewater as one of the key steps in realizing the smart city in the world. Use of pressure relief valves in urban water networks in order to reduce the pressure is necessary in Tehran city. But use these pressure relief valves lead to waste water, more power consumption, and environmental pollution because Tehran Province Water and Wastewater Co. use a quarter of industry 's electricity. In this regard, Tehran Province Water and Wastewater Co. identified solutions to reduce direct and indirect costs in energy use in the process of production, transmission and distribution of water because this company has extensive facilities and high capacity to realize green economy and industry. The aim of this study is to analyze the new project in water and wastewater industry to reach sustainable development.

Keywords: Tehran Province Water and Wastewater Company, water network efficiency, sustainable development, International Environmental Law

Procedia PDF Downloads 279
3670 The Characteristics of Static Plantar Loading in the First-Division College Sprint Athletes

Authors: Tong-Hsien Chow

Abstract:

Background: Plantar pressure measurement is an effective method for assessing plantar loading and can be applied to evaluating movement performance of the foot. The purpose of this study is to explore the sprint athletes’ plantar loading characteristics and pain profiles in static standing. Methods: Experiments were undertaken on 80 first-division college sprint athletes and 85 healthy non-sprinters. ‘JC Mat’, the optical plantar pressure measurement was applied to examining the differences between both groups in the arch index (AI), three regional and six distinct sub-regional plantar pressure distributions (PPD), and footprint characteristics. Pain assessment and self-reported health status in sprint athletes were examined for evaluating their common pain areas. Results: Findings from the control group, the males’ AI fell into the normal range. Yet, the females’ AI was classified as the high-arch type. AI values of the sprint group were found to be significantly lower than the control group. PPD were higher at the medial metatarsal bone of both feet and the lateral heel of the right foot in the sprint group, the males in particular, whereas lower at the medial and lateral longitudinal arches of both feet. Footprint characteristics tended to support the results of the AI and PPD, and this reflected the corresponding pressure profiles. For the sprint athletes, the lateral knee joint and biceps femoris were the most common musculoskeletal pains. Conclusions: The sprint athletes’ AI were generally classified as high arches, and that their PPD were categorized between the features of runners and high-arched runners. These findings also correspond to the profiles of patellofemoral pain syndrome (PFPS)-related plantar pressure. The pain profiles appeared to correspond to the symptoms of high-arched runners and PFPS. The findings reflected upon the possible link between high arches and PFPS. The correlation between high-arched runners and PFPS development is worth further studies.

Keywords: sprint athletes, arch index, plantar pressure distributions, high arches, patellofemoral pain syndrome

Procedia PDF Downloads 329
3669 Physicochemical Stability of Pulse Spreads during Storage after Sous Vide Treatment and High Pressure Processing

Authors: Asnate Kirse, Daina Karklina, Sandra Muizniece-Brasava, Ruta Galoburda

Abstract:

Pulses are high in plant protein and dietary fiber, and contain slowly digestible starches. Innovative products from pulses could increase their consumption and benefit consumer health. This study was conducted to evaluate physicochemical stability of processed cowpea (Vigna unguiculata (L.) Walp. cv. Fradel) and maple pea (Pisum sativum var. arvense L. cv. Bruno) spreads at 5 °C temperature during 62-day storage. Physicochemical stability of pulse spreads was compared after sous vide treatment (80 °C/15 min) and high pressure processing (700 MPa/10 min/20 °C). Pulse spreads were made by homogenizing cooked pulses in a food processor together with salt, citric acid, oil, and bruschetta seasoning. A total of four different pulse spreads were studied: Cowpea spread without and with seasoning, maple pea spread without and with seasoning. Transparent PA/PE and light proof PET/ALU/PA/PP film pouches were used for packaging of pulse spreads under vacuum. The parameters investigated were pH, water activity and mass losses. Pulse spreads were tested on days 0, 15, 29, 42, 50, 57 and 62. The results showed that sous-vide treatment and high pressure processing had an insignificant influence on pH, water activity and mass losses after processing, irrespective of packaging material did not change (p>0.1). pH and water activity of sous-vide treated and high pressure processed pulse spreads in different packaging materials proved to be stable throughout the storage. Mass losses during storage accounted to 0.1% losses. Chosen sous-vide treatment and high pressure processing regimes and packaging materials are suitable to maintain consistent physicochemical quality of the new products during 62-day storage.

Keywords: cowpea, flexible packaging, maple pea, water activity

Procedia PDF Downloads 267
3668 The Use of Image Analysis Techniques to Describe a Cluster Cracks in the Cement Paste with the Addition of Metakaolinite

Authors: Maciej Szeląg, Stanisław Fic

Abstract:

The impact of elevated temperatures on the construction materials manifests in change of their physical and mechanical characteristics. Stresses and thermal deformations that occur inside the volume of the material cause its progressive degradation as temperature increase. Finally, the reactions and transformations of multiphase structure of cementitious composite cause its complete destruction. A particularly dangerous phenomenon is the impact of thermal shock – a sudden high temperature load. The thermal shock leads to a high value of the temperature gradient between the outer surface and the interior of the element in a relatively short time. The result of mentioned above process is the formation of the cracks and scratches on the material’s surface and inside the material. The article describes the use of computer image analysis techniques to identify and assess the structure of the cluster cracks on the surfaces of modified cement pastes, caused by thermal shock. Four series of specimens were tested. Two Portland cements were used (CEM I 42.5R and CEM I 52,5R). In addition, two of the series contained metakaolinite as a replacement for 10% of the cement content. Samples in each series were made in combination of three w/b (water/binder) indicators of respectively 0.4; 0.5; 0.6. Surface cracks of the samples were created by a sudden temperature load at 200°C for 4 hours. Images of the cracked surfaces were obtained via scanning at 1200 DPI; digital processing and measurements were performed using ImageJ v. 1.46r software. In order to examine the cracked surface of the cement paste as a system of closed clusters – the dispersal systems theory was used to describe the structure of cement paste. Water is used as the dispersing phase, and the binder is used as the dispersed phase – which is the initial stage of cement paste structure creation. A cluster itself is considered to be the area on the specimen surface that is limited by cracks (created by sudden temperature loading) or by the edge of the sample. To describe the structure of cracks two stereological parameters were proposed: A ̅ – the cluster average area, L ̅ – the cluster average perimeter. The goal of this study was to compare the investigated stereological parameters with the mechanical properties of the tested specimens. Compressive and tensile strength testes were carried out according to EN standards. The method used in the study allowed the quantitative determination of defects occurring in the examined modified cement pastes surfaces. Based on the results, it was found that the nature of the cracks depends mainly on the physical parameters of the cement and the intermolecular interactions on the dispersal environment. Additionally, it was noted that the A ̅/L ̅ relation of created clusters can be described as one function for all tested samples. This fact testifies about the constant geometry of the thermal cracks regardless of the presence of metakaolinite, the type of cement and the w/b ratio.

Keywords: cement paste, cluster cracks, elevated temperature, image analysis, metakaolinite, stereological parameters

Procedia PDF Downloads 381
3667 Synthesis and Characterisations of Cordierite Bonded Porous SiC Ceramics by Sol Infiltration Technique

Authors: Sanchita Baitalik, Nijhuma Kayal, Omprakash Chakrabarti

Abstract:

Recently SiC ceramics have been a focus of interest in the field of porous materials due to their unique combination of properties and hence they are considered as an ideal candidate for catalyst supports, thermal insulators, high-temperature structural materials, hot gas particulate separation systems etc. in different industrial processes. Several processing methods are followed for fabrication of porous SiC at low temperatures but all these methods are associated with several disadvantages. Therefore processing of porous SiC ceramics at low temperatures is still challenging. Concerning that of incorporation of secondary bond phase additives by an infiltration technique should result in a homogenous distribution of bond phase in the final ceramics. Present work is aimed to synthesis cordierite (2MgO.2Al2O3.5SiO2) bonded porous SiC ceramics following incorporation of sol-gel bond phase precursor into powder compacts of SiC and heat treating the infiltrated body at 1400 °C. In this paper the primary aim was to study the effect of infiltration of a precursor sol of cordierite into a porous SiC powder compact prepared with pore former of different particle sizes on the porosity, pore size, microstructure and the mechanical properties of the porous SiC ceramics. Cordierite sol was prepared by mixing a solution of magnesium nitrate hexahydrate and aluminium nitrate nonahydrate in 2:4 molar ratio in ethanol another solution containing tetra-ethyl orthosilicate and ethanol in 1:3 molar ratio followed by stirring for several hours. Powders of SiC (α-SiC; d50 =22.5 μm) and 10 wt. % polymer microbead of two sizes 8 and 50µm as the pore former were mixed in a suitable liquid medium, dried and pressed in the form of bars (50×20×16 mm3) at 23 MPa pressure. The well-dried bars were heat treated at 1100° C for 4 h with a hold at 750 °C for 2 h to remove the pore former. Bars were evacuated for 2 hr upto 0.3 mm Hg pressure into a vacuum chamber and infiltrated with cordierite precursor sol. The infiltrated samples were dried and the infiltration process was repeated until the weight gain became constant. Finally the infiltrated samples were sintered at 1400 °C to prepare cordierite bonded porous SiC ceramics. Porous ceramics prepared with 8 and 50 µm sized microbead exhibited lower oxidation degrees of respectively 7.8 and 4.8 % than the sample (23 %) prepared with no microbead. Depending on the size of pore former, the porosity of the final ceramic varied in the range of 36 to 40 vol. % with a variation of flexural strength from 33.7 to 24.6 MPa. XRD analysis showed major crystalline phases of the ceramics as SiC, SiO2 and cordierite. Two forms of cordierite, α-(hexagonal) and µ-(cubic), were detected by the XRD analysis. The SiC particles were observed to be bonded both by cristobalite with fish scale morphology and cordierite with rod shape morphology and thereby formed a porous network. The material and mechanical properties of cordierite bonded porous SiC ceramics are good in agreement to carry out further studies like thermal shock, corrosion resistance etc.

Keywords: cordierite, infiltration technique, porous ceramics, sol-gel

Procedia PDF Downloads 267
3666 Behavioral Study Circumferential and Longitudinal Cracks in a Steel Pipeline X65 and Repair Patch

Authors: Sadok Aboubakr

Abstract:

The mechanical behavior of cracks from several manufacturing defect in an oil pipeline, is characterized by the fact that defects'm taking several forms: circumferential, longitudinal and inclined crack that evolve over time. Increased lifetime of the constructions and in particular cylindrical tubes under internal pressure requires knowledge improving these defects during loading. From this study we simulated various forms of cracking and also their pipeline repair patch.

Keywords: stress intensity factor, pressure, Young's modulus, Poisson's ratio, Shear modulus, Longueur du pipeline, the angle of crack, crack length

Procedia PDF Downloads 352
3665 Evaluation of the Spectrum of Cases of Perforation Peritonitis at Jawaharlal Nehru Medical College, Aligarh Muslim University

Authors: Mujahid Ali, Wasif Mohammed Ali, Meraj Ahmad

Abstract:

Background: Perforation peritonitis is the most common surgical emergency encountered by surgeons all over the world as well as in India. The etiology of perforation peritonitis in India continues to be different from its western counterparts. The aim of this study is to evaluate the spectrum of cases of perforation peritonitis at our hospital. Methods: A prospective study conducted includes three hundred thirtysix patients of perforation peritonitis at J. N. Medical College from October 2015 to July 2017. The patients were admitted, resuscitated and underwent emergency laparotomy. Data were collected in terms of demographic profile, clinical presentations, site of perforations, causes and surgical outcomes. Results: In this study, the most common cause of perforation peritonitis was peptic ulcer disease (43%), followed by enteric perforation (12.8%), tubercular perforation (12.5%), traumatic perforation (11.9%), appendicular perforation (9.8%), amoebic caecal perforation (3%), malignant perforation (1.5%), etc. The sites of perforations were stomach in majority (38.3%), ileum (31%), appendix (8%), duodenum (5.%), caecum (4.4%) ,colon (3%), jejunum (8.5%) and gall bladder (2%). The overall mortality was 21% in our study. Age >50 years (p= <0.0001, OR= 3.9260, CI= 2.2 to 6.9), organ failure (p= <0.0001, OR= 29.2, CI= 14.8 to 57.6), shock (p=<0.0001, OR=20.20, CI= 10.56 to 38.6), diffuse peritonitis (p<0.0015, OR= 6.8810, CI= 2.09 to 22.57) and faecal exudates (p<0.0001) were found to be significant factors affecting mortality. The most common complication associated was superficial wound infection (40%), followed by burst abdomen seen in 21% cases, intra-abdominal sepsis in 18% cases, electrolyte imbalances in 15% cases, anastomotic leak in 6% cases. Conclusion: In this study, stomach is the most common site of perforation with peptic ulcer disease being the most common etiology. Older age, presence of shock, organ failure and faecal peritonitis were the risk factors affecting the mortality of the patients. Early recognition, adequate resuscitation and referral of patients can influence outcome and reduces mortality as well as morbidity.

Keywords: etiology, mortality, perforation, spectrum

Procedia PDF Downloads 249
3664 Finite Element-Based Stability Analysis of Roadside Settlements Slopes from Barpak to Yamagaun through Laprak Village of Gorkha, an Epicentral Location after the 7.8Mw 2015 Barpak, Gorkha, Nepal Earthquake

Authors: N. P. Bhandary, R. C. Tiwari, R. Yatabe

Abstract:

The research employs finite element method to evaluate the stability of roadside settlements slopes from Barpak to Yamagaon through Laprak village of Gorkha, Nepal after the 7.8Mw 2015 Barpak, Gorkha, Nepal earthquake. It includes three major villages of Gorkha, i.e., Barpak, Laprak and Yamagaun that were devastated by 2015 Gorkhas’ earthquake. The road head distance from the Barpak to Laprak and Laprak to Yamagaun are about 14 and 29km respectively. The epicentral distance of main shock of magnitude 7.8 and aftershock of magnitude 6.6 were respectively 7 and 11 kilometers (South-East) far from the Barpak village nearer to Laprak and Yamagaon. It is also believed that the epicenter of the main shock as said until now was not in the Barpak village, it was somewhere near to the Yamagaun village. The chaos that they had experienced during the earthquake in the Yamagaun was much more higher than the Barpak. In this context, we have carried out a detailed study to investigate the stability of Yamagaun settlements slope as a case study, where ground fissures, ground settlement, multiple cracks and toe failures are the most severe. In this regard, the stability issues of existing settlements and proposed road alignment, on the Yamagaon village slope are addressed, which is surrounded by many newly activated landslides. Looking at the importance of this issue, field survey is carried out to understand the behavior of ground fissures and multiple failure characteristics of the slopes. The results suggest that the Yamgaun slope in Profile 2-2, 3-3 and 4-4 are not safe enough for infrastructure development even in the normal soil slope conditions as per 2, 3 and 4 material models; however, the slope seems quite safe for at Profile 1-1 for all 4 material models. The result also indicates that the first three profiles are marginally safe for 2, 3 and 4 material models respectively. The Profile 4-4 is not safe enough for all 4 material models. Thus, Profile 4-4 needs a special care to make the slope stable.

Keywords: earthquake, finite element method, landslide, stability

Procedia PDF Downloads 335
3663 Experimental Investigation on the Optimal Operating Frequency of a Thermoacoustic Refrigerator

Authors: Kriengkrai Assawamartbunlue, Channarong Wantha

Abstract:

This paper presents the effects of the mean operating pressure on the optimal operating frequency based on temperature differences across stack ends in a thermoacoustic refrigerator. In addition to the length of the resonance tube, components of the thermoacoustic refrigerator have an influence on the operating frequency due to their acoustic properties, i.e. absorptivity, reflectivity and transmissivity. The interference of waves incurs and distorts the original frequency generated by the driver so that the optimal operating frequency differs from the designs. These acoustic properties are not parameters in the designs and it is very complicated to infer their responses. A prototype thermoacoustic refrigerator is constructed and used to investigate its optimal operating frequency compared to the design at various operating pressures. Helium and air are used as working fluids during the experiments. The results indicate that the optimal operating frequency of the prototype thermoacoustic refrigerator using helium is at 6 bar and 490Hz or approximately 20% away from the design frequency. The optimal operating frequency at other mean pressures differs from the design in an unpredictable manner, however, the optimal operating frequency and pressure can be identified by testing.

Keywords: acoustic properties, Carnot’s efficiency, interference of waves, operating pressure, optimal operating frequency, stack performance, standing wave, thermoacoustic refrigerator

Procedia PDF Downloads 476
3662 Literature Review and Biomechanical Findings in Patients with Bipartite Medial Cuneiforms

Authors: Aliza Lee, Mark Wilt, John Bonk, Scott Floyd, Bradley Hoffman, Karen Uchmanowicz

Abstract:

Bipartite medial cuneiforms are relatively rare but may play a significant role in biomechanical and gait abnormalities. It is believed that a bipartite medial cuneiform may alter the available range of motion due to its larger morphological variant, thus limiting the metatarsal plantarflexion needed to achieve adequate hallux dorsiflexion for normal gait. Radiographic and clinical assessments were performed on 2 patients who reported foot pain along the first ray. Both patients had visible bipartite medial cuneiforms on MRI. Using gait plate and Metascan™ analysis, both were noted to have four measurements far beyond the expected range. Medial and lateral heel peak pressure, hallux peak pressure, and 1st metatarsal peak pressure were all noted to be increased. These measurements are believed to be increased due to the hindrance placed on the available ROM of the 1st ray by the increased size of the medial cuneiform. A larger patient population would be needed to fully understand this developmental anomaly.

Keywords: bipartite medial cuneiforms, cuneiform, developmental anomaly, gait abnormality

Procedia PDF Downloads 145
3661 Pressure Gradient Prediction of Oil-Water Two Phase Flow through Horizontal Pipe

Authors: Ahmed I. Raheem

Abstract:

In this thesis, stratified and stratified wavy flow regimes have been investigated numerically for the oil (1.57 mPa s viscosity and 780 kg/m3 density) and water twophase flow in small and large horizontal steel pipes with a diameter between 0.0254 to 0.508 m by ANSYS Fluent software. Volume of fluid (VOF) with two phases flows using two equations family models (Realizable k-

Keywords: CFD, two-phase flow, pressure gradient, volume of fluid, large diameter, horizontal pipe, oil-water stratified and stratified wavy flow

Procedia PDF Downloads 421
3660 The Effect of Glass Thickness on Stress in Vacuum Glazing

Authors: Farid Arya, Trevor Hyde, Andrea Trevisi, Paolo Basso, Danilo Bardaro

Abstract:

Heat transfer through multiple pane windows can be reduced by creating a vacuum pressure less than 0.1 Pa between the glass panes, with low emittance coatings on one or more of the internal surfaces. Fabrication of vacuum glazing (VG) requires the formation of a hermetic seal around the periphery of the glass panes together with an array of support pillars between the panes to prevent them from touching under atmospheric pressure. Atmospheric pressure and temperature differentials induce stress which can affect the integrity of the glazing. Several parameters define the stresses in VG including the glass thickness, pillar specifications, glazing dimensions and edge seal configuration. Inherent stresses in VG can result in fractures in the glass panes and failure of the edge seal. In this study, stress in VG with different glass thicknesses is theoretically studied using Finite Element Modelling (FEM). Based on the finding in this study, suggestions are made to address problems resulting from the use of thinner glass panes in the fabrication of VG. This can lead to the development of high performance, light and thin VG.

Keywords: vacuum glazing, stress, vacuum insulation, support pillars

Procedia PDF Downloads 178