Search results for: noisy parameters
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8889

Search results for: noisy parameters

8289 STC Parameters versus Real Time Measured Parameters to Determine Cost Effectiveness of PV Panels

Authors: V. E. Selaule, R. M. Schoeman H. C. Z. Pienaar

Abstract:

Research has shown that solar energy is a renewable energy resource with the most potential when compared to other renewable energy resources in South Africa. There are many makes of Photovoltaic (PV) panels on the market and it is difficult to assess which to use. PV panel manufacturers use Standard Test Conditions (STC) to rate their PV panels. STC conditions are different from the actual operating environmental conditions were the PV panels are used. This paper describes a practical method to determine the most cost effective available PV panel. The method shows that PV panel manufacturer STC ratings cannot be used to select a cost effective PV panel.

Keywords: PV orientation, PV panel, PV STC, Solar energy

Procedia PDF Downloads 473
8288 A Study on the Vegetative and Osmolyte Accumulation of Capsicum frutescens L. under Zinc Metal Stress

Authors: Ja’afar Umar, Adamu Aliyu Aliero

Abstract:

Plant growth, biochemical parameters, zinc metal concentrations were determined for Capsicum frutescens L. in response to varied concentration of zinc metal. The plant exhibited a decline in the vegetative parameters measured. Free proline and glycine betaine content increases with increasing concentration of zinc metal and differ significantly (P<0.05). It can be concluded that the osmolyte (pro and GB) accumulations, and high length of stem and wide leaf expansion are possible indicator of tolerance to heavy metals (Zinc) in Capsicum frutescens.

Keywords: zinc metal, osmolyte, Capsicum frutescens, stress

Procedia PDF Downloads 486
8287 Empirical Analytical Modelling of Average Bond Stress and Anchorage of Tensile Bars in Reinforced Concrete

Authors: Maruful H. Mazumder, Raymond I. Gilbert

Abstract:

The design specifications for calculating development and lapped splice lengths of reinforcement in concrete are derived from a conventional empirical modelling approach that correlates experimental test data using a single mathematical equation. This paper describes part of a recently completed experimental research program to assess the effects of different structural parameters on the development length requirements of modern high strength steel reinforcing bars, including the case of lapped splices in large-scale reinforced concrete members. The normalized average bond stresses for the different variations of anchorage lengths are assessed according to the general form of a typical empirical analytical model of bond and anchorage. Improved analytical modelling equations are developed in the paper that better correlate the normalized bond strength parameters with the structural parameters of an empirical model of bond and anchorage.

Keywords: bond stress, development length, lapped splice length, reinforced concrete

Procedia PDF Downloads 438
8286 Optimization of Dissolution of Chevreul’s Salt in Ammonium Chloride Solutions

Authors: Mustafa Sertçelik, Hacali Necefoğlu, Turan Çalban, Soner Kuşlu

Abstract:

In this study, Chevreul’s salt was dissolved in ammonium chloride solutions. All experiments were performed in a batch reactor. The obtained results were optimized. Parameters used in the experiments were the reaction temperature, the ammonium chloride concentration, the reaction time and the solid-to-liquid ratio. The optimum conditions were determined by 24 factorial experimental design method. The best values of four parameters were determined as based on the experiment results. After the evaluation of experiment results, all parameters were found as effective in experiment conditions selected. The optimum conditions on the maximum Chevreul’s salt dissolution were the ammonium chloride concentration 4.5 M, the reaction time 13.2 min., the reaction temperature 25 oC, and the solid-to-liquid ratio 9/80 g.mL-1. The best dissolution yield in these conditions was 96.20%.

Keywords: Chevreul's salt, factorial experimental design method, ammonium chloride, dissolution, optimization

Procedia PDF Downloads 246
8285 Performance of Bored Pile on Alluvial Deposit

Authors: K. Raja Rajan, D. Nagarajan

Abstract:

Bored cast in-situ pile is a popular choice amongst consultant and contractor due to the ability to adjust the pile length suitably in case if any variation found in the actual geological strata. Bangladesh geological strata are dominated by silt content. Design is normally based on field test such as Standard Penetration test N-values. Initially, pile capacity estimated through static formula with co-relation of N-value and angle of internal friction. Initial pile load test was conducted in order to validate the geotechnical parameters assumed in design. Initial pile load test was conducted on 1.5m diameter bored cast in-situ pile. Kentledge method is used to load the pile for 2.5 times of its working load. Initially, safe working load of pile has been estimated as 570T, so test load is fixed to 1425T. Max load applied is 777T for which the settlement reached around 155mm which is more than 10% of diameter of piles. Pile load test results was not satisfactory and compelled to increase the pile length approximately 20% of its total length. Due to unpredictable geotechnical parameters, length of each pile has been increased which is having a major impact on the project cost and as well as in project schedule. Extra bore holes have been planned along with lab test results in order to redefine the assumed geotechnical parameters. This article presents detailed design assumptions of geotechnical parameters in the design stage and the results of pile load test which made to redefine the assumed geotechnical properties.

Keywords: end bearing, pile load test, settlement, shaft friction

Procedia PDF Downloads 267
8284 Seismic Response Control of Multi-Span Bridge Using Magnetorheological Dampers

Authors: B. Neethu, Diptesh Das

Abstract:

The present study investigates the performance of a semi-active controller using magneto-rheological dampers (MR) for seismic response reduction of a multi-span bridge. The application of structural control to the structures during earthquake excitation involves numerous challenges such as proper formulation and selection of the control strategy, mathematical modeling of the system, uncertainty in system parameters and noisy measurements. These problems, however, need to be tackled in order to design and develop controllers which will efficiently perform in such complex systems. A control algorithm, which can accommodate un-certainty and imprecision compared to all the other algorithms mentioned so far, due to its inherent robustness and ability to cope with the parameter uncertainties and imprecisions, is the sliding mode algorithm. A sliding mode control algorithm is adopted in the present study due to its inherent stability and distinguished robustness to system parameter variation and external disturbances. In general a semi-active control scheme using an MR damper requires two nested controllers: (i) an overall system controller, which derives the control force required to be applied to the structure and (ii) an MR damper voltage controller which determines the voltage required to be supplied to the damper in order to generate the desired control force. In the present study a sliding mode algorithm is used to determine the desired optimal force. The function of the voltage controller is to command the damper to produce the desired force. The clipped optimal algorithm is used to find the command voltage supplied to the MR damper which is regulated by a semi active control law based on sliding mode algorithm. The main objective of the study is to propose a robust semi active control which can effectively control the responses of the bridge under real earthquake ground motions. Lumped mass model of the bridge is developed and time history analysis is carried out by solving the governing equations of motion in the state space form. The effectiveness of MR dampers is studied by analytical simulations by subjecting the bridge to real earthquake records. In this regard, it may also be noted that the performance of controllers depends, to a great extent, on the characteristics of the input ground motions. Therefore, in order to study the robustness of the controller in the present study, the performance of the controllers have been investigated for fourteen different earthquake ground motion records. The earthquakes are chosen in such a way that all possible characteristic variations can be accommodated. Out of these fourteen earthquakes, seven are near-field and seven are far-field. Also, these earthquakes are divided into different frequency contents, viz, low-frequency, medium-frequency, and high-frequency earthquakes. The responses of the controlled bridge are compared with the responses of the corresponding uncontrolled bridge (i.e., the bridge without any control devices). The results of the numerical study show that the sliding mode based semi-active control strategy can substantially reduce the seismic responses of the bridge showing a stable and robust performance for all the earthquakes.

Keywords: bridge, semi active control, sliding mode control, MR damper

Procedia PDF Downloads 125
8283 Comparison for Some Elastic and Mechanical Properties of Plutonium Dioxide

Authors: M. Guler, E. Guler

Abstract:

We report some elastic parameters of cubic fluorite type neptunium dioxide (NpO2) with a recent EAM type interatomic potential through geometry optimization calculations. Typical cubic elastic constants, bulk modulus, shear modulus, young modulus and other relevant elastic parameters were also calculated during research. After calculations, we have compared our results with the available theoretical data. Our results agree well with the previous theoretical findings of the considered quantities of NpO2.

Keywords: NpO2, elastic properties, bulk modulus, mechanical properties

Procedia PDF Downloads 338
8282 Solar Cell Degradation by Electron Irradiation Effect of Irradiation Fluence

Authors: H. Mazouz, A. Belghachi, F. Hadjaj

Abstract:

Solar cells used in orbit are exposed to radiation environment mainly protons and high energy electrons. These particles degrade the output parameters of the solar cell. The aim of this work is to characterize the effects of electron irradiation fluence on the J (V) characteristic and output parameters of gaAs solar cell by numerical simulation. The results obtained demonstrate that the electron irradiation-induced degradation of performances of the cells concerns mainly the short circuit current.

Keywords: gaAs solar cell, MeV electron irradiation, irradiation fluence, short circuit

Procedia PDF Downloads 475
8281 Bayesian Inference of Physicochemical Quality Elements of Tropical Lagoon Nokoué (Benin)

Authors: Hounyèmè Romuald, Maxime Logez, Mama Daouda, Argillier Christine

Abstract:

In view of the very strong degradation of aquatic ecosystems, it is urgent to set up monitoring systems that are best able to report on the effects of the stresses they undergo. This is particularly true in developing countries, where specific and relevant quality standards and funding for monitoring programs are lacking. The objective of this study was to make a relevant and objective choice of physicochemical parameters informative of the main stressors occurring on African lakes and to identify their alteration thresholds. Based on statistical analyses of the relationship between several driving forces and the physicochemical parameters of the Nokoué lagoon, relevant Physico-chemical parameters were selected for its monitoring. An innovative method based on Bayesian statistical modeling was used. Eleven Physico-chemical parameters were selected for their response to at least one stressor and their threshold quality standards were also established: Total Phosphorus (<4.5mg/L), Orthophosphates (<0.2mg/L), Nitrates (<0.5 mg/L), TKN (<1.85 mg/L), Dry Organic Matter (<5 mg/L), Dissolved Oxygen (>4 mg/L), BOD (<11.6 mg/L), Salinity (7.6 .), Water Temperature (<28.7 °C), pH (>6.2), and Transparency (>0.9 m). According to the System for the Evaluation of Coastal Water Quality, these thresholds correspond to” good to medium” suitability classes, except for total phosphorus. One of the original features of this study is the use of the bounds of the credibility interval of the fixed-effect coefficients as local weathering standards for the characterization of the Physico-chemical status of this anthropized African ecosystem.

Keywords: driving forces, alteration thresholds, acadjas, monitoring, modeling, human activities

Procedia PDF Downloads 97
8280 Denoising Transient Electromagnetic Data

Authors: Lingerew Nebere Kassie, Ping-Yu Chang, Hsin-Hua Huang, , Chaw-Son Chen

Abstract:

Transient electromagnetic (TEM) data plays a crucial role in hydrogeological and environmental applications, providing valuable insights into geological structures and resistivity variations. However, the presence of noise often hinders the interpretation and reliability of these data. Our study addresses this issue by utilizing a FASTSNAP system for the TEM survey, which operates at different modes (low, medium, and high) with continuous adjustments to discretization, gain, and current. We employ a denoising approach that processes the raw data obtained from each acquisition mode to improve signal quality and enhance data reliability. We use a signal-averaging technique for each mode, increasing the signal-to-noise ratio. Additionally, we utilize wavelet transform to suppress noise further while preserving the integrity of the underlying signals. This approach significantly improves the data quality, notably suppressing severe noise at late times. The resulting denoised data exhibits a substantially improved signal-to-noise ratio, leading to increased accuracy in parameter estimation. By effectively denoising TEM data, our study contributes to a more reliable interpretation and analysis of underground structures. Moreover, the proposed denoising approach can be seamlessly integrated into existing ground-based TEM data processing workflows, facilitating the extraction of meaningful information from noisy measurements and enhancing the overall quality and reliability of the acquired data.

Keywords: data quality, signal averaging, transient electromagnetic, wavelet transform

Procedia PDF Downloads 86
8279 Natural Convection between Two Parallel Wavy Plates

Authors: Si Abdallah Mayouf

Abstract:

In this work, the effects of the wavy surface on free convection heat transfer boundary layer flow between two parallel wavy plates have been studied numerically. The two plates are considered at a constant temperature. The equations and the boundary conditions are discretized by the finite difference scheme and solved numerically using the Gauss-Seidel algorithm. The important parameters in this problem are the amplitude of the wavy surfaces and the distance between the two wavy plates. Results are presented as velocity profiles, temperature profiles and local Nusselt number according to the important parameters.

Keywords: free convection, wavy surface, parallel plates, fluid dynamics

Procedia PDF Downloads 308
8278 Studies on Affecting Factors of Wheel Slip and Odometry Error on Real-Time of Wheeled Mobile Robots: A Review

Authors: D. Vidhyaprakash, A. Elango

Abstract:

In real-time applications, wheeled mobile robots are increasingly used and operated in extreme and diverse conditions traversing challenging surfaces such as a pitted, uneven terrain, natural flat, smooth terrain, as well as wet and dry surfaces. In order to accomplish such tasks, it is critical that the motion control functions without wheel slip and odometry error during the navigation of the two-wheeled mobile robot (WMR). Wheel slip and odometry error are disrupting factors on overall WMR performance in the form of deviation from desired trajectory, navigation, travel time and budgeted energy consumption. The wheeled mobile robot’s ability to operate at peak performance on various work surfaces without wheel slippage and odometry error is directly connected to four main parameters, which are the range of payload distribution, speed, wheel diameter, and wheel width. This paper analyses the effects of those parameters on overall performance and is concerned with determining the ideal range of parameters for optimum performance.

Keywords: wheeled mobile robot, terrain, wheel slippage, odometryerror, trajectory

Procedia PDF Downloads 284
8277 Impact of Geomagnetic Storm on Ionosphere

Authors: Affan Ahmed

Abstract:

This research investigates the impact of the geomagnetic storm occurring from April 22 to April 26, 2023, on the Earth’s ionosphere, with a focus on analyzing specific ionospheric parameters to understand the storm's effects on ionospheric stability and GNSS signal propagation. Geomagnetic storms, caused by intensified solar wind-magnetosphere interactions, can significantly disturb ionospheric conditions, impacting electron density, Total Electron Content (TEC), and thermospheric composition. Such disturbances are particularly relevant to satellite-based navigation and communication systems, as fluctuations in ionospheric parameters can degrade signal integrity and reliability. In this study, data were obtained from multiple sources, including OMNIWeb for parameters like Dst, Kp, Bz, Electric Field, and solar wind pressure, GUVI for O/N₂ ratio maps, and TEC data from low-, mid-, and high-latitude stations available on the IONOLAB website. Additional Equatorial Electrojet (EEJ) and geomagnetic data were acquired from INTERMAGNET. The methodology involved comparing storm-affected data from April 22 to April 26 with quiet days in April 2023, using statistical and wavelet analysis to assess variations in parameters like TEC, O/N₂ ratio, and geomagnetic indices. The results show pronounced fluctuations in TEC and other ionospheric parameters during the main phase of the storm, with spatial variations observed across latitudes, highlighting the global response of the ionosphere to geomagnetic disturbances. The findings underline the storm’s significant impact on ionospheric composition, particularly in mid- and high-latitude regions, which correlates with increased GNSS signal interference in these areas. This study contributes to understanding the ionosphere’s response to geomagnetic activity, emphasizing the need for robust models to predict and mitigate space weather effects on GNSS-dependent technologies.

Keywords: geomagnetic storms, ionospheric disturbances, space weather effects, magnetosphere-ionosphere coupling

Procedia PDF Downloads 11
8276 Influence of High-Resolution Satellites Attitude Parameters on Image Quality

Authors: Walid Wahballah, Taher Bazan, Fawzy Eltohamy

Abstract:

One of the important functions of the satellite attitude control system is to provide the required pointing accuracy and attitude stability for optical remote sensing satellites to achieve good image quality. Although offering noise reduction and increased sensitivity, time delay and integration (TDI) charge coupled devices (CCDs) utilized in high-resolution satellites (HRS) are prone to introduce large amounts of pixel smear due to the instability of the line of sight. During on-orbit imaging, as a result of the Earth’s rotation and the satellite platform instability, the moving direction of the TDI-CCD linear array and the imaging direction of the camera become different. The speed of the image moving on the image plane (focal plane) represents the image motion velocity whereas the angle between the two directions is known as the drift angle (β). The drift angle occurs due to the rotation of the earth around its axis during satellite imaging; affecting the geometric accuracy and, consequently, causing image quality degradation. Therefore, the image motion velocity vector and the drift angle are two important factors used in the assessment of the image quality of TDI-CCD based optical remote sensing satellites. A model for estimating the image motion velocity and the drift angle in HRS is derived. The six satellite attitude control parameters represented in the derived model are the (roll angle φ, pitch angle θ, yaw angle ψ, roll angular velocity φ֗, pitch angular velocity θ֗ and yaw angular velocity ψ֗ ). The influence of these attitude parameters on the image quality is analyzed by establishing a relationship between the image motion velocity vector, drift angle and the six satellite attitude parameters. The influence of the satellite attitude parameters on the image quality is assessed by the presented model in terms of modulation transfer function (MTF) in both cross- and along-track directions. Three different cases representing the effect of pointing accuracy (φ, θ, ψ) bias are considered using four different sets of pointing accuracy typical values, while the satellite attitude stability parameters are ideal. In the same manner, the influence of satellite attitude stability (φ֗, θ֗, ψ֗) on image quality is also analysed for ideal pointing accuracy parameters. The results reveal that cross-track image quality is influenced seriously by the yaw angle bias and the roll angular velocity bias, while along-track image quality is influenced only by the pitch angular velocity bias.

Keywords: high-resolution satellites, pointing accuracy, attitude stability, TDI-CCD, smear, MTF

Procedia PDF Downloads 402
8275 Calculating the Carbon Footprint of Laser Cutting Machines from Cradle to Grave and Examination the Effect of the Use of the Machine on the Carbon Footprint

Authors: Melike Yaylacı, Tuğba Bilgin

Abstract:

Against the climate crisis, an increasing number of countries are working on green energy, carbon emission measurement, calculation and reduction. The work of industrial organizations with the highest carbon emissions on these issues is increasing. Aim of this paper is calculating carbon emissions of laser cutting machine with cradle-to-grave approach and discuss the potential affects of usage condisions, such as laser power, gas type, gas pressure, on carbon footprint. In particular, this study includes consumption of electricity used in production, laser cutting machine raw materials, and disposal of the machine. In the process of raw material supplying, machine procesing and shipping, all calculations were studied using the Tier1 approach. Laser cutting machines require a specified cutting parameter set for each different material in different thickneses, this parameters are a combination of laser power, gas type, cutting speed, gas pressure and focus point, The another purpose of this study is examine the potential affect of different cutting parameters for the same material in same thickness on carbon footprint.

Keywords: life cycle assessment, carbon emission, laser cutting machine, cutting parameters

Procedia PDF Downloads 99
8274 Study of Hybrid Cells Based on Perovskite Materials Using Oghmasimultion

Authors: Nadia Bachir (Dahmani), Fatima Zohra Otmani

Abstract:

Due to its interesting optoelectronic properties, methylammonium perovskite CH3NH3PbI3 is used as the active layer in the development of several solar cells. In this work, the hybrid (organic-inorganic) cell with the architecture FTO/pedotpss/CH3NH3PbI3/pcdtbt/Al is simulated using the Organic and Hybrid Material Nano Simulation Tool (OghmaNano). We studied the influence of certain parameters, such as thickness, on the characteristics of the solar cell. The effect of the device temperature was also investigated. The photovoltaic characteristic curves, such as current-voltage (j-V), are presented in this work. The optimized final parameters are Voc = 0.947 V, FF = 0.8034%, and PCE = 23.16%.

Keywords: OghmaNano software, hybrid perovskite cell, CH3NH3PbI3, conversion efficiency

Procedia PDF Downloads 17
8273 On Parameter Estimation of Simultaneous Linear Functional Relationship Model for Circular Variables

Authors: N. A. Mokhtar, A. G. Hussin, Y. Z. Zubairi

Abstract:

This paper proposes a new simultaneous simple linear functional relationship model by assuming equal error variances. We derive the maximum likelihood estimate of the parameters in the simultaneous model and the covariance. We show by simulation study the small bias values of the parameters suggest the suitability of the estimation method. As an illustration, the proposed simultaneous model is applied to real data of the wind direction and wave direction measured by two different instruments.

Keywords: simultaneous linear functional relationship model, Fisher information matrix, parameter estimation, circular variables

Procedia PDF Downloads 367
8272 An Application of Sinc Function to Approximate Quadrature Integrals in Generalized Linear Mixed Models

Authors: Altaf H. Khan, Frank Stenger, Mohammed A. Hussein, Reaz A. Chaudhuri, Sameera Asif

Abstract:

This paper discusses a novel approach to approximate quadrature integrals that arise in the estimation of likelihood parameters for the generalized linear mixed models (GLMM) as well as Bayesian methodology also requires computation of multidimensional integrals with respect to the posterior distributions in which computation are not only tedious and cumbersome rather in some situations impossible to find solutions because of singularities, irregular domains, etc. An attempt has been made in this work to apply Sinc function based quadrature rules to approximate intractable integrals, as there are several advantages of using Sinc based methods, for example: order of convergence is exponential, works very well in the neighborhood of singularities, in general quite stable and provide high accurate and double precisions estimates. The Sinc function based approach seems to be utilized first time in statistical domain to our knowledge, and it's viability and future scopes have been discussed to apply in the estimation of parameters for GLMM models as well as some other statistical areas.

Keywords: generalized linear mixed model, likelihood parameters, qudarature, Sinc function

Procedia PDF Downloads 396
8271 Effect of Seed Treatment on Seed Quality and Storability in Wheat (Triticum Aestivum L.) in Northwestern Himalayas

Authors: Anubhav Thakur, Karam Chand Dhiman

Abstract:

Storage experiment was conducted to study the effect of polymer, fungicides and insecticide on seed quality parameters and storability in wheat. The experimental material consisted of carry over wheat seeds (variety HPW- 155) of rabi 2017 - 18. The observations were recorded bimonthly on parameters viz; germination (%), seedling length (cm), dry weight (g), vigour index - I, vigour - II, speed of germination, field emergence (%), 100 seed weight (g) for 12 months of storage. All parameters declined with the advancement in storage period. The results showed that seeds treated with polymer + vitavax 200 @ 2 g/kg of seed recorded higher germination percentage (95.00 %), seedling length (17.58 cm), seedling dry weight (0.0138 g), vigour index - I (1670) & vigour - II (1.311), speed of germination (19.98), 100 seed weight (5.54 g) and field emergence (87.33 %) which was at par with vitavax 200 @ 2 g/kg of seed, over untreated control (T1). So it can be concluded that for maintain seed quality and enhancing storability, seed of wheat can either be treated with polymer @ 3 ml/kg of seed + vitavax 200 @ 2 g/kg of seed or vitavax 200 @ 2 g/kg of seed.

Keywords: wheat, seed treatment, storability, seed quality

Procedia PDF Downloads 172
8270 Simulation and Controller Tunning in a Photo-Bioreactor Applying by Taguchi Method

Authors: Hosein Ghahremani, MohammadReza Khoshchehre, Pejman Hakemi

Abstract:

This study involves numerical simulations of a vertical plate-type photo-bioreactor to investigate the performance of Microalgae Spirulina and Control and optimization of parameters for the digital controller by Taguchi method that MATLAB software and Qualitek-4 has been made. Since the addition of parameters such as temperature, dissolved carbon dioxide, biomass, and ... Some new physical parameters such as light intensity and physiological conditions like photosynthetic efficiency and light inhibitors are involved in biological processes, control is facing many challenges. Not only facilitate the commercial production photo-bioreactor Microalgae as feed for aquaculture and food supplements are efficient systems but also as a possible platform for the production of active molecules such as antibiotics or innovative anti-tumor agents, carbon dioxide removal and removal of heavy metals from wastewater is used. Digital controller is designed for controlling the light bioreactor until Microalgae growth rate and carbon dioxide concentration inside the bioreactor is investigated. The optimal values of the controller parameters of the S/N and ANOVA analysis software Qualitek-4 obtained With Reaction curve, Cohen-Con and Ziegler-Nichols method were compared. The sum of the squared error obtained for each of the control methods mentioned, the Taguchi method as the best method for controlling the light intensity was selected photo-bioreactor. This method compared to control methods listed the higher stability and a shorter interval to be answered.

Keywords: photo-bioreactor, control and optimization, Light intensity, Taguchi method

Procedia PDF Downloads 395
8269 Comparative Performance Analysis of Parabolic Trough Collector Using Twisted Tape Inserts

Authors: Atwari Rawani, Hari Narayan Singh, K. D. P. Singh

Abstract:

In this paper, an analytical investigation of the enhancement of thermal performance of parabolic trough collector (PTC) with twisted tape inserts in the absorber tube is being reported. A comparative study between the absorber with various types of twisted tape inserts and plain tube collector has been performed in turbulent flows conditions. The parametric studies were conducted to investigate the effects of system and operating parameters on the performance of the collector. The parameters such as heat gain, overall heat loss coefficient, air rise temperature and efficiency are used to analyze the relative performance of PTC. The results show that parabolic through collector with serrated twisted tape insert shows the best performance under same set of conditions under range of parameters investigated. Results reveal that for serrated twisted tape with x=1, Nusselt number/heat transfer coefficient is found to be 4.38 and 3.51 times over plain absorber of PTC at mass flow rate of 0.06 kg/s and 0.16 kg/s respectively; while corresponding enhancement in thermal efficiency is 15.7% and 5.41% respectively.

Keywords: efficiency, heat transfer, twisted tape ratio, turbulent flow

Procedia PDF Downloads 290
8268 Representation of the Solution of One Dynamical System on the Plane

Authors: Kushakov Kholmurodjon, Muhammadjonov Akbarshox

Abstract:

This present paper is devoted to a system of second-order nonlinear differential equations with a special right-hand side, exactly, the linear part and a third-order polynomial of a special form. It is shown that for some relations between the parameters, there is a second-order curve in which trajectories leaving the points of this curve remain in the same place. Thus, the curve is invariant with respect to the given system. Moreover, this system is invariant under a non-degenerate linear transformation of variables. The form of this curve, depending on the relations between the parameters and the eigenvalues of the matrix, is proved. All solutions of this system of differential equations are shown analytically.

Keywords: dynamic system, ellipse, hyperbola, Hess system, polar coordinate system

Procedia PDF Downloads 193
8267 Loading Factor Performance of a Centrifugal Compressor Impeller: Specific Features and Way of Modeling

Authors: K. Soldatova, Y. Galerkin

Abstract:

A loading factor performance is necessary for the modeling of centrifugal compressor gas dynamic performance curve. Measured loading factors are linear function of a flow coefficient at an impeller exit. The performance does not depend on the compressibility criterion. To simulate loading factor performances, the authors present two parameters: a loading factor at zero flow rate and an angle between an ordinate and performance line. The calculated loading factor performances of non-viscous are linear too and close to experimental performances. Loading factor performances of several dozens of impellers with different blade exit angles, blade thickness and number, ratio of blade exit/inlet height, and two different type of blade mean line configuration. There are some trends of influence, which are evident – comparatively small blade thickness influence, and influence of geometry parameters is more for impellers with bigger blade exit angles, etc. Approximating equations for both parameters are suggested. The next phase of work will be simulating of experimental performances with the suggested approximation equations as a base.

Keywords: loading factor performance, centrifugal compressor, impeller, modeling

Procedia PDF Downloads 350
8266 Assessment of Petrophysical Parameters Using Well Log and Core Data

Authors: Khulud M. Rahuma, Ibrahim B. Younis

Abstract:

Assessment of petrophysical parameters are very essential for reservoir engineer. Three techniques can be used to predict reservoir properties: well logging, well testing, and core analysis. Cementation factor and saturation exponent are very required for calculation, and their values role a great effect on water saturation estimation. In this study a sensitive analysis was performed to investigate the influence of cementation factor and saturation exponent variation applying logs, and core analysis. Measurements of water saturation resulted in a maximum difference around fifteen percent.

Keywords: porosity, cementation factor, saturation exponent, formation factor, water saturation

Procedia PDF Downloads 694
8265 Computational Identification of Signalling Pathways in Protein Interaction Networks

Authors: Angela U. Makolo, Temitayo A. Olagunju

Abstract:

The knowledge of signaling pathways is central to understanding the biological mechanisms of organisms since it has been identified that in eukaryotic organisms, the number of signaling pathways determines the number of ways the organism will react to external stimuli. Signaling pathways are studied using protein interaction networks constructed from protein-protein interaction data obtained using high throughput experimental procedures. However, these high throughput methods are known to produce very high rates of false positive and negative interactions. In order to construct a useful protein interaction network from this noisy data, computational methods are applied to validate the protein-protein interactions. In this study, a computational technique to identify signaling pathways from a protein interaction network constructed using validated protein-protein interaction data was designed. A weighted interaction graph of the Saccharomyces cerevisiae (Baker’s Yeast) organism using the proteins as the nodes and interactions between them as edges was constructed. The weights were obtained using Bayesian probabilistic network to estimate the posterior probability of interaction between two proteins given the gene expression measurement as biological evidence. Only interactions above a threshold were accepted for the network model. A pathway was formalized as a simple path in the interaction network from a starting protein and an ending protein of interest. We were able to identify some pathway segments, one of which is a segment of the pathway that signals the start of the process of meiosis in S. cerevisiae.

Keywords: Bayesian networks, protein interaction networks, Saccharomyces cerevisiae, signalling pathways

Procedia PDF Downloads 546
8264 Surface Quality Improvement of Abrasive Waterjet Cutting for Spacecraft Structure

Authors: Tarek M. Ahmed, Ahmed S. El Mesalamy, Amro M. Youssef, Tawfik T. El Midany

Abstract:

Abrasive waterjet (AWJ) machining is considered as one of the most powerful cutting processes. It can be used for cutting heat sensitive, hard and reflective materials. Aluminum 2024 is a high-strength alloy which is widely used in aerospace and aviation industries. This paper aims to improve aluminum alloy and to investigate the effect of AWJ control parameters on surface geometry quality. Design of experiments (DoE) is used for establishing an experimental matrix. Statistical modeling is used to present a relation between the cutting parameters (pressure, speed, and distance between the nozzle and cut surface) and responses (taper angle and surface roughness). The results revealed a tangible improvement in productivity by using AWJ processing. The taper kerf angle can be improved by decreasing standoff distance and speed and increasing water pressure. While decreasing (cutting speed, pressure and distance between the nozzle and cut surface) improve the surface roughness in the operating window of cutting parameters.

Keywords: abrasive waterjet machining, machining of aluminum alloy, non-traditional cutting, statistical modeling

Procedia PDF Downloads 250
8263 Prediction and Optimization of Machining Induced Residual Stresses in End Milling of AISI 1045 Steel

Authors: Wajid Ali Khan

Abstract:

Extensive experimentation and numerical investigation are performed to predict the machining-induced residual stresses in the end milling of AISI 1045 steel, and an optimization code has been developed using the particle swarm optimization technique. Experiments were conducted using a single factor at a time and design of experiments approach. Regression analysis was done, and a mathematical model of the cutting process was developed, thus predicting the machining-induced residual stress with reasonable accuracy. The mathematical model served as the objective function to be optimized using particle swarm optimization. The relationship between the different cutting parameters and the output variables, force, and residual stresses has been studied. The combined effect of the process parameters, speed, feed, and depth of cut was examined, and it is understood that 85% of the variation of these variables can be attributed to these machining parameters under research. A 3D finite element model is developed to predict the cutting forces and the machining-induced residual stresses in end milling operation. The results were validated experimentally and against the Johnson-cook model available in the literature.

Keywords: residual stresses, end milling, 1045 steel, optimization

Procedia PDF Downloads 104
8262 A Method for Evaluating the Mechanical Stress on Mandibular Advancement Devices

Authors: Tsung-yin Lin, Yi-yu Lee, Ching-hua Hung

Abstract:

Snoring, the lay term for obstructive breathing during sleep, is one of the most prevalent of obnoxious human habits. Loud snoring usually makes others feel noisy and uncomfortable. Snoring also influences the sleep quality of snorers’ bed partners, because of the noise they do not get to sleep easily. Snoring causes the reduce of sleep quality leading to several medical problems, such as excessive daytime sleepiness, high blood pressure, increased risk for cardiovascular disease and cerebral vascular accident, and etc. There are many non-prescription devices offered for sale on the market, but very limited data are available to support a beneficial effect of these devices on snoring and use in treating obstructive sleep apnea (OSA). Mandibular advancement devices (MADs), also termed as the Mandibular reposition devices (MRDs) are removable devices which are worn at night during sleep. Most devices require dental impression, bite registration, and fabrication by a dental laboratory. Those devices are fixed to upper and lower teeth and are adjusted to advance the mandible. The amount of protrusion is adjusted to meet the therapeutic requirements, comfort, and tolerance. Many devices have a fixed degree of advancement. Some are adjustable in a limited degree. This study focuses on the stress analysis of Mandibular Advancement Devices (MADs), which are considered as a standard treatment of snoring that promoted by American Academy of Sleep Medicine (AASM). This paper proposes a new MAD design, and the finite element analysis (FEA) is introduced to precede the stress simulation for this MAD.

Keywords: finite element analysis, mandibular advancement devices, mechanical stress, snoring

Procedia PDF Downloads 358
8261 Isothermal Crystallization Kinetics of Lauric Acid Methyl Ester from DSC Measurements

Authors: Charine Faith H. Lagrimas, Rommel N. Galvan, Rizalinda L. de Leon

Abstract:

An ongoing study, methyl laurate to be used as a refrigerant in an HVAC system, requires the crystallization kinetics of the said substance. Step-wise and normal forms of Avrami model parameters were used to describe the isothermal crystallization kinetics of methyl laurate at different temperatures from Differential Scanning Calorimetry (DSC) measurements. At 3 °C, parameters showed that methyl laurate exhibits a secondary crystallization. The primary crystallization occurred with instantaneous nuclei and spherulitic growth; followed by a secondary instantaneous nucleation with a lower growth of dimensionality, rod-like. At 4 °C to 6 °C, the exotherms from DSC implied that the system was under the isokinetic range. The kinetics behavior is the same which is instantaneous nucleation with one-dimensional growth. The differences for the isokinetic range temperatures are the activation energies (directly proportional to T) and nucleation rates (inversely proportional to T). From the images obtained during the crystallization of methyl laurate using an optical microscope, it is confirmed that the nucleation and crystal growth modes obtained from the optical microscope are consistent with the parameters from Avrami model.

Keywords: Avrami model, isothermal crystallization, lipids kinetics, methyl laurate

Procedia PDF Downloads 342
8260 Effect of Different Levels of Dried Citrus Sinensis Peel on Blood Parameters of Broilers

Authors: Abbas Ebrahimi, Zohreh Pourhossein, Nariman Miraalami

Abstract:

The experiment was conducted to evaluate the effects of different levels of dried citrus sinensis peel (DCSP) on the blood parameters of broilers. Four hundred Ross 308 strain day old broiler in a completely randomized design with five treatments (four replicates per treatment and each replicate had 20 chicks) were categorized. Each treatment used either regulatory diet including 1.5% and 3% DCSP in the base diet and in two periods of 1st to 21st day and 1st to 42nd day and base diet without any additive for six weeks. Data analysis was performed using SAS software and mean comparison was conducted by Duncan method. The results determined that using different level of DCSP has significant effects on blood plasma parameters (P<0.05). Cholesterol, glucose, triglyceride, low density lipoprotein (LDL) at the rearing period was significantly influenced by experimental treatments (P<0.05). However, uric acid, alkaline phosphatase and high density lipoprotein (HDL) was not affected by experimental treatments (P>0.05). The lowest rate of blood cholesterol was concerned to the treatment which was used 3% DCSP 1st to 42nd day and the highest mean of blood cholesterol were concerned to the control treatment. The lowest rate of blood triglyceride was concerned to the treatment which was used 3% DCSP 1st to 42nd day and the highest mean of blood triglyceride were concerned to the control treatment. The lowest rate of blood alkaline phosphatase was concerned to the treatment which was used 3% DCSP 1st to 42nd day and the highest mean of blood alkaline phosphatase were concerned to the treatment which was used 3% DCSP 1st to 21st day.

Keywords: blood parameters, broilers, dried citrus sinensis peel, regulatory diet

Procedia PDF Downloads 560