Search results for: neural progentor cells
4327 The Data-Driven Localized Wave Solution of the Fokas-Lenells Equation using PINN
Authors: Gautam Kumar Saharia, Sagardeep Talukdar, Riki Dutta, Sudipta Nandy
Abstract:
The physics informed neural network (PINN) method opens up an approach for numerically solving nonlinear partial differential equations leveraging fast calculating speed and high precession of modern computing systems. We construct the PINN based on strong universal approximation theorem and apply the initial-boundary value data and residual collocation points to weekly impose initial and boundary condition to the neural network and choose the optimization algorithms adaptive moment estimation (ADAM) and Limited-memory Broyden-Fletcher-Golfard-Shanno (L-BFGS) algorithm to optimize learnable parameter of the neural network. Next, we improve the PINN with a weighted loss function to obtain both the bright and dark soliton solutions of Fokas-Lenells equation (FLE). We find the proposed scheme of adjustable weight coefficients into PINN has a better convergence rate and generalizability than the basic PINN algorithm. We believe that the PINN approach to solve the partial differential equation appearing in nonlinear optics would be useful to study various optical phenomena.Keywords: deep learning, optical Soliton, neural network, partial differential equation
Procedia PDF Downloads 1264326 A Computer-Aided System for Detection and Classification of Liver Cirrhosis
Authors: Abdel Hadi N. Ebraheim, Eman Azomi, Nefisa A. Fahmy
Abstract:
This paper designs and implements a computer-aided system (CAS) to help detect and diagnose liver cirrhosis in patients with Chronic Hepatitis C. Our system reduces the required features (tests) the patient is asked to do to tests to their minimal best most informative subset of tests, with a diagnostic accuracy above 99%, and hence saving both time and costs. We use the Support Vector Machine (SVM) with cross-validation, a Multilayer Perceptron Neural Network (MLP), and a Generalized Regression Neural Network (GRNN) that employs a base of radial functions for functional approximation, as classifiers. Our system is tested on 199 subjects, of them 99 Chronic Hepatitis C.The subjects were selected from among the outpatient clinic in National Herpetology and Tropical Medicine Research Institute (NHTMRI).Keywords: liver cirrhosis, artificial neural network, support vector machine, multi-layer perceptron, classification, accuracy
Procedia PDF Downloads 4614325 Deep Neural Network Approach for Navigation of Autonomous Vehicles
Authors: Mayank Raj, V. G. Narendra
Abstract:
Ever since the DARPA challenge on autonomous vehicles in 2005, there has been a lot of buzz about ‘Autonomous Vehicles’ amongst the major tech giants such as Google, Uber, and Tesla. Numerous approaches have been adopted to solve this problem, which can have a long-lasting impact on mankind. In this paper, we have used Deep Learning techniques and TensorFlow framework with the goal of building a neural network model to predict (speed, acceleration, steering angle, and brake) features needed for navigation of autonomous vehicles. The Deep Neural Network has been trained on images and sensor data obtained from the comma.ai dataset. A heatmap was used to check for correlation among the features, and finally, four important features were selected. This was a multivariate regression problem. The final model had five convolutional layers, followed by five dense layers. Finally, the calculated values were tested against the labeled data, where the mean squared error was used as a performance metric.Keywords: autonomous vehicles, deep learning, computer vision, artificial intelligence
Procedia PDF Downloads 1584324 The Involvement of the Homing Receptors CCR7 and CD62L in the Pathogenesis of Graft-Versus-Host Disease
Authors: Federico Herrera, Valle Gomez García de Soria, Itxaso Portero Sainz, Carlos Fernández Arandojo, Mercedes Royg, Ana Marcos Jimenez, Anna Kreutzman, Cecilia MuñozCalleja
Abstract:
Introduction: Graft-versus-host disease (GVHD) still remains the major complication associated with allogeneic stem cell transplantation (SCT). The pathogenesis involves migration of donor naïve T-cells into recipient secondary lymphoid organs. Two molecules are important in this process: CD62L and CCR7, which are characteristically expressed in naïve/central memory T-cells. With this background, we aimed to study the influence of CCR7 and CD62L on donor lymphocytes in the development and severity of GVHD. Material and methods: This single center study included 98 donor-recipient pairs. Samples were collected prospectively from the apheresis product and phenotyped by flow cytometry. CCR7 and CD62L expression in CD4+ and CD8+ T-cells were compared between patients who developed acute (n=40) or chronic GVHD (n=33) and those who did not (n=38). Results: The patients who developed acute GVHD were transplanted with a higher percentage of CCR7+CD4+ T-cells (p = 0.05) compared to the no GVHD group. These results were confirmed when these patients were divided in degrees according to the severity of the disease; the more severe disease, the higher percentage of CCR7+CD4+ T-cells. Conversely, chronic GVHD patients received a higher percentage of CCR7+CD8+ T-cells (p=0.02) in comparison to those who did not develop the complication. These data were also confirmed when patients were subdivided in degrees of the disease severity. A multivariable analysis confirmed that percentage of CCR7+CD4+ T-cells is a predictive factor of acute GVHD whereas the percentage of CCR7+CD8+ T-cells is a predictive factor of chronic GVHD. In vitro functional assays (migration and activation assays) supported the idea of CCR7+ T-cells were involved in the development of GVHD. As low levels of CD62L expression were detected in all apheresis products, we tested the hypothesis that CD62L was shed during apheresis procedure. Comparing CD62L surface levels in T-cells from the same donor immediately before collecting the apheresis product, and the final apheresis product we found that this process down-regulated CD62L in both CD4+ and CD8+ T cells (p=0.008). Interestingly, when CD62L levels were analysed in days 30 or 60 after engraftment, they recovered to baseline (p=0.008). However, to investigate the relation between CD62L expression and the development of GVHD in the recipient samples after the engraftment, no differences were observed comparing patients with GVHD to those who did not develop the disease. Discussion: Our prospective study indicates that the CCR7+ T-cells from the donor, which include naïve and central memory T-cells, contain the alloreactive cells with a high ability to mediate GVHD (in the case of both migration and activation). Therefore we suggest that the proportion and functional properties of CCR7+CD4+ and CCR7+CD8+ T-cells in the apheresis could act as a predictive biomarker to both acute and chronic GVHD respectively. Importantly, our study precludes that CD62L is lost in the apheresis and therefore it is not a reliable biomarker for the development of GVHD.Keywords: CCR7, CD62L, GVHD, SCT
Procedia PDF Downloads 2874323 The Physiological Effect of Cold Atmospheric Pressure Plasma on Cancer Cells, Cancer Stem Cells, and Adult Stem Cells
Authors: Jeongyeon Park, Yeo Jun Yoon, Jiyoung Seo, In Seok Moon, Hae Jun Lee, Kiwon Song
Abstract:
Cold Atmospheric Pressure Plasma (CAPP) is defined as a partially ionized gas with electrically charged particles at room temperature and atmospheric pressure. CAPP generates reactive oxygen species (ROS) and reactive nitrogen species (RNS), and has potential as a new apoptosis-promoting cancer therapy. With an annular type dielectric barrier discharge (DBD) CAPP-generating device combined with a helium (He) gas feeding system, we showed that CAPP selectively induced apoptosis in various cancer cells while it promoted proliferation of the adipose tissue-derived stem cell (ASC). The apoptotic effect of CAPP was highly selective toward p53-mutated cancer cells. The intracellular ROS was mainly responsible for apoptotic cell death in CAPP-treated cancer cells. CAPP induced apoptosis even in doxorubicin-resistant cancer cell lines, demonstrating the feasibility of CAPP as a potent cancer therapy. With the same device and exposure conditions to cancer cells, CAPP stimulated proliferation of the ASC, a kind of mesenchymal stem cell that is capable of self-renewing and differentiating into adipocytes, chondrocytes, osteoblasts and neurons. CAPP-treated ASCs expressed the stem cell markers and differentiated into adipocytes as untreated ASCs. The increase of proliferation by CAPP in ASCs was offset by a NO scavenger but was not affected by ROS scavengers, suggesting that NO generated by CAPP is responsible for the activated proliferation in ASCs. Usually, cancer stem cells are reported to be resistant to known cancer therapies. When we applied CAPP of the same device and exposure conditions to cancer cells to liver cancer stem cells (CSCs) that express CD133 and epithelial cell adhesion molecule (EpCAM) cancer stem cell markers, apoptotic cell death was not examined. Apoptotic cell death of liver CSCs was induced by the CAPP generated from a device with an air-based flatten type DBD. An exposure of liver CSCs to CAPP decreased the viability of liver CSCs to a great extent, suggesting plasma be used as a promising anti-cancer treatment. To validate whether CAPP can be a promising anti-cancer treatment or an adjuvant modality to eliminate remnant tumor in cancer surgery of vestibular schwannoma, we applied CAPP to mouse schwannoma cell line SC4 Nf2 ‑/‑ and human schwannoma cell line HEI-193. A CAPP treatment leads to anti-proliferative effect in both cell lines. We are currently studying the molecular mechanisms of differential physiological effect of CAPP; the proliferation of ASCs and apoptosis of various cancer cells and CSCs.Keywords: cold atmospheric pressure plasma, apoptosis, proliferation, cancer cells, adult stem cells
Procedia PDF Downloads 2824322 Heat Source Temperature for Centered Heat Source on Isotropic Plate with Lower Surface Forced Cooling Using Neural Network and Three Different Materials
Authors: Fadwa Haraka, Ahmad Elouatouati, Mourad Taha Janan
Abstract:
In this study, we propose a neural network based method in order to calculate the heat source temperature of isotropic plate with lower surface forced cooling. To validate the proposed model, the heat source temperatures values will be compared to the analytical method -variables separation- and finite element model. The mathematical simulation is done through 3D numerical simulation by COMSOL software considering three different materials: Aluminum, Copper, and Graphite. The proposed method will lead to a formulation of the heat source temperature based on the thermal and geometric properties of the base plate.Keywords: thermal model, thermal resistance, finite element simulation, neural network
Procedia PDF Downloads 3584321 Bacteriophage Lysis Of Physiologically Stressed Listeria Monocytogenes In A Simulated Seafood Processing Environment
Authors: Geevika J. Ganegama Arachchi, Steve H. Flint, Lynn McIntyre, Cristina D. Cruz, Beatrice M. Dias-Wanigasekera, Craig Billington, J. Andrew Hudson, Anthony N. Mutukumira
Abstract:
In seafood processing plants, Listeriamonocytogenes(L. monocytogenes)likely exists in a metabolically stressed state due to the nutrient-deficient environment, processing treatments such as heating, curing, drying, and freezing, and exposure to detergents and disinfectants. Stressed L. monocytogenes cells have been shown to be as pathogenic as unstressed cells. This study investigated lytic efficacy of (LiMN4L, LiMN4p, and LiMN17) which were previouslycharacterized as virulent against physiologically stressed cells of three seafood borne L. monocytogenesstrains (19CO9, 19DO3, and 19EO3).Physiologically compromised cells ofL. monocytogenesstrains were prepared by aging cultures in TrypticaseSoy Broth at 15±1°C for 72 h; heat injuringcultures at 54±1 - 55±1°C for 40 - 60 min;salt-stressing cultures in Milli-Q water were incubated at 25±1°C in darkness for three weeks; and incubating cultures in 9% (w/v) NaCl at 15±1°C for 72 h. Low concentrations of physiologically compromised cells of three L. monocytogenesstrainswere challenged in vitrowith high titre of three phages in separate experiments using Fish Broth medium (aqueous fish extract) at 15 °C in order to mimic the environment of seafood processing plant. Each phage, when present at ≈9 log10 PFU/ml, reduced late exponential phase cells of L. monocytogenes suspended in fish protein broth at ≈2-3 log10 CFU/ml to a non-detectable level (< 10 CFU/ml). Each phage, when present at ≈8.5 log10 PFU/ml, reduced both heat-injured cells present at 2.5-3.6 log10 CFU/ml and starved cells that were showed coccoid shape, present at ≈2-3 log10 CFU/ml to < 10 CFU/ml after 30 min. Phages also reduced salt-stressed cellspresent at ≈3 log10 CFU/ml by > 2 log10. L. monocytogenes (≈8 log10 CFU/ml) were reduced to below the detection limit (1 CFU/ml) by the three successive phage infections over 16 h, indicating that emergence of spontaneous phage resistance was infrequent. The three virulent phages showed high decontamination potential for physiologically stressed L. monocytogenes strains from seafood processing environments.Keywords: physiologically stressed L. monocytogenes, heat injured, seafood processing environment, virulent phage
Procedia PDF Downloads 1354320 Integrating Neural Linguistic Programming with Exergaming
Authors: Shyam Sajan, Kamal Bijlani
Abstract:
The widespread effects of digital media help people to explore the world more and get entertained with no effort. People became fond of these kind of sedentary life style. The increase in sedentary time and a decrease in physical activities has negative impacts on human health. Even though the addiction to video games has been exploited in exergames, to make people exercise and enjoy game challenges, the contribution is restricted only to physical wellness. This paper proposes creation and implementation of a game with the help of digital media in a virtual environment. The game is designed by collaborating ideas from neural linguistic programming and Stroop effect that can also be used to identify a person’s mental state, to improve concentration and to eliminate various phobias. The multiplayer game is played in a virtual environment created with Kinect sensor, to make the game more motivating and interactive.Keywords: exergaming, Kinect Sensor, Neural Linguistic Programming, Stroop Effect
Procedia PDF Downloads 4364319 Forecasting Direct Normal Irradiation at Djibouti Using Artificial Neural Network
Authors: Ahmed Kayad Abdourazak, Abderafi Souad, Zejli Driss, Idriss Abdoulkader Ibrahim
Abstract:
In this paper Artificial Neural Network (ANN) is used to predict the solar irradiation in Djibouti for the first Time that is useful to the integration of Concentrating Solar Power (CSP) and sites selections for new or future solar plants as part of solar energy development. An ANN algorithm was developed to establish a forward/reverse correspondence between the latitude, longitude, altitude and monthly solar irradiation. For this purpose the German Aerospace Centre (DLR) data of eight Djibouti sites were used as training and testing in a standard three layers network with the back propagation algorithm of Lavenber-Marquardt. Results have shown a very good agreement for the solar irradiation prediction in Djibouti and proves that the proposed approach can be well used as an efficient tool for prediction of solar irradiation by providing so helpful information concerning sites selection, design and planning of solar plants.Keywords: artificial neural network, solar irradiation, concentrated solar power, Lavenberg-Marquardt
Procedia PDF Downloads 3544318 Reducing Support Structures in Design for Additive Manufacturing: A Neural Networks Approach
Authors: Olivia Borgue, Massimo Panarotto, Ola Isaksson
Abstract:
This article presents a neural networks-based strategy for reducing the need for support structures when designing for additive manufacturing (AM). Additive manufacturing is a relatively new and immature industrial technology, and the information to make confident decisions when designing for AM is limited. This lack of information impacts especially the early stages of engineering design, for instance, it is difficult to actively consider the support structures needed for manufacturing a part. This difficulty is related to the challenge of designing a product geometry accounting for customer requirements, manufacturing constraints and minimization of support structure. The approach presented in this article proposes an automatized geometry modification technique for reducing the use of the support structures while designing for AM. This strategy starts with a neural network-based strategy for shape recognition to achieve product classification, using an STL file of the product as input. Based on the classification, an automatic part geometry modification based on MATLAB© is implemented. At the end of the process, the strategy presents different geometry modification alternatives depending on the type of product to be designed. The geometry alternatives are then evaluated adopting a QFD-like decision support tool.Keywords: additive manufacturing, engineering design, geometry modification optimization, neural networks
Procedia PDF Downloads 2534317 An Improved Convolution Deep Learning Model for Predicting Trip Mode Scheduling
Authors: Amin Nezarat, Naeime Seifadini
Abstract:
Trip mode selection is a behavioral characteristic of passengers with immense importance for travel demand analysis, transportation planning, and traffic management. Identification of trip mode distribution will allow transportation authorities to adopt appropriate strategies to reduce travel time, traffic and air pollution. The majority of existing trip mode inference models operate based on human selected features and traditional machine learning algorithms. However, human selected features are sensitive to changes in traffic and environmental conditions and susceptible to personal biases, which can make them inefficient. One way to overcome these problems is to use neural networks capable of extracting high-level features from raw input. In this study, the convolutional neural network (CNN) architecture is used to predict the trip mode distribution based on raw GPS trajectory data. The key innovation of this paper is the design of the layout of the input layer of CNN as well as normalization operation, in a way that is not only compatible with the CNN architecture but can also represent the fundamental features of motion including speed, acceleration, jerk, and Bearing rate. The highest prediction accuracy achieved with the proposed configuration for the convolutional neural network with batch normalization is 85.26%.Keywords: predicting, deep learning, neural network, urban trip
Procedia PDF Downloads 1384316 Proinflammatory Response of Agglomerated TiO2 Nanoparticles in Human-Immune Cells
Authors: Vaiyapuri Subbarayn Periasamy, Jegan Athinarayanan, Ali A. Alshatwi
Abstract:
The widespread use of Titanium oxide nanoparticles (TiO2-NPs), now are found with different physic-chemical properties (size, shape, chemical properties, agglomeration, etc.) in many processed foods, agricultural chemicals, biomedical products, food packaging and food contact materials, personal care products, and other consumer products used in daily life. Growing evidences have been highlighted that there are risks of physico-chemical properties dependent toxicity with special attention to “TiO2-NPs and human immune system”. Unfortunately, agglomeration and aggregation have frequently been ignored in immuno-toxicological studies, even though agglomeration and aggregation would be expected to affect nanotoxicity since it changes the size, shape, surface area, and other properties of the TiO2-NPs. In this present investigation, we assessed the immune toxic effect of TiO2-NPs on human immune cells Total WBC including Lymphocytes (T cells (CD3+), T helper cells (CD3+, CD4+), Suppressor/cytotoxic T cells (CD3+/CD8+) and NK cells (CD3-/CD16+ and CD56+), Monocytes (CD14+, CD3-) and B lymphocytes (CD19+, CD3-) in order to find the immunological response (IL1A, IL1B, IL2 IL-4, IL5 IL-6, IL-10, IL-12, IL-13, IFN-γ, TGF-β, and TNF-a) and redox gene regulation (TNF, p53, BCl-2, CAT, GSTA4, TNF, CYP1A, POR, SOD1, GSTM3, GPX1, and GSR1)-linking physicochemical properties with special reference to agglomeration of TiO2-NPs. Our findings suggest that TiO2-NPs altered cytokine production, enhanced phagocytic indexing, metabolic stress through specific immune regulatory- genes expression in different WBC subsets and may contribute to pro-inflammatory response. Although TiO2-NPs have great advantages in the personal care products, biomedical, food and agricultural products, its chronic and acute immune-toxicity still need to be assessed carefully with special reference to food and environmental safety.Keywords: TiO2 nanoparticles, oxidative stress, cytokine, human immune cells
Procedia PDF Downloads 3974315 Using Probabilistic Neural Network (PNN) for Extracting Acoustic Microwaves (Bulk Acoustic Waves) in Piezoelectric Material
Authors: Hafdaoui Hichem, Mehadjebia Cherifa, Benatia Djamel
Abstract:
In this paper, we propose a new method for Bulk detection of an acoustic microwave signal during the propagation of acoustic microwaves in a piezoelectric substrate (Lithium Niobate LiNbO3). We have used the classification by probabilistic neural network (PNN) as a means of numerical analysis in which we classify all the values of the real part and the imaginary part of the coefficient attenuation with the acoustic velocity in order to build a model from which we note the Bulk waves easily. These singularities inform us of presence of Bulk waves in piezoelectric materials. By which we obtain accurate values for each of the coefficient attenuation and acoustic velocity for Bulk waves. This study will be very interesting in modeling and realization of acoustic microwaves devices (ultrasound) based on the propagation of acoustic microwaves.Keywords: piezoelectric material, probabilistic neural network (PNN), classification, acoustic microwaves, bulk waves, the attenuation coefficient
Procedia PDF Downloads 4324314 Urban Growth Prediction Using Artificial Neural Networks in Athens, Greece
Authors: Dimitrios Triantakonstantis, Demetris Stathakis
Abstract:
Urban areas have been expanded throughout the globe. Monitoring and modeling urban growth have become a necessity for a sustainable urban planning and decision making. Urban prediction models are important tools for analyzing the causes and consequences of urban land use dynamics. The objective of this research paper is to analyze and model the urban change, which has been occurred from 1990 to 2000 using CORINE land cover maps. The model was developed using drivers of urban changes (such as road distance, slope, etc.) under an Artificial Neural Network modeling approach. Validation was achieved using a prediction map for 2006 which was compared with a real map of Urban Atlas of 2006. The accuracy produced a Kappa index of agreement of 0,639 and a value of Cramer's V of 0,648. These encouraging results indicate the importance of the developed urban growth prediction model which using a set of available common biophysical drivers could serve as a management tool for the assessment of urban change.Keywords: artificial neural networks, CORINE, urban atlas, urban growth prediction
Procedia PDF Downloads 5294313 Alternating Electric fields-Induced Senescence in Glioblastoma
Authors: Eun Ho Kim
Abstract:
Innovations have conjured up a mode of treating GBM cancer cells in the newly diagnosed patients in a period of 4.9 months at an improved median OS, which brings along only a few minor side effects in the phase III of the clinical trial. This mode has been termed the Alternating Electric Fields (AEF). The study at hand is aimed at determining whether the AEF treatment is beneficial in sensitizing the GBM cancer cells through the process of increasing the AEF –induced senescence. The methodology to obtain the findings for this research ranged across various components, such as obtaining and testing SA-β-gal staining, flow cytometry, Western blotting, morphology, and Positron Emission Tomography (PET) / Computed Tomography (CT), immunohistochemical staining and microarray. The number of cells that displayed a senescence-specific morphology and positive SA-ß-Gal activity gradually increased up to 5 days. These results suggest that p16, p21 and p27 are essential regulators of AEF -induced senescence via NF-κB activation. The results showed that the AEF treatment is functional in enhancing the AEF –induced senescence in the GBM cells via an apoptosis- independent mechanism. This research concludes that this mode of treatment is a trustworthy protocol that can be effectively employed to overcome the limitations of the conventional mode of treatment on GBM.Keywords: alternating electric fields, senescence, glioblastoma, cell death
Procedia PDF Downloads 924312 Functional Gene Expression in Human Cells Using Linear Vectors Derived from Bacteriophage N15 Processing
Authors: Kumaran Narayanan, Pei-Sheng Liew
Abstract:
This paper adapts the bacteriophage N15 protelomerase enzyme to assemble linear chromosomes as vectors for gene expression in human cells. Phage N15 has the unique ability to replicate as a linear plasmid with telomeres in E. coli during its prophage stage of life-cycle. The virus-encoded protelomerase enzyme cuts its circular genome and caps its ends to form hairpin telomeres, resulting in a linear human-chromosome-like structure in E. coli. In mammalian cells, however, no enzyme with TelN-like activities has been found. In this work, we show for the first-time transfer of the protelomerase from phage into human and mouse cells and demonstrate recapitulation of its activity in these hosts. The function of this enzyme is assayed by demonstrating cleavage of its target DNA, followed by detecting telomere formation based on its resistance to recBCD enzyme digestion. We show protelomerase expression persists for at least 60 days, which indicates limited silencing of its expression. Next, we show that an intact human β-globin gene delivered on this linear chromosome accurately retains its expression in the human cellular environment for at least 60 hours, demonstrating its stability and potential as a vector. These results demonstrate that the N15 protelomerse is able to function in mammalian cells to cut and heal DNA to create telomeres, which provides a new tool for creating novel structures by DNA resolution in these hosts.Keywords: chromosome, beta-globin, DNA, gene expression, linear vector
Procedia PDF Downloads 1924311 Cytotoxic and Biocompatible Evaluation of Silica Coated Silver Nanoparticle Against Nih-3t3 Cells
Authors: Chen-En Lin, Lih-Rou Rau, Jiunn-Woei Liaw, Shiao-Wen Tsai
Abstract:
The unique optical properties of plasmon resonance metallic particles have attracted considerable applications in the fields of physics, chemistry and biology. Metal-Enhanced Fluorescence (MEF) effect is one of the useful applications. MEF effect stated that fluorescence intensity can be quenched or be enhanced depending on the distance between fluorophores and the metal nanoparticles. Silver nanoparticles have used widely in antibacterial studies. However, the major limitation for silver nanoparticles (AgNPs) in biomedical application is well-known cytotoxicity on cells. There were numerous literatures have been devoted to overcome the disadvantage. The aim of the study is to evaluate the cytotoxicity and biocompatibility of silica coated AgNPs against NIH-3T3 cells. The results were shown that NIH-3T3 cells started to detach, shrink, become rounded and finally be irregular in shape after 24 h of exposure at 10 µg/ml AgNPs. Besides, compared with untreated cells, the cell viability significantly decreased to 60% and 40% which were exposed to 10 µg/ml and 20 µg/ml AgNPs respectively. The result was consistent with previously reported findings that AgNPs induced cytotoxicity was concentration dependent. However, the morphology and cell viability of cells appeared similar to the control group when exposed to 20 µg/ml of silica coated AgNPs. We further utilized the dark-field hyperspectral imaging system to analysis the optical properties of the intracellular nanoparticles. The image displayed that the red shift of the surface plasmonic resonances band of the enclosed AgNPs further confirms the agglomerate of the AgNPs rather than their distribution in cytoplasm. In conclusion, the study demonstrated the silica coated of AgNPs showed well biocompatibility and significant lower cytotoxicity compared with bare AgNPs.Keywords: silver nanoparticles, silica, cell viability, morphology
Procedia PDF Downloads 3944310 Optimal Tracking Control of a Hydroelectric Power Plant Incorporating Neural Forecasting for Uncertain Input Disturbances
Authors: Marlene Perez Villalpando, Kelly Joel Gurubel Tun
Abstract:
In this paper, we propose an optimal control strategy for a hydroelectric power plant subject to input disturbances like meteorological phenomena. The engineering characteristics of the system are described by a nonlinear model. The random availability of renewable sources is predicted by a high-order neural network trained with an extended Kalman filter, whereas the power generation is regulated by the optimal control law. The main advantage of the system is the stabilization of the amount of power generated in the plant. A control supervisor maintains stability and availability in hydropower reservoirs water levels for power generation. The proposed approach demonstrated a good performance to stabilize the reservoir level and the power generation along their desired trajectories in the presence of disturbances.Keywords: hydropower, high order neural network, Kalman filter, optimal control
Procedia PDF Downloads 2984309 Developing Artificial Neural Networks (ANN) for Falls Detection
Authors: Nantakrit Yodpijit, Teppakorn Sittiwanchai
Abstract:
The number of older adults is rising rapidly. The world’s population becomes aging. Falls is one of common and major health problems in the elderly. Falls may lead to acute and chronic injuries and deaths. The fall-prone individuals are at greater risk for decreased quality of life, lowered productivity and poverty, social problems, and additional health problems. A number of studies on falls prevention using fall detection system have been conducted. Many available technologies for fall detection system are laboratory-based and can incur substantial costs for falls prevention. The utilization of alternative technologies can potentially reduce costs. This paper presents the new design and development of a wearable-based fall detection system using an Accelerometer and Gyroscope as motion sensors for the detection of body orientation and movement. Algorithms are developed to differentiate between Activities of Daily Living (ADL) and falls by comparing Threshold-based values with Artificial Neural Networks (ANN). Results indicate the possibility of using the new threshold-based method with neural network algorithm to reduce the number of false positive (false alarm) and improve the accuracy of fall detection system.Keywords: aging, algorithm, artificial neural networks (ANN), fall detection system, motion sensorsthreshold
Procedia PDF Downloads 4964308 Matching Law in Autoshaped Choice in Neural Networks
Authors: Giselle Maggie Fer Castañeda, Diego Iván González
Abstract:
The objective of this work was to study the autoshaped choice behavior in the Donahoe, Burgos and Palmer (DBP) neural network model and analyze it under the matching law. Autoshaped choice can be viewed as a form of economic behavior defined as the preference between alternatives according to their relative outcomes. The Donahoe, Burgos and Palmer (DBP) model is a connectionist proposal that unifies operant and Pavlovian conditioning. This model has been used for more than three decades as a neurobehavioral explanation of conditioning phenomena, as well as a generator of predictions suitable for experimental testing with non-human animals and humans. The study consisted of different simulations in which, in each one, a ratio of reinforcement was established for two alternatives, and the responses (i.e., activations) in each of them were measured. Choice studies with animals have demonstrated that the data generally conform closely to the generalized matching law equation, which states that the response ratio equals proportionally to the reinforcement ratio; therefore, it was expected to find similar results with the neural networks of the Donahoe, Burgos and Palmer (DBP) model since these networks have simulated and predicted various conditioning phenomena. The results were analyzed by the generalized matching law equation, and it was observed that under some contingencies, the data from the networks adjusted approximately to what was established by the equation. Implications and limitations are discussed.Keywords: matching law, neural networks, computational models, behavioral sciences
Procedia PDF Downloads 744307 Formulation and Characterization of NaCS-PDMDAAC Capsules with Immobilized Chlorella vulgaris for Phycoremediation of Palm Oil Mill Effluent
Authors: Quin Emparan, Razif Harun, Dayang R. A. Biak, Rozita Omar, Michael K. Danquah
Abstract:
Cultivation of immobilized microalgae cells is on the rise for biotechnological applications. In this study, cultivation of Chlorella vulgaris was carried out in the form of suspended free-cell and immobilized cells system. NaCS-PDMDAAC capsules were used to immobilize C. vulgaris. Initially, the synthesized NaCS with C. vulgaris culture were prepared at various concentration of 5- 20% (w/v) using a 6% hardening solution (PDMDAAC) to investigate the capsules' gel stability and suitability for microalgae cells growth. Then, the capsules produced from 15% NaCS with C. vulgaris culture were furthered investigated using 5%, 10%, and 15% (w/v) of PDMDAAC solution. The capsules' gel stability was evaluated through dissolution time and loss of uniform spherical shape of capsules, while suitability for microalgae cells growth was evaluated through the optical density of microalgae. In this study, the 15% NaCS-10% PDMDAAC capsules were found to be the most suitable to sustain the capsules' gel stability and microalgae cells growth in MLA. For that reason, the C. vulgaris immobilized in the 15% NaCS-10% PDMDAAC capsules were further characterized using physicochemical analysis in terms of morphological, carbon (C), hydrogen (H) and nitrogen (N), Fourier transform-infrared (FT-IR), scanning electron microscopy-energy dispersive X-ray (SEM-EDX), zeta potential and Brunauer-Emmet-Teller (BET) analyses. The results revealed that the presence of sulfonates in the synthesized NaCS and NaCS-PDMDAAC capsules without and with C. vulgaris proves that cellulose alcohol group was successfully bonded by sulfo group. Besides that, immobilized microalgae cells have a smaller cell size of 6.29 ± 1.09 µm and zeta potential of -11.93 ± 0.91 mV than suspended free-cells microalgae culture. It can be summarized that immobilization of C. vulgaris in the 15% NaCS-10% PDMDAAC capsules are relevant as a bioremediator for wastewater treatment purposes due to its suitable size of pore and capsules as well as structural and compositional properties.Keywords: biological capsules, immobilized cultivation, microalgae, physico-chemical analysis
Procedia PDF Downloads 1724306 Recognition of Noisy Words Using the Time Delay Neural Networks Approach
Authors: Khenfer-Koummich Fatima, Mesbahi Larbi, Hendel Fatiha
Abstract:
This paper presents a recognition system for isolated words like robot commands. It’s carried out by Time Delay Neural Networks; TDNN. To teleoperate a robot for specific tasks as turn, close, etc… In industrial environment and taking into account the noise coming from the machine. The choice of TDNN is based on its generalization in terms of accuracy, in more it acts as a filter that allows the passage of certain desirable frequency characteristics of speech; the goal is to determine the parameters of this filter for making an adaptable system to the variability of speech signal and to noise especially, for this the back propagation technique was used in learning phase. The approach was applied on commands pronounced in two languages separately: The French and Arabic. The results for two test bases of 300 spoken words for each one are 87%, 97.6% in neutral environment and 77.67%, 92.67% when the white Gaussian noisy was added with a SNR of 35 dB.Keywords: TDNN, neural networks, noise, speech recognition
Procedia PDF Downloads 2894305 Identification of Nonlinear Systems Using Radial Basis Function Neural Network
Authors: C. Pislaru, A. Shebani
Abstract:
This paper uses the radial basis function neural network (RBFNN) for system identification of nonlinear systems. Five nonlinear systems are used to examine the activity of RBFNN in system modeling of nonlinear systems; the five nonlinear systems are dual tank system, single tank system, DC motor system, and two academic models. The feed forward method is considered in this work for modelling the non-linear dynamic models, where the K-Means clustering algorithm used in this paper to select the centers of radial basis function network, because it is reliable, offers fast convergence and can handle large data sets. The least mean square method is used to adjust the weights to the output layer, and Euclidean distance method used to measure the width of the Gaussian function.Keywords: system identification, nonlinear systems, neural networks, radial basis function, K-means clustering algorithm
Procedia PDF Downloads 4704304 Artificial Neural Networks Based Calibration Approach for Six-Port Receiver
Authors: Nadia Chagtmi, Nejla Rejab, Noureddine Boulejfen
Abstract:
This paper presents a calibration approach based on artificial neural networks (ANN) to determine the envelop signal (I+jQ) of a six-port based receiver (SPR). The memory effects called also dynamic behavior and the nonlinearity brought by diode based power detector have been taken into consideration by the ANN. Experimental set-up has been performed to validate the efficiency of this method. The efficiency of this approach has been confirmed by the obtained results in terms of waveforms. Moreover, the obtained error vector magnitude (EVM) and the mean absolute error (MAE) have been calculated in order to confirm and to test the ANN’s performance to achieve I/Q recovery using the output voltage detected by the power based detector. The baseband signal has been recovered using ANN with EVMs no higher than 1 % and an MAE no higher than 17, 26 for the SPR excited different type of signals such QAM (quadrature amplitude modulation) and LTE (Long Term Evolution).Keywords: six-port based receiver; calibration, nonlinearity, memory effect, artificial neural network
Procedia PDF Downloads 774303 Plasma Treatment in Conjunction with EGM-2 Medium Can Enhance Endothelial and Osteogenic Marker Expressions of Bone Marrow MSCs
Authors: Chih-Hsin Lin, Shyh-Yuan Lee, Yuan-Min Lin
Abstract:
For many tissue engineering applications, an important goal is to create functional tissues in-vitro, and such tissues to be viable, they have to be vascularized. Endothelial cells (EC) and endothelial progenitor cells (EPC) are promising candidates for vascularization. However, both of them have limited expansion capacity and autologous cells currently do not exist for either ECs or EPCs. Therefore, we use bone marrow mesenchymal stem cells (MSC) as a source material for ECs. Growth supplements are commonly used to induce MSC differentiation, and further improvements in differentiation conditions can be made by modifying the cell's growth environment. An example is pre-treatment of the growth dish with gas plasma, in order to modify the surface functional groups of the material that the cells are seeded on. In this work, we compare the effects of different gas plasmas on the growth and differentiation of MSCs. We treat the dish with different plasmas (CO2, N2, and O2) and then induce MSC differentiation with endothelial growth medium-2 (EGM-2). We find that EGM-2 by itself upregulates EC marker CD31 mRNA expression, but not VEGFR2, CD34, or vWF. However, these additional EC marker expressions were increased for cells seeded on plasma treated substrates. Specifically, for EC markers, we found that N2 plasma treatment upregulated CD31 and VEGFR-2 mRNA expressions; CO2 plasma treatment upregulated CD34 and vWF mRNA expressions. The osteogenic markers ALP and osteopontin mRNA expressions were markedly enhanced on all plasma-treated dishes. We also found that plasma treatment in conjunction with EGM-2 growth medium can enhance MSCs differentiation into endothelial-like cells and osteogenic-like cells. Our work shows that the effect of the growth medium (EGM-2) on MSCs differentiation is influenced by the plasma modified surface chemistry of the substrate. In conclusion, plasma surface modification can enhance EGM-2 effectiveness and induced both endothelial and osteogenic differentiation. Our findings provide a method to enhance EGM-2 based cell differentiation, with consequences for tissue engineering and stem cell biology applications.Keywords: endothelial differentiation, EGM-2, osteogenesis, plasma treatment, surface modification
Procedia PDF Downloads 3314302 A Survey of Field Programmable Gate Array-Based Convolutional Neural Network Accelerators
Authors: Wei Zhang
Abstract:
With the rapid development of deep learning, neural network and deep learning algorithms play a significant role in various practical applications. Due to the high accuracy and good performance, Convolutional Neural Networks (CNNs) especially have become a research hot spot in the past few years. However, the size of the networks becomes increasingly large scale due to the demands of the practical applications, which poses a significant challenge to construct a high-performance implementation of deep learning neural networks. Meanwhile, many of these application scenarios also have strict requirements on the performance and low-power consumption of hardware devices. Therefore, it is particularly critical to choose a moderate computing platform for hardware acceleration of CNNs. This article aimed to survey the recent advance in Field Programmable Gate Array (FPGA)-based acceleration of CNNs. Various designs and implementations of the accelerator based on FPGA under different devices and network models are overviewed, and the versions of Graphic Processing Units (GPUs), Application Specific Integrated Circuits (ASICs) and Digital Signal Processors (DSPs) are compared to present our own critical analysis and comments. Finally, we give a discussion on different perspectives of these acceleration and optimization methods on FPGA platforms to further explore the opportunities and challenges for future research. More helpfully, we give a prospect for future development of the FPGA-based accelerator.Keywords: deep learning, field programmable gate array, FPGA, hardware accelerator, convolutional neural networks, CNN
Procedia PDF Downloads 1284301 Modeling of Global Solar Radiation on a Horizontal Surface Using Artificial Neural Network: A Case Study
Authors: Laidi Maamar, Hanini Salah
Abstract:
The present work investigates the potential of artificial neural network (ANN) model to predict the horizontal global solar radiation (HGSR). The ANN is developed and optimized using three years meteorological database from 2011 to 2013 available at the meteorological station of Blida (Blida 1 university, Algeria, Latitude 36.5°, Longitude 2.81° and 163 m above mean sea level). Optimal configuration of the ANN model has been determined by minimizing the Root Means Square Error (RMSE) and maximizing the correlation coefficient (R2) between observed and predicted data with the ANN model. To select the best ANN architecture, we have conducted several tests by using different combinations of parameters. A two-layer ANN model with six hidden neurons has been found as an optimal topology with (RMSE=4.036 W/m²) and (R²=0.999). A graphical user interface (GUI), was designed based on the best network structure and training algorithm, to enhance the users’ friendliness application of the model.Keywords: artificial neural network, global solar radiation, solar energy, prediction, Algeria
Procedia PDF Downloads 4984300 Antiviral Activity of Interleukin-11 in Response to Porcine Epidemic Diarrhea Virus Infection
Authors: Li Yuchen, Wu Qingxin, Jin Yuxing, Yang Qian
Abstract:
Interleukin-11 (IL-11), a well-known anti-inflammatory factor, helps to protect against intestinal epithelium damage caused by physical or chemical factors. However, little is known about the role of IL-11 during viral infection. Herein, high mRNA and protein levels of IL-11 were found in epithelial cells and jejunum of piglets during porcine epidemic diarrhea virus (PEDV) infection, and IL-11 expression was positively correlated with the level of viral infection. Pretreatment with recombinant porcine IL-11 (pIL-11) suppressed PEDV replication in Vero E6 cells, while IL-11 knockdown promoted viral infection. Furthermore, pIL-11 inhibited viral infection by preventing PEDV-mediated apoptosis of cells through activating the IL-11/STAT3 signal pathway. Conversely, application of a STAT3 phosphorylation inhibitor significantly antagonized the anti-apoptosis function of pIL-11 and counteracted its inhibition of PEDV. Our data suggested that that IL-11 is a novel PEDV-inducible cytokine, and its production enhances the anti-apoptosis ability of epithelial cells against PEDV infection. The potential uses of IL-11 as a novel therapeutic against devastating viral diarrhea in piglets deserves more attention and study.Keywords: Interleukin-11, Porcine epidemic diarrhea virus, STAT3, anti-apoptosis
Procedia PDF Downloads 1374299 Artificial Neural Networks Controller for Power System Voltage Improvement
Authors: Sabir Messalti, Bilal Boudjellal, Azouz Said
Abstract:
In this paper, power system Voltage improvement using wind turbine is presented. Two controllers are used: a PI controller and Artificial Neural Networks (ANN) controllers are studied to control of the power flow exchanged between the wind turbine and the power system in order to improve the bus voltage. The wind turbine is based on a doubly-fed induction generator (DFIG) controlled by field-oriented control. Indirect control is used to control of the reactive power flow exchanged between the DFIG and the power system. The proposed controllers are tested on power system for large voltage disturbances.Keywords: artificial neural networks controller, DFIG, field-oriented control, PI controller, power system voltage improvement
Procedia PDF Downloads 4634298 DUSP16 Inhibition Rescues Neurogenic and Cognitive Deficits in Alzheimer's Disease Mice Models
Authors: Huimin Zhao, Xiaoquan Liu, Haochen Liu
Abstract:
The major challenge facing Alzheimer's Disease (AD) drug development is how to effectively improve cognitive function in clinical practice. Growing evidence indicates that stimulating hippocampal neurogenesis is a strategy for restoring cognition in animal models of AD. The mitogen-activated protein kinase (MAPK) pathway is a crucial factor in neurogenesis, which is negatively regulated by Dual-specificity phosphatase 16 (DUSP16). Transcriptome analysis of post-mortem brain tissue revealed up-regulation of DUSP16 expression in AD patients. Additionally, DUSP16 was involved in regulating the proliferation and neural differentiation of neural progenitor cells (NPCs). Nevertheless, whether the effect of DUSP16 on ameliorating cognitive disorders by influencing NPCs differentiation in AD mice remains unclear. Our study demonstrates an association between DUSP16 SNPs and clinical progression in individuals with mild cognitive impairment (MCI). Besides, we found that increased DUSP16 expression in both 3×Tg and SAMP8 models of AD led to NPC differentiation impairments. By silencing DUSP16, cognitive benefits, the induction of AHN and synaptic plasticity, were observed in AD mice. Furthermore, we found that DUSP16 is involved in the process of NPC differentiation by regulating c-Jun N-terminal kinase (JNK) phosphorylation. Moreover, the increased DUSP16 may be regulated by the ETS transcription factor (ELK1), which binds to the promoter region of DUSP16. Loss of ELK1 resulted in decreased DUSP16 mRNA and protein levels. Our data uncover a potential regulatory role for DUSP16 in adult hippocampal neurogenesis and provide a possibility to find the target of AD intervention.Keywords: alzheimer's disease, cognitive function, DUSP16, hippocampal neurogenesis
Procedia PDF Downloads 72