Search results for: noble alloy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 835

Search results for: noble alloy

235 Temperature Gradient In Weld Zones During Friction Stir Process Using Finite Element Method

Authors: Armansyah, I. P. Almanar, M. Saiful Bahari Shaari, M. Shamil Jaffarullah

Abstract:

Finite element approach have been used via three-dimensional models by using Altair Hyper Work, a commercially available software, to describe heat gradients along the welding zones (axially and coronaly) in Friction Stir Welding (FSW). Transient thermal finite element analyses are performed in AA 6061-T6 Aluminum Alloy to obtain temperature distribution in the welded aluminum plates during welding operation. Heat input from tool shoulder and tool pin are considered in the model. A moving heat source with a heat distribution simulating the heat generated by frictions between tool shoulder and work piece is used in the analysis. The developed model was then used to show the effect of various input parameters such as total rate of welding speed and rotational speed on temperature distribution in the work piece.

Keywords: Frictions Stir Welding (FSW), temperature distribution, Finite Element Method (FEM), altair hyperwork

Procedia PDF Downloads 505
234 Investigation on the Properties of Particulate Reinforced AA2014 Metal Matrix Composite Materials Produced by Vacuum Infiltration Method

Authors: Isil Kerti, Onur Okur, Sibel Daglilar, Recep Calin

Abstract:

Particulate reinforced aluminium matrix composites have gained more importance in automotive, aeronautical and defense industries due to their specific properties like as low density, high strength and stiffness, good fatigue strength, dimensional stability at high temperature and acceptable tribological properties. In this study, 2014 Aluminium alloy used as a matrix material and B₄C and SiC were selected as reinforcements components. For production of composites materials, vacuum infiltration method was used. In the experimental studies, the reinforcement volume ratios were defined by mixing as totally 10% B₄C and SiC. Aging treatment (T6) was applied to the specimens. The effect of T6 treatment on hardness was determined by using Brinell hardness test method. The effects of the aging treatment on microstructure and chemical structure were analysed by making XRD, SEM and EDS analysis on the specimens.

Keywords: metal matrix composite, vacumm infiltration method, aluminum metal matrix, mechanical feature

Procedia PDF Downloads 288
233 Research Study on the Concept of Unity of Ummah and Its Sources in the Light of Islamic Teachings

Authors: Ghazi Abdul Rehman Qasmi

Abstract:

Islam is the preacher and torch-bearer of unity and solidarity. All the followers of Islam are advised to be united. Islam strongly condemns those elements which disunite the unity of Muslim Ummah. Like pearls in a rosary, Islam has united the Muslims from all over the world in the wreath of unity and forbade the Muslims to avoid separation and to be disintegrated. The aspect of unity is prominent in all divine injunctions and about worship. By offering five times obligatory congregational prayers, passion of mutual love and affection is increased and on the auspicious days like Friday, Eid-ul-fiter and Eid-ul-azha, majority of the Muslims come together at central places to offer these congregational prayers. Thus unity and harmony among the Muslims can be seen. Similarly the Muslim pilgrims from all over the world eliminate all kind of worldly discrimination to perform many rituals of pilgrimage while wearing white color cloth as a dress. Pilgrimage is a demonstration of Islamic strength. When the Muslims from all over the world perform the same activities together and they offer their prayers under the leadership of one leader (IMAM). Muslims come together on the occasion of pilgrimage to perform Tawaf (seven circuits,first three circuits at a hurried pace(Rammal) and followed by four times, more closely, at a leisurely pace, round the Holy Kaabah to perform circumambulation known as Tawaf in religious terminology,Saee(running or walking briskly seven times between two small hills Safa&Marwa), Ramy-al-jamarat (throwing pebbles at the stone pillars, symbolizing the devil). In this way dignity and sublimity of Islam is increased and unity and integrity of Muslim Ummah is promoted also. By studying the life history of Hazrat Muhammad (P.B.U.H) we come to know that our Holy Prophet (P.B.U.H) has put emphasis on unity and integrity. We have to follow the Islamic teachings to create awareness among the members of Muslim Ummah. In the light of the Holy Quran and Sunnah, we have to utilize all the sources and potential for this noble cause.

Keywords: unity, Ummah, sources, Islamic teaching

Procedia PDF Downloads 269
232 Effect of Specimen Thickness on Probability Distribution of Grown Crack Size in Magnesium Alloys

Authors: Seon Soon Choi

Abstract:

The fatigue crack growth is stochastic because of the fatigue behavior having an uncertainty and a randomness. Therefore, it is necessary to determine the probability distribution of a grown crack size at a specific fatigue crack propagation life for maintenance of structure as well as reliability estimation. The essential purpose of this study is to present the good probability distribution fit for the grown crack size at a specified fatigue life in a rolled magnesium alloy under different specimen thickness conditions. Fatigue crack propagation experiments are carried out in laboratory air under three conditions of specimen thickness using AZ31 to investigate a stochastic crack growth behavior. The goodness-of-fit test for probability distribution of a grown crack size under different specimen thickness conditions is performed by Anderson-Darling test. The effect of a specimen thickness on variability of a grown crack size is also investigated.

Keywords: crack size, fatigue crack propagation, magnesium alloys, probability distribution, specimen thickness

Procedia PDF Downloads 475
231 Controlled Growth of Au Hierarchically Ordered Crystals Architectures for Electrochemical Detection of Traces of Molecules

Authors: P. Bauer, K. Mougin, V. Vignal, A. Buch, P. Ponthiaux, D. Faye

Abstract:

Nowadays, noble metallic nanostructures with unique morphology are widely used as new sensors due to their fascinating optical, electronic and catalytic properties. Among various shapes, dendritic nanostructures have attracted much attention because of their large surface-to-volume ratio, high sensitivity and special texture with sharp tips and nanoscale junctions. Several methods have been developed to fabricate those specific structures such as electrodeposition, photochemical way, seed-mediated growth or wet chemical method. The present study deals with a novel approach for a controlled growth pattern-directed organisation of Au flower-like crystals (NFs) deposited onto stainless steel plates to achieve large-scale functional surfaces. This technique consists in the deposition of a soft nanoporous template on which Au NFs are grown by electroplating and seed-mediated method. Size, morphology, and interstructure distance have been controlled by a site selective nucleation process. Dendritic Au nanostructures have appeared as excellent Raman-active candidates due to the presence of very sharp tips of multi-branched Au nanoparticles that leads to a large local field enhancement and a good SERS sensitivity. In addition, these structures have also been used as electrochemical sensors to detect traces of molecules present in a solution. A correlation of the number of active sites on the surface and the current charge by both colorimetric method and cyclic voltammetry of gold structures have allowed a calibration of the system. This device represents a first step for the fabrication of MEMs platform that could ultimately be integrated into a lab-on-chip system. It also opens pathways to several technologically large-scale nanomaterials fabrication such as hierarchically ordered crystal architectures for sensor applications.

Keywords: dendritic, electroplating, gold, template

Procedia PDF Downloads 164
230 The Effect of Tool Type on Surface Morphology of FSJ Joint

Authors: Yongfang Deng, Dunwen Zuo

Abstract:

An attempt is made here to join 2024 aluminum alloy plate by friction stir joining (FSJ) using different types of tools. Joint surface morphology was observed, and both arc line spacing and flash were measured. Study is carried out on the effect of pin, shoulder and eccentricity of the tool on the surface topography of the joint and the formation of the joint surface topography is analyzed. It is found that, eccentric squeezing action of the tool is the mainly motive power to form arc lines contour and flash structure. Little flash appears in the advancing side but with severe deformation, while the flash in the retreating side is heavy but with soft deformation. The pin of tool has a deep impact on the flash on the advancing side of the joints. Shoulder can widen the arc lines, refine arcs structure, reduce flash in the retreat side, but will increase the flash in the advancing side. Increasing the amount of eccentricity, it has litter effect on the arc line spacing but will destroy the arc lines morphology in the joint surface and promote the formation of filamentous flash structure in the joint.

Keywords: FSJ, surface morphology, tool, joint

Procedia PDF Downloads 331
229 Investigations of Thermo Fluid Characteristics of Copper Alloy Porous Heat Sinks by Forced Air Cooling

Authors: Ashish Mahalle, Kishore Borakhade

Abstract:

High porosity metal foams are excellent for heat dissipation. There use has been widened to include heat removal from high density microelectronics circuits. Other important applications have been found in compact heat exchangers for airborne equipment, regenerative and dissipative air cooled condenser towers, and compact heat sinks for power electronic. The low relative density, open porosity and high thermal conductivity of the cell edges, large accessible surface area per unit volume, and the ability to mix the cooling fluid make metal foam heat exchangers efficient, compact and light weight. This paper reports the thermal performance of metal foam for high heat dissipation. In experimentation metal foam samples of different pore diameters i.e. 35 µ, 20 µ, 12 µ, are analyzed for varying velocities and heat inputs. The study investigate the effect of various dimensionless no. like Re,Nu, Pr and heat transfer characteristics of basic flow configuration.

Keywords: pores, foam, effective thermal conductivity, permeability

Procedia PDF Downloads 282
228 Explosive Clad Metals for Geothermal Energy Recovery

Authors: Heather Mroz

Abstract:

Geothermal fluids can provide a nearly unlimited source of renewable energy but are often highly corrosive due to dissolved carbon dioxide (CO2), hydrogen sulphide (H2S), Ammonia (NH3) and chloride ions. The corrosive environment drives material selection for many components, including piping, heat exchangers and pressure vessels, to higher alloys of stainless steel, nickel-based alloys and titanium. The use of these alloys is cost-prohibitive and does not offer the pressure rating of carbon steel. One solution, explosion cladding, has been proven to reduce the capital cost of the geothermal equipment while retaining the mechanical and corrosion properties of both the base metal and the cladded surface metal. Explosion cladding is a solid-state welding process that uses precision explosions to bond two dissimilar metals while retaining the mechanical, electrical and corrosion properties. The process is commonly used to clad steel with a thin layer of corrosion-resistant alloy metal, such as stainless steel, brass, nickel, silver, titanium, or zirconium. Additionally, explosion welding can join a wider array of compatible and non-compatible metals with more than 260 metal combinations possible. The explosion weld is achieved in milliseconds; therefore, no bulk heating occurs, and the metals experience no dilution. By adhering to a strict set of manufacturing requirements, both the shear strength and tensile strength of the bond will exceed the strength of the weaker metal, ensuring the reliability of the bond. For over 50 years, explosion cladding has been used in the oil and gas and chemical processing industries and has provided significant economic benefit in reduced maintenance and lower capital costs over solid construction. The focus of this paper will be on the many benefits of the use of explosion clad in process equipment instead of more expensive solid alloy construction. The method of clad-plate production with explosion welding as well as the methods employed to ensure sound bonding of the metals. It will also include the origins of explosion cladding as well as recent technological developments. Traditionally explosion clad plate was formed into vessels, tube sheets and heads but recent advances include explosion welded piping. The final portion of the paper will give examples of the use of explosion-clad metals in geothermal energy recovery. The classes of materials used for geothermal brine will be discussed, including stainless steels, nickel alloys and titanium. These examples will include heat exchangers (tube sheets), high pressure and horizontal separators, standard pressure crystallizers, piping and well casings. It is important to educate engineers and designers on material options as they develop equipment for geothermal resources. Explosion cladding is a niche technology that can be successful in many situations, like geothermal energy recovery, where high temperature, high pressure and corrosive environments are typical. Applications for explosion clad metals include vessel and heat exchanger components as well as piping.

Keywords: clad metal, explosion welding, separator material, well casing material, piping material

Procedia PDF Downloads 137
227 A Novel Photocrosslinkable and Cytocompatible Chitosan Coating for TI6AL4V Surfaces

Authors: D. Zujur, J. Moret, D. Rodriguez, L. Cruz, J. Lira, L. Gil, E. Dominguez, J. F. Alvarez-Barreto

Abstract:

In this work, chitosan (CH) has been used to produce a novel coating for Ti6Al4V, the most widely used alloy in orthopedic implants, so as to improve the biological tissue response at the metallic surface. The Ti6Al4V surface was sandblasted with alumina particles and observed by SEM. Chitosan was chemically modified, via crodiimide chemistry, with lactobionic and 4-azidebenzoic acid to make it soluble at physiological pH and photo-crosslinkable, respectively. The reaction was verified by FTIR, NMR, and UV/vis spectroscopy. Ti6Al4V surfaces were coated with solutions of the modified CH and exposed to UV light, causing the polymer crosslinking, and formation of a hydrogel on the surface. The crosslinking reaction was monitored by FTIR at different exposure times. Coating morphology was observed by SEM. The coating´s cytocompatibility was determined in vitro through the culture of rat bone marrow´s mesenchymal stem cells, using an MTT assay. The results show that the developed coating is cytocompatible, easy to apply and could be used for further studies in the encapsulation of bioactive molecules to improve osteogenic potential at the tissue-implant interface.

Keywords: chitosan, photo-crosslinking, Ti6Al4V, bioactive coating, hydrogel

Procedia PDF Downloads 303
226 Effect of Carbon Additions on FeCrNiMnTi High Entropy Alloy

Authors: C. D. Gomez-Esparza, Z. V. Hernandez-Castro, C. A. Rodriguez-Gonzalez, R. Martinez-Sanchez, A. Duarte-Moller

Abstract:

Recently, the high entropy alloys (HEA) are the focus of attention in metallurgical and materials science due to their desirable and superior properties in comparison to conventional alloys. The HEA field has promoted the exploration of several compositions including the addition of non-metallic elements like carbon, which in traditional metallurgy is mainly used in the steel industry. The aim of this work was the synthesis of equiatomic FeCrNiMnTi high entropy alloys, with minor carbon content, by mechanical alloying and sintering. The effect of the addition of carbon nanotubes and graphite were evaluated by X-ray diffraction, scanning electron microscopy, and microhardness test. The structural and microstructural characteristics of the equiatomic alloys, as well as their hardness were compared with those of an austenitic AISI 321 stainless steel processed under the same conditions. The results showed that porosity in bulk samples decreases with carbon nanotubes addition, while the equiatomic composition favors the formation of titanium carbide and increased the AISI 321 hardness more than three times.

Keywords: carbon nanotubes, graphite, high entropy alloys, mechanical alloying

Procedia PDF Downloads 166
225 Surface Roughness of AlSi/10%AlN Metal Matrix Composite Material Using the Taguchi Method

Authors: Nurul Na'imy Wan, Mohamad Sazali Said, Jaharah Ab. Ghani, Mohd Asri Selamat

Abstract:

This paper presents the surface roughness of the Aluminium silicon alloy (AlSi) matrix composite which has been reinforced with aluminium nitride (AlN), with three types of carbide inserts. Experiments were conducted at various cutting speeds, feed rates, and depths of cut, according to the Taguchi method, using a standard orthogonal array L27 (34). The signal-to-noise (S/N) ratio and analysis of variance are applied to study the characteristic performance of machining parameters in measuring the surface roughness during the milling operation. The analysis of results, using the Taguchi method concluded that a combination of low feed rate, medium depth of cut, low cutting speed, and insert TiB2 give a better value of surface roughness. From Taguchi method, it was found that cutting speed of 230m/min, feed rate of 0.4 mm/tooth, depth of cut of 0.5mm and type of insert of TiB2 were the optimal machining parameters that gave the optimal value of surface roughness.

Keywords: AlSi/AlN Metal Matrix Composite (MMC), surface roughness, Taguchi method

Procedia PDF Downloads 443
224 Mechanical and Chemical Properties of Zn-Ni-Al2O3 Nano Composite Coatings

Authors: Soroor Ghaziof, Wei Gao

Abstract:

Zn alloy and composite coatings are widely used in buildings and structures, automobile and fasteners industries to protect steel component from corrosion. In this paper, Zn-Ni-Al2O3 nano-composite coatings were electrodeposited on mild steel using a novel sol enhanced electroplating method. In this method, transparent Al2O3 sol was added into the acidic Zn-Ni bath to produced Zn-Ni-Al2O3 nano-composite coatings. The effect of alumina sol on the electrodeposition process, and coating properties was investigated using cyclic voltammetry, XRD, ESEM and Tafel test. Results from XRD tests showed that the structure of all coatings was single γ-Ni5Zn21 phase. Cyclic voltammetry results showed that the electrodeposition overpotential was lower in the presence of alumina sol in the bath, and caused the reduction potential of Zn-Ni to shift to more positive values. Zn-Ni-Al2O3 nano composite coatings produced more uniform and compact deposits, with fine grained microstructure when compared to Zn-Ni coatings. The corrosion resistance of Zn-Ni coatings was improved significantly by incorporation of alumina nano particles into the coatings.

Keywords: Zn-Ni-Al2O3 composite coatings, steel, sol-enhanced electroplating, corrosion resistance

Procedia PDF Downloads 373
223 Simulation of Kinetic Friction in L-Bending of Sheet Metals

Authors: Maziar Ramezani, Thomas Neitzert, Timotius Pasang

Abstract:

This paper aims at experimental and numerical investigation of springback behavior of sheet metals during L-bending process with emphasis on Stribeck-type friction modeling. The coefficient of friction in Stribeck curve depends on sliding velocity and contact pressure. The springback behavior of mild steel and aluminum alloy 6022-T4 sheets was studied experimentally and using numerical simulations with ABAQUS software with two types of friction model: Coulomb friction and Stribeck friction. The influence of forming speed on springback behavior was studied experimentally and numerically. The results showed that Stribeck-type friction model has better results in predicting springback in sheet metal forming. The FE prediction error for mild steel and 6022-T4 AA is 23.8%, 25.5% respectively, using Coulomb friction model and 11%, 13% respectively, using Stribeck friction model. These results show that Stribeck model is suitable for simulation of sheet metal forming especially at higher forming speed.

Keywords: friction, L-bending, springback, Stribeck curves

Procedia PDF Downloads 460
222 Development of Hydrophobic Coatings on Aluminum Alloy 7075

Authors: Nauman A. Siddiqui

Abstract:

High performance requirement of aircrafts and marines industry demands to cater major industrial problems like wetting, high-speed efficiency, and corrosion resistance. These problems can be resolved by producing the hydrophobic surfaces on the metal substrate. By anodization process, the surface of AA 7075 has been modified and achieved a rough surface with a porous aluminum oxide (Al2O3) structure at nano-level. This surface modification process reduces the surface contact energy and increases the liquid contact angle which ultimately enhances the anti-icing properties. Later the Silane and Polyurethane (PU) coatings on the anodized surface have produced a contact angle of 130°. The results showed a good water repellency and self-cleaning properties. Using SEM analysis, micrographs revealed the round nano-porous oxide structure on the substrate. Therefore this technique can help in increasing the speed efficiency by reducing the friction with the outer interaction and can also be declared as a green technique since it is user-friendly.

Keywords: AA 7075, hydrophobicity, silanes, polyurethane, anodization

Procedia PDF Downloads 251
221 Electrochemical Corrosion Behavior of New Developed Titanium Alloys in Ringer’s Solution

Authors: Yasser M. Abd-elrhman, Mohamed A. Gepreel, Kiochi Nakamura, Ahmed Abd El-Moneim, Sengo Kobayashi, Mervat M. Ibrahim

Abstract:

Titanium alloys are known as highly bio compatible metallic materials due to their high strength, low elastic modulus, and high corrosion resistance in biological media. Besides other important material features, the corrosion parameters and corrosion products are responsible for limiting the biological and chemical bio compatibility of metallic materials that produce undesirable reactions in implant-adjacent and/or more distant tissues. Electrochemical corrosion behaviors of novel beta titanium alloys, Ti-4.7Mo-4.5Fe, Ti-3Mo-0.5Fe, and Ti-2Mo-0.5Fe were characterized in naturally aerated Ringer’s solution at room temperature compared with common used biomedical titanium alloy, Ti-6Al-4V. The corrosion resistance of titanium alloys were investigated through open circuit potential (OCP), potentiodynamic polarization measurements and optical microscope (OM). A high corrosion resistance was obtained for all alloys due to the stable passive film formed on their surfaces. The new present alloys are promising metallic biomaterials for the future, owing to their very low elastic modulus and good corrosion resistance capabilities.

Keywords: titanium alloys, corrosion resistance, Ringer’s solution, electrochemical corrosion

Procedia PDF Downloads 621
220 Wear Performance of Stellite 21 Cladded Overlay on Aisi 304L

Authors: Sandeep Singh Sandhua, Karanvir Singh Ghuman, Arun Kumar

Abstract:

Stellite 21 is cobalt based super alloy used in improving the wear performance of stainless steel engineering components subjected to harsh environmental conditions. This piece of research focuses on the wear analysis of satellite 21 cladded on AISI 304 L substrate using SMAW process. Bead on plate experiments were carried out by varying current and electrode manipulation techniques to optimize the dilution and microhardness. 80 Amp current and weaving technique was found to be optimum set of parameters for overlaying which were further used for multipass multilayer cladding of AISI 304 L substrate. The wear performance was examined on pin on dics wear testing machine under room temperature conditions. The results from this study show that Stellite 21 overlays show a significant improvement in the frictional wear resistance after TIG remelting. It is also established that low dilution procedures are important in controlling the metallurgical composition of these overlays which has a consequent effect in enhancing hardness and wear resistance of these overlays.

Keywords: surfacing, stellite 21, dilution, SMAW, frictional wear, micro-hardness

Procedia PDF Downloads 226
219 X-Ray Diffraction Technique as a Means for Degradation Assessment of Welded Joints

Authors: Jaroslav Fiala, Jaroslav Kaiser, Pavel Zlabek, Vaclav Mentl

Abstract:

The X-ray diffraction technique was recognized as a useful tool for the assessment of material degradation degree after a long-time service. In many industrial applications materials are subjected to degradation of mechanical properties as a result of real service conditions. The assessment of the remnant lifetime of components and structures is commonly based on correlated procedures including numerous destructive, non-destructive and mathematical techniques that should guarantee reasonable precise assessment of the current damage extent of materials in question and the remnant lifetime assessment. This paper summarizes results of an experimental programme concentrated on mechanical properties degradation of welded components. Steel an Al-alloy test specimens of base metal, containing welds and simple weldments were fatigue loaded at room temperature to obtain Woehler S-N curve. X-ray diffraction technique was applied to assess the degradation degree of material as a result of cyclic loading.

Keywords: fatigue loading, material degradation, steels, AL-alloys, X-ray diffraction

Procedia PDF Downloads 415
218 Synthesis and Characterization of Ferromagnetic Ni-Cu Alloys for Thermal Rectification Applications

Authors: Josue Javier Martinez Flores, Jaime Alvarez Quintana

Abstract:

A thermal rectifier consists of a device which can load a different heat flow which depends on the direction of that flow. That device is a thermal diode. It is well known that heat transfer in solids basically depends on the electrical, magnetic and crystalline nature of materials via electrons, magnons and phonons as thermal energy carriers respectively. In the present research, we have synthesized polycrystalline Ni-Cu alloys and identified the Curie temperatures; and we have observed that by way of secondary phase transitions, it is possible manipulate the heat conduction in solid state thermal diodes via transition temperature. In this sense, we have succeeded in developing solid state thermal diodes with a control gate through the Curie temperature via the activation and deactivation of magnons in Ni-Cu ferromagnetic alloys at room temperature. Results show thermal diodes with thermal rectification factors up to 1.5. Besides, the performance of the electrical rectifiers can be controlled by way of alloy Cu content; hence, lower Cu content alloys present enhanced thermal rectifications factors than higher ones.

Keywords: thermal rectification, Curie temperature, ferromagnetic alloys, magnons

Procedia PDF Downloads 221
217 Effects of Position and Cut-Out Lengths on the Axial Crushing Behavior of Aluminum Tubes: Experimental and Simulation

Authors: B. Käfer, V. K. Bheemineni, H. Lammer, M. Kotnik, F. O. Riemelmoser

Abstract:

Axial compression tests are performed on circular tubes made of Aluminum EN AW 6060 (AlMgSi0.5 alloy) in T66 state. All the received tubes have the uniform outer diameter of 40mm and thickness of 1.5mm. Two different lengths 100mm and 200mm are used in the analysis. After performing compression tests on the uniform tube, important crashworthy parameters like peak force, average force, crush efficiency and energy absorption are measured. The present paper has given importance to increase the percentage of crush efficiency without decreasing the value energy absorption of a tube, so a circumferential notch was introduced on the top section of the tube. The effects of position and cut-out lengths of a circumferential notch on the crush efficiency are well explained with relative deformation modes and force-displacement curves. The numerical simulations were carried on the software tool ANSYS/LS-DYNA. It is seen that the numerical results are reasonably good in agreement with the experimental results. 

Keywords: crash box, Notch triggering, energy absorption, FEM simulation

Procedia PDF Downloads 426
216 Experimental Research of Corrosion Resistance Desalination Plant Pipe According to Weld Overlay Layers

Authors: Ryu Wonjin, Choi Hyeok, Park Joonhong

Abstract:

Overlay welding for improving surface properties is a method of the surface treatments which improve surface properties of material by welding materials of alloy having corrosion resistance on the basic material surface. Overlay welding affects contents of chemical components and weld hardness from different parts by dilution of the lamination layer thickness, and it determines surface properties. Therefore, overlay welding has to take into account thickness of the lamination layers with the process. As a result in this study examined contents of Fe, weldability of the base metal and monel materials, hardness and surface flatness from different parts according to each the lamination layer parameters by overlay welding monel materials with corrosion resources to the base material of carbon steel. Through this, evaluated effect by the lamination layer parameters of welding and presented decision methods of the lamination layer parameters of the overlay welding by the purpose of use.

Keywords: clad pipe, lamination layer parameters, monel, overlay welding

Procedia PDF Downloads 243
215 Wetting Properties of Silver Based Alloys

Authors: Zoltán Weltsch, József Hlinka, Eszter Kókai

Abstract:

The temperature dependence of wettability (wetting angle, Θ (T)) for Ag-based melts on graphite and Al2O3 substrates is compared. Typical alloying effects are found, as the Ag host metal is gradually replaced by various metallic elements. The essence of alloying lies in the change of the electron/atom (e/a) ratio. This ratio is also manifested in the shift of wetting angles on the same substrate. Nevertheless, the effects are partially smeared by other (metallurgical) factors, like the interaction between the oxygen-alloying elements and by the graphite substrate-oxygen interaction. In contrast, such effects are not pronounced in the case of Al2O3 substrates. As a consequence, Θ(T) exhibits an opposite trend in the case of two substrates. Crossovers of the Θ(T) curves were often found. The positions of crossovers depend on the chemical character and concentration of solute atoms. Segregation and epitaxial texture formation after solidification were also observed in certain alloy drops, especially in high concentration range. This phenomenon is not yet explained in every detail.

Keywords: contact angle, graphite, silver, soldering, solid solubility, substrate, temperature dependence, wetting

Procedia PDF Downloads 388
214 Effect of Co-doping on Polycrystalline Ni-Mn-Ga

Authors: Mahsa Namvari, Kari Ullakko

Abstract:

It is well-known that the Co-doping of ferromagnetic shape memory alloys (FSMAs) is a crucial tool to control their multifunctional properties. The present work investigates the use of small quantities of Co to fine-tune the transformation, structure, microstructure, mechanical and magnetic properties of the polycrystalline Ni₄₉.₈Mn₂₈.₅Ga₂₁.₇ (at.%) alloy, At Co concentrations of 1-1.5 at.%, a microstructure with an average grain size of about 2.00 mm was formed with a twin structure, enabling the experimental observation of magnetic-field-induced twin variant rearrangement. At higher levels of Co-doping, the grain size was essentially reduced, and the crystal structure of the martensitic phase became 2M martensite. The decreasing grain size and changing crystal structure are attributed to the progress of γ-phase precipitates. Alongside the academic aspect, the results of the present work point to the commercial advantage of fabricating 10M Co-doped Ni-Mn-Ga actuating elements made from large grains of polycrystalline ingots obtained by a standard melting facility instead of grown single crystals.

Keywords: Ni-Mn-Ga, ferromagnetic shape memory, martensitic phase transformation, grain growth

Procedia PDF Downloads 62
213 An Evaluation of a Student Peer Mentoring Program

Authors: Nazeema Ahmed

Abstract:

This paper reports on the development of a student peer mentoring programme at a higher education institution. The programme is dependent on volunteering senior undergraduate students who are trained to mentor first-year students studying towards an engineering degree. The evaluation of the programme took the form of first-year students completing a self-report paper questionnaire at the onset of a lecture and mentors completing their questionnaire electronically. The evaluation yielded mixed findings. Peer mentoring clearly benefited some students in their adjustment to the institution. Specific mentors’ personal attributes enabled the establishment of successful mentoring relationships, where encouragement, advice and academic assistance was provided. Gains were reciprocal with mentors reporting that the programme contributed towards their personal development. Confidence in the programme was expressed in mentors feeling that it was an initiative worth continuing and first-year students agreeing that it be recommended to future first-year students. This was despite many unfavourable experiences of mentors where their professionalism and commitment to the programme was suspect. It is evident that while mentors began with noble intentions they appear either to lose interest or become overwhelmed with their own workload as the academic year progresses. On the other hand, some mentors reported feeling challenged by the apathy of first-year students who failed to maximise the opportunity available to them. The different attitudes towards mentoring that manifested as a mentoring culture in some departments were particularly pertinent to its successful implementation. The findings point to the key role of academic staff in the mentoring programme who model the mentoring relationship in their interaction with student mentors. While their involvement in the programme may be perceived as a drain on resources in an already demanding academic teaching environment, it is imperative that structural changes be put in place for the programme to be both efficient and sustainable. A pervasive finding concerns the evolving institutional culture of student development in the faculty. Mentors and first-year students alike alluded to the potential of the mentoring programme provided it is seriously endorsed at both the departmental and faculty level. The findings provide a foundation from which to develop the programme further and to begin improving its capacity for maximizing student retention in South African higher education.

Keywords: engineering students, first-year students, peer mentoring

Procedia PDF Downloads 234
212 Piezoelectric Actuator for Controlling Robotics Organs

Authors: Lemoussi Somia, Ouali Mohammed, Zemirline Adel

Abstract:

In precision engineering, including precision positioning, micro-manipulation, robotic systems... a majority of these applications actuated by piezo stack used the compliant amplifier mechanism to amplifying motion and guiding it as needed utilize the flexibility of their components, in this paper, we present a novel approach introducing a symmetric structure comprising three stages, featuring rectangular flexure hinges with a compact size of 77mm×42mm×10mm. This design provides the capability for rotation, translation or a combination of both movements in both directions. The system allows for a displacement of 2107.5 μm when the input displacement of PZT is 50 μm while considering the material constraints of the aluminum alloy (7075 T6) which has a maximum admissible stress of 500 MPa However, our proposed design imposes additional constraints to ensure the stress remains below 361 MPa for optimal performance. These findings were obtained through finite element simulations conducted using ANSYS Workbench. Furthermore, our module facilitates precise control of various components within robotic systems, allowing for adjustable speeds based on specific requirements or desired outcomes.

Keywords: robotic, piezoelectric, compliant mechanism, flexure hinge

Procedia PDF Downloads 54
211 Effect of Welding Heat Input on Intergranular Corrosion of Inconel 625 Overlay Weld Metal

Authors: Joon-Suk Kim, Hae-Woo Lee

Abstract:

This study discusses the effect of welding heat input on intergranular corrosion of the weld metal of Inconel 625 alloy. A specimen of Inconel 625 with a weld metal that controlled welding heat input was manufactured, and aging heat treatment was conducted to investigate sensitization by chromium carbides. The electrochemical SL and DL EPR experiments, together with the chemical ferric sulfate-sulfuric acid and nitric acid tests, were conducted to determine intergranular corrosion susceptibility between the specimens. In the SL and DL EPR experiments, specimens were stabilized in the weld metal, and therefore intergranular corrosion susceptibility could not be determined. However, in the ferric sulfate-sulfuric acid and nitric acid tests, the corrosion speed increased as heat input increased. This was because the amount of diluted Fe increased as the welding heat input increased, leading to microsegregation between the dendrites, which had a negative effect on the corrosion resistance.

Keywords: Inconel 625, weling, overlay, heat input, intergranular corrosion

Procedia PDF Downloads 333
210 Two-Protein Modified Gold Nanoparticles for Serological Diagnosis of Borreliosis

Authors: Mohammed Alasel, Michael Keusgen

Abstract:

Gold is a noble metal; in its nano-scale level (e.g. spherical nanoparticles), the conduction electrons are triggered to collectively oscillate with a resonant frequency when certain wavelengths of electromagnetic radiation interact with its surface; this phenomenon is known as surface plasmon resonance (SPR). SPR is responsible for giving the gold nanoparticles its intense red color depending mainly on its size, shape and distance between nanoparticles. A decreased distance between gold nanoparticles results in aggregation of them causing a change in color from red to blue. This aggregation enables gold nanoparticles to serve as a sensitive biosensoric indicator. In the proposed work, gold nanoparticles were modified with two proteins: i) Borrelia antigen, variable lipoprotein surface-exposed protein (VlsE), and ii) protein A. VlsE antigen induces a strong antibody response against Lyme disease and can be detected from early to late phase during the disease in humans infected with Borrelia. In addition, it shows low cross-reaction with the other non-pathogenic Borrelia strains. The high specificity of VlsE antigen to anti-Borrelia antibodies, combined simultaneously with the high specificity of protein A to the Fc region of all IgG human antibodies, was utilized to develop a rapid test for serological point of care diagnosis of borreliosis in human serum. Only in the presence of anti-Borrelia antibodies in the serum probe, an aggregation of gold nanoparticles can be observed, which is visible by a concentration-dependent colour shift from red (low IgG) to blue (high IgG). Experiments showed it is clearly possible to distinguish between positive and negative sera samples using a simple suspension of the two-protein modified gold nanoparticles in a very short time (30 minutes). The proposed work showed the potential of using such modified gold nanoparticles generally for serological diagnosis. Improved specificity and reduced assay time can be archived in applying increased salt concentrations combined with decreased pH values (pH 5).

Keywords: gold nanoparticles, gold aggregation, serological diagnosis, protein A, lyme borreliosis

Procedia PDF Downloads 367
209 FEM Simulations to Study the Effects of Laser Power and Scan Speed on Molten Pool Size in Additive Manufacturing

Authors: Yee-Ting Lee, Jyun-Rong Zhuang, Wen-Hsin Hsieh, An-Shik Yang

Abstract:

Additive manufacturing (AM) is increasingly crucial in biomedical and aerospace industries. As a recently developed AM technique, selective laser melting (SLM) has become a commercial method for various manufacturing processes. However, the molten pool configuration during SLM of metal powders is a decisive issue for the product quality. It is very important to investigate the heat transfer characteristics during the laser heating process. In this work, the finite element method (FEM) software ANSYS® (work bench module 16.0) was used to predict the unsteady temperature distribution for resolving molten pool dimensions with consideration of temperature-dependent thermal physical properties of TiAl6V4 at different laser powers and scanning speeds. The simulated results of the temperature distributions illustrated that the ratio of laser power to scanning speed can greatly influence the size of molten pool of titanium alloy powder for SLM development.

Keywords: additive manufacturing, finite element method, molten pool dimensions, selective laser melting

Procedia PDF Downloads 260
208 Thermo-Mechanical Processing of Armor Steel Plates

Authors: Taher El-Bitar, Maha El-Meligy, Eman El-Shenawy, Almosilhy Almosilhy, Nader Dawood

Abstract:

The steel contains 0.3% C and 0.004% B, beside Mn, Cr, Mo, and Ni. The alloy was processed by using 20-ton capacity electric arc furnace (EAF), and then refined by ladle furnace (LF). Liquid steel was cast as rectangular ingots. Dilatation test showed the critical transformation temperatures Ac1, Ac3, Ms and Mf as 716, 835, 356, and 218 °C. The ingots were austenitized and soaked and then rough rolled to thin slabs with 80 mm thickness. The thin slabs were then reheated and soaked for finish rolling to 6.0 mm thickness plates. During the rough rolling, the roll force increases as a result of rolling at temperatures less than recrystallization temperature. However, during finish rolling, the steel reflects initially continuous static recrystallization after which it shows strain hardening due to fall of temperature. It was concluded that, the steel plates were successfully heat treated by quenching-tempering at 250 ºC for 20 min.

Keywords: armor steel, austenitizing, critical transformation temperatures (CTTs), dilatation curve, martensite, quenching, rough and finish rolling processes, soaking, tempering, thermo-mechanical processing

Procedia PDF Downloads 323
207 Experimental and Numerical Investigation of “Machining Induced Residual Stresses” during Orthogonal Machining of Alloy Steel AISI 4340

Authors: Theena Thayalan, K. N. Ramesh Babu

Abstract:

Machining induced residual stress (RS) is one of the most important surface integrity parameters that characterize the near surface layer of a mechanical component, which plays a crucial role in controlling the performance, especially its fatigue life. Since experimental determination of RS is expensive and time consuming, it would be of great benefit if they could be predicted. In such case, it would be possible to select the cutting parameters required to produce a favorable RS profile. In the present study, an effort has been made to develop a 'two dimensional finite element model (FEM)' to simulate orthogonal cutting process and to predict surface and sub-surface RS using the commercial FEA software DEFORM-2D. The developed finite element model has been validated through experimental investigation of RS. In the experimentation, the orthogonal cutting tests were carried out on AISI 4340 by varying the cutting speed (VC) and uncut chip thickness (f) at three levels and the surface & sub-surface RS has been measured using XRD and Electro polishing techniques. The comparison showed that the RS obtained using developed numerical model is in reasonable agreement with that of experimental data.

Keywords: FEM, machining, residual stress, XRF

Procedia PDF Downloads 321
206 Effects of Stirring Time and Reinforcement Preheating on the Porosity of Particulate Periwinkle Shell-Aluminium 6063 Metal Matrix Composite (PPS-ALMMC) Produced by Two-Step Casting

Authors: Reginald Umunakwe, Obinna Chibuzor Okoye, Uzoma Samuel Nwigwe, Damilare John Olaleye, Akinlabi Oyetunji

Abstract:

The potential for the development of PPS-AlMMCs as light weight material for industrial applications was investigated. Periwinkle shells were milled and the density of the particles determined. Particulate periwinkle shell of particle size 75µm was used to reinforce aluminium 6063 alloy at 10wt% filler loading using two-step stir casting technique. The composite materials were stirred for five minutes in a semi-solid state and the stirring time varied as 3, 6 and 9 minutes at above the liquidus temperature. A specimen was also produced with pre-heated filler. The effect of variation in stirring time and reinforcement pre-heating on the porosity of the composite materials was investigated. The results of the analysis show that a composition of reinforcement pre-heating and stirring for 3 minutes produced a composite material with the lowest porosity of 1.05%.

Keywords: composites, periwinkle shell, two-step casting, porosity

Procedia PDF Downloads 327