Search results for: negative tunneling conductivity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5699

Search results for: negative tunneling conductivity

5099 Cancer Stem Cell-Associated Serum Proteins Obtained by Maldi TOF/TOF Mass Spectrometry in Women with Triple-Negative Breast Cancer

Authors: Javier Enciso-Benavides, Fredy Fabian, Carlos Castaneda, Luis Alfaro, Alex Choque, Aparicio Aguilar, Javier Enciso

Abstract:

Background: The use of biomarkers in breast cancer diagnosis, therapy, and prognosis has gained increasing interest. Cancer stem cells (CSCs) are a subpopulation of tumor cells that can drive tumor initiation and may cause relapse. Therefore, due to the importance of diagnosis, therapy, and prognosis, several biomarkers that characterize CSCs have been identified; however, in treatment-naïve triple-negative breast tumors, there is an urgent need to identify new biomarkers and therapeutic targets. According to this, the aim of this study was to identify serum proteins associated with cancer stem cells and pluripotency in women with triple-negative breast tumors in order to subsequently identify a biomarker for this type of breast tumor. Material and Methods: Whole blood samples from 12 women with histopathologically diagnosed triple-negative breast tumors were used after obtaining informed consent from the patient. Blood serum was obtained by conventional procedure and frozen at -80ºC. Identification of cancer stem cell-associated proteins was performed by matrix-assisted laser desorption/ionisation-assisted laser desorption/ionisation mass spectrometry (MALDI-TOF MS), protein analysis was obtained using the AB Sciex TOF/TOF™ 5800 system (AB Sciex, USA). Sequences not aligned by ProteinPilot™ software were analyzed by Protein BLAST. Results: The following proteins related to pluripotency and cancer stem cells were identified by MALDI TOF/TOF mass spectrometry: A-chain, Serpin A12 [Homo sapiens], AIEBP [Homo sapiens], Alpha-one antitrypsin, AT {internal fragment} [human, partial peptide, 20 aa] [Homo sapiens], collagen alpha 1 chain precursor variant [Homo sapiens], retinoblastoma-associated protein variant [Homo sapiens], insulin receptor, CRA_c isoform [Homo sapiens], Hydroxyisourate hydrolase [Streptomyces scopuliridis], MUCIN-6 [Macaca mulatta], Alpha-actinin-3 [Chrysochloris asiatica], Polyprotein M, CRA_d isoform, partial [Homo sapiens], Transcription factor SOX-12 [Homo sapiens]. Recommendations: The serum proteins identified in this study should be investigated in the exosome of triple-negative breast cancer stem cells and in the blood serum of women without breast cancer. Subsequently, proteins found only in the blood serum of women with triple-negative breast cancer should be identified in situ in triple-negative breast cancer tissue in order to identify a biomarker to study the evolution of this type of cancer, or that could be a therapeutic target. Conclusions: Eleven cancer stem cell-related serum proteins were identified in 12 women with triple-negative breast cancer, of which MUCIN-6, retinoblastoma-associated protein variant, transcription factor SOX-12, and collagen alpha 1 chain are the most representative and have not been studied so far in this type of breast tumor. Acknowledgement: This work was supported by Proyecto CONCYTEC–Banco Mundial “Mejoramiento y Ampliacion de los Servicios del Sistema Nacional de Ciencia Tecnología e Innovacion Tecnologica” 8682-PE (104-2018-FONDECYT-BM-IADT-AV).

Keywords: triple-negative breast cancer, MALDI TOF/TOF MS, serum proteins, cancer stem cells

Procedia PDF Downloads 195
5098 Two Major Methods to Control Thermal Resistance of Focus Ring for Process Uniformity Enhance

Authors: Jin-Uk Park

Abstract:

Recently, the semiconductor industry is rapidly demanding complicated structures and mass production. From the point of view of mass production, the ETCH industry is concentrating on maintaining the ER (Etch rate) of the wafer edge constant regardless of changes over time. In this study, two major thermal factors affecting process were identified and controlled. First, the filler of the thermal pad was studied. Second, the significant difference of handling the thermal pad during PM was studied.

Keywords: etcher, thermal pad, wet cleaning, thermal conductivity

Procedia PDF Downloads 177
5097 Numerical Optimization of Cooling System Parameters for Multilayer Lithium Ion Cell and Battery Packs

Authors: Mohammad Alipour, Ekin Esen, Riza Kizilel

Abstract:

Lithium-ion batteries are a commonly used type of rechargeable batteries because of their high specific energy and specific power. With the growing popularity of electric vehicles and hybrid electric vehicles, increasing attentions have been paid to rechargeable Lithium-ion batteries. However, safety problems, high cost and poor performance in low ambient temperatures and high current rates, are big obstacles for commercial utilization of these batteries. By proper thermal management, most of the mentioned limitations could be eliminated. Temperature profile of the Li-ion cells has a significant role in the performance, safety, and cycle life of the battery. That is why little temperature gradient can lead to great loss in the performances of the battery packs. In recent years, numerous researchers are working on new techniques to imply a better thermal management on Li-ion batteries. Keeping the battery cells within an optimum range is the main objective of battery thermal management. Commercial Li-ion cells are composed of several electrochemical layers each consisting negative-current collector, negative electrode, separator, positive electrode, and positive current collector. However, many researchers have adopted a single-layer cell to save in computing time. Their hypothesis is that thermal conductivity of the layer elements is so high and heat transfer rate is so fast. Therefore, instead of several thin layers, they model the cell as one thick layer unit. In previous work, we showed that single-layer model is insufficient to simulate the thermal behavior and temperature nonuniformity of the high-capacity Li-ion cells. We also studied the effects of the number of layers on thermal behavior of the Li-ion batteries. In this work, first thermal and electrochemical behavior of the LiFePO₄ battery is modeled with 3D multilayer cell. The model is validated with the experimental measurements at different current rates and ambient temperatures. Real time heat generation rate is also studied at different discharge rates. Results showed non-uniform temperature distribution along the cell which requires thermal management system. Therefore, aluminum plates with mini-channel system were designed to control the temperature uniformity. Design parameters such as channel number and widths, inlet flow rate, and cooling fluids are optimized. As cooling fluids, water and air are compared. Pressure drop and velocity profiles inside the channels are illustrated. Both surface and internal temperature profiles of single cell and battery packs are investigated with and without cooling systems. Our results show that using optimized Mini-channel cooling plates effectively controls the temperature rise and uniformity of the single cells and battery packs. With increasing the inlet flow rate, cooling efficiency could be reached up to 60%.

Keywords: lithium ion battery, 3D multilayer model, mini-channel cooling plates, thermal management

Procedia PDF Downloads 147
5096 Efficient Utilization of Negative Half Wave of Regulator Rectifier Output to Drive Class D LED Headlamp

Authors: Lalit Ahuja, Nancy Das, Yashas Shetty

Abstract:

LED lighting has been increasingly adopted for vehicles in both domestic and foreign automotive markets. Although this miniaturized technology gives the best light output, low energy consumption, and cost-efficient solutions for driving, the same is the need of the hour. In this paper, we present a methodology for driving the highest class two-wheeler headlamp with regulator and rectifier (RR) output. Unlike usual LED headlamps, which are driven by a battery, regulator, and rectifier (RR) driven, a low-cost and highly efficient LED Driver Module (LDM) is proposed. The positive half of magneto output is regulated and used to charge batteries used for various peripherals. While conventionally, the negative half was used for operating bulb-based exterior lamps. But with advancements in LED-based headlamps, which are driven by a battery, this negative half pulse remained unused in most of the vehicles. Our system uses negative half-wave rectified DC output from RR to provide constant light output at all RPMs of the vehicle. With the negative rectified DC output of RR, we have the advantage of pulsating DC input which periodically goes to zero, thus helping us to generate a constant DC output equivalent to the required LED load, and with a change in RPM, additional active thermal bypass circuit help us to maintain the efficiency and thermal rise. The methodology uses the negative half wave output of the RR along with a linear constant current driver with significantly higher efficiency. Although RR output has varied frequency and duty cycles at different engine RPMs, the driver is designed such that it provides constant current to LEDs with minimal ripple. In LED Headlamps, a DC-DC switching regulator is usually used, which is usually bulky. But with linear regulators, we’re eliminating bulky components and improving the form factor. Hence, this is both cost-efficient and compact. Presently, output ripple-free amplitude drivers with fewer components and less complexity are limited to lower-power LED Lamps. The focus of current high-efficiency research is often on high LED power applications. This paper presents a method of driving LED load at both High Beam and Low Beam using the negative half wave rectified pulsating DC from RR with minimum components, maintaining high efficiency within the thermal limitations. Linear regulators are significantly inefficient, with efficiencies typically about 40% and reaching as low as 14%. This leads to poor thermal performance. Although they don’t require complex and bulky circuitry, powering high-power devices is difficult to realise with the same. But with the input being negative half wave rectified pulsating DC, this efficiency can be improved as this helps us to generate constant DC output equivalent to LED load minimising the voltage drop on the linear regulator. Hence, losses are significantly reduced, and efficiency as high as 75% is achieved. With a change in RPM, DC voltage increases, which can be managed by active thermal bypass circuitry, thus resulting in better thermal performance. Hence, the use of bulky and expensive heat sinks can be avoided. Hence, the methodology to utilize the unused negative pulsating DC output of RR to optimize the utilization of RR output power and provide a cost-efficient solution as compared to costly DC-DC drivers.

Keywords: class D LED headlamp, regulator and rectifier, pulsating DC, low cost and highly efficient, LED driver module

Procedia PDF Downloads 47
5095 The Experimental House: A Case Study to Assess the Long-Term Performance of Waste Tires Used as Replacement for Natural Material in Backfill Applications for Basement Walls in Manitoba

Authors: M. Shokry Rashwan

Abstract:

This study follows a number of experiments conducted at Red River College (RRC) to investigate the short term properties of tire derived aggregate (TDA) produced from shredding off-the-road (OTR) wasted tires in a proposed new application. The application targets replacing natural material used under concrete slabs and as backfills for residential homes’ basement slabs and walls, respectively, with TDA. The experimental work included determining: compressibility, gradation distribution, unit weight, hydraulic conductivity and lateral pressure. Based on the results of those short term properties; it was decided to move forward to study the long-term performance of this otherwise waste material through on-site demonstration. A full-scale basement replicating a typical Manitoba home was therefore built at RRC where both TDA and Natural Materials (NM) were used side-by-side. A large number of sensing and measuring systems are used to compare between the performances of each material when exposed to the typical ground and weather conditions. Parameters monitored and measured include heat losses, moisture migration, drainage ability, lateral pressure, relative movements of slabs and walls, an integrity of ground water and radon emissions. Up-to-date results have confirmed part of the conclusions reached from the earlier laboratory experiments. However, other results have shown that construction practices; such as placing and compaction, may need some adjustments to achieve more desirable outcomes. This presentation provides a review of both short-term tests as well as up-to-date analysis of the on-site demonstration.

Keywords: tire derived aggregate (TDA), basement construction, TDA material properties, lateral pressure of TDA, hydraulic conductivity of TDA

Procedia PDF Downloads 198
5094 Pilot Study of Determining the Impact of Surface Subsidence at The Intersection of Cave Mining with the Surface Using an Electrical Impedance Tomography

Authors: Ariungerel Jargal

Abstract:

: Cave mining is a bulk underground mining method, which allows large low-grade deposits to be mined underground. This method involves undermining the orebody to make it collapse under its own weight into a series of chambers from which the ore extracted. It is a useful technique to extend the life of large deposits previously mined by open pits, and it is a method increasingly proposed for new mines around the world. We plan to conduct a feasibility study using Electrical impedance tomography (EIT) technology to show how much subsidence there is at the intersection with the cave mining surface. EIT is an imaging technique which uses electrical measurements at electrodes attached on the body surface to yield a cross-sectional image of conductivity changes within the object. EIT has been developed in several different applications areas as a simpler, cheaper alternative to many other imaging methods. A low frequency current is injected between pairs of electrodes while voltage measurements are collected at all other electrode pairs. In the difference EIT, images are reconstructed of the change in conductivity distribution (σ) between the acquisition of the two sets of measurements. Image reconstruction in EIT requires the solution of an ill-conditioned nonlinear inverse problem on noisy data, typically requiring make simpler assumptions or regularization. It is noted that the ratio of current to voltage represents a complex value according to Ohm’s law, and that it is theoretically possible to re-express EIT. The results of the experiment were presented on the simulation, and it was concluded that it is possible to conduct further real experiments. Drill a certain number of holes in the top wall of the cave to attach the electrodes, flow a current through them, and measure and acquire the potential through these electrodes. Appropriate values should be selected depending on the distance between the holes, the frequency and duration of the measurements, the surface characteristics and the size of the study area using an EIT device.

Keywords: impedance tomography, cave mining, soil, EIT device

Procedia PDF Downloads 104
5093 BiVO₄‑Decorated Graphite Felt as Highly Efficient Negative Electrode for All-Vanadium Redox Flow Batteries

Authors: Daniel Manaye Kabtamu, Anteneh Wodaje Bayeh

Abstract:

With the development and utilization of new energy technology, people’s demand for large-scale energy storage system has become increasingly urgent. Vanadium redox flow battery (VRFB) is one of the most promising technologies for grid-scale energy storage applications because of numerous attractive features, such as long cycle life, high safety, and flexible design. However, the relatively low energy efficiency and high production cost of the VRFB still limit its practical implementations. It is of great attention to enhance its energy efficiency and reduce its cost. One of the main components of VRFB that can impressively impact the efficiency and final cost is the electrode materials, which provide the reactions sites for redox couples (V₂₊/V³⁺ and VO²⁺/VO₂⁺). Graphite felt (GF) is a typical carbon-based material commonly employed as electrode for VRFB due to low-cost, good chemical and mechanical stability. However, pristine GF exhibits insufficient wettability, low specific surface area, and poor kinetics reversibility, leading to low energy efficiency of the battery. Therefore, it is crucial to further modify the GF electrode to improve its electrochemical performance towards VRFB by employing active electrocatalysts, such as less expensive metal oxides. This study successfully fabricates low-cost plate-like bismuth vanadate (BiVO₄) material through a simple one-step hydrothermal route, employed as an electrocatalyst to adorn the GF for use as the negative electrode in VRFB. The experimental results show that BiVO₄-3h exhibits the optimal electrocatalytic activity and reversibility for the vanadium redox couples among all samples. The energy efficiency of the VRFB cell assembled with BiVO₄-decorated GF as the negative electrode is found to be 75.42% at 100 mA cm−2, which is about 10.24% more efficient than that of the cell assembled with heat-treated graphite felt (HT-GF) electrode. The possible reasons for the activity enhancement can be ascribed to the existence of oxygen vacancies in the BiVO₄ lattice structure and the relatively high surface area of BiVO₄, which provide more active sites for facilitating the vanadium redox reactions. Furthermore, the BiVO₄-GF electrode obstructs the competitive irreversible hydrogen evolution reaction on the negative side of the cell, and it also has better wettability. Impressively, BiVO₄-GF as the negative electrode shows good stability over 100 cycles. Thus, BiVO₄-GF is a promising negative electrode candidate for practical VRFB applications.

Keywords: BiVO₄ electrocatalyst, electrochemical energy storage, graphite felt, vanadium redox flow battery

Procedia PDF Downloads 1551
5092 Carbon Nanotubes and Novel Applications for Textile

Authors: Ezgi Ismar

Abstract:

Carbon nanotubes (CNTs) are different from other allotropes of carbon, such as graphite, diamond and fullerene. Replacement of metals in flexible textiles has an advantage. Particularly in the last decade, both their electrical and mechanical properties have become an area of interest for Li-ion battery applications where the conductivity has a major importance. While carbon nanotubes are conductive, they are also less in weight compared to convectional conductive materials. Carbon nanotubes can be used inside the fiber so they can offer to create 3-D structures. In this review, you can find some examples of how carbon nanotubes adapted to textile products.

Keywords: carbon nanotubes, conductive textiles, nanotechnology, nanotextiles

Procedia PDF Downloads 367
5091 Dividend Policy, Overconfidence and Moral Hazard

Authors: Richard Fairchild, Abdullah Al-Ghazali, Yilmaz Guney

Abstract:

This study analyses the relationship between managerial overconfidence, dividends, and firm value by developing theoretical models that examine the condition under which managerial overconfident, dividends, and firm value may be positive or negative. Furthermore, the models incorporate moral hazard, in terms of managerial effort shirking, and the potential for the manager to choose negative NPV projects, due to private benefits. Our models demonstrate that overconfidence can lead to higher dividends (when the manager is overconfident about his current ability) or lower dividends (when the manager is overconfident about his future ability). The models also demonstrate that higher overconfidence may result in an increase or a decrease in firm value. Numerical examples are illustrated for both models which interestingly support the models’ propositions.

Keywords: behavioural corporate finance, dividend policy, overconfidence, moral hazard

Procedia PDF Downloads 317
5090 An Investigation on Engineering Students’ Perceptions Towards E-learning in the UK

Authors: Vida Razzaghifard

Abstract:

E-learning, also known as online learning, has indicated an increased growth in recent years. One of the critical factors in the successful application of e-learning in higher education is students’ perceptions towards it. The main purpose of this paper is to investigate the perceptions of engineering students about e-learning in UK. For the purpose of the present study, 145 second year Engineering students were randomly selected from the total population of 1280 participants. The participants were asked to complete a questionnaire containing 16 items. The data collected from the questionnaire were analyzed through the Statistical Package for Social Science (SPSS) software. The findings of the study revealed that the majority of participants have negative perceptions on e-learning. Most of the students had trouble interacting effectively during online classes. Furthermore, the majority of participants had negative experiences with the learning platform they used during e-learning. Suggestions were made on what could be done to improve the students’ perceptions towards e-learning.

Keywords: E-learning, higher, education, engineering education, online learning

Procedia PDF Downloads 83
5089 Prognostic Value of C-Reactive Protein (CRP) in SARS-CoV-2 Infection: A Simplified Biomarker of COVID-19 Severity in Sub-Saharan Africa

Authors: Teklay Gebrecherkos, Mahmud Abdulkader, Tobias Rinke De Wit, Britta C. Urban, Feyissa Chala, Yazezew Kebede, Dawit Welday

Abstract:

Background: C-reactive protein (CRP) levels are a reliable surrogate for interleukin-6 bioactivity that plays a pivotal role in the pathogenesis of cytokine storm associated with severe COVID-19. There is a lack of data on the role of CRP as a determinant of COVID-19 severity status in the African context. Methods: We determined the longitudinal kinetics of CRP levels on 78 RT-PCR-confirmed COVID-19 patients (49 non-severe and 29 severe cases) and 50 PCR-negative controls. Results: COVID-19 patients had overall significantly elevated CRP at baseline when compared to PCR-negative controls [median 11.1 (IQR: 2.0-127.8) mg/L vs. 0.9 (IQR: 0.5-1.9) mg/L; p=0.0004)]. Moreover, severe COVID-19 patients had significantly higher median CRP levels than non-severe cases [166.1 (IQR: 48.6-332.5) mg/L vs. 2.4 (IQR: 1.2-7.6) mg/L; p<0.00001)]. In addition, persistently elevated levels of CRP were exhibited among those with comorbidities and higher age groups. Area under receiver operating characteristic curve (AUC) analysis of CRP levels distinguished PCR-confirmed COVID-19 patients from the ones with PCR-negative non-COVID-19 individuals, with an AUC value of 0.77 (95% CI: 0.68-0.84; p=0.001). Moreover, it clearly distinguished severe from non-severe COVID-19 patients, with an AUC value of 0.83 (95% CI: 0.73-0.91). After adjusting for age and the presence of comorbidities, CRP levels above 30 mg/L were significantly associated with an increased risk of developing severe COVID-19 (adjusted relative risk 3.99 (95%CI: 1.35-11.82; p=0.013). Conclusions: Determining CRP levels in COVID-19 patients in African settings may provide a simple, prompt, and inexpensive assessment of the severity status at baseline and monitoring of treatment outcomes.

Keywords: CRP, COVID-19, SARS-CoV-2, biomarker

Procedia PDF Downloads 59
5088 Designing Function Knitted and Woven Upholstery Textile With SCOPY Film

Authors: Manar Y. Abd El-Aziz, Alyaa E. Morgham, Amira A. El-Fallal, Heba Tolla E. Abo El Naga

Abstract:

Different textile materials are usually used in upholstery. However, upholstery parts may become unhealthy when dust accrues and bacteria raise on the surface, which negatively affects the user's health. Also, leather and artificial leather were used in upholstery but, leather has a high cost and artificial leather has a potential chemical risk for users. Researchers have advanced vegie leather made from bacterial cellulose a symbiotic culture of bacteria and yeast (SCOBY). SCOBY remains a gelatinous, cellulose biofilm discovered floating at the air-liquid interface of the container. But this leather still needs some enhancement for its mechanical properties. This study aimed to prepare SCOBY, produce bamboo rib knitted fabrics with two different stitch densities, and cotton woven fabric then laminate these fabrics with the prepared SCOBY film to enhance the mechanical properties of the SCOBY leather at the same time; add anti-microbial function to the prepared fabrics. Laboratory tests were conducted on the produced samples, including tests for function properties; anti-microbial, thermal conductivity and light transparency. Physical properties; thickness and mass per unit. Mechanical properties; elongation, tensile strength, young modulus, and peel force. The results showed that the type of the fabric affected significantly SCOBY properties. According to the test results, the bamboo knitted fabric with higher stitch density laminated with SCOBY was chosen for its tensile strength and elongation as the upholstery of a bed model with antimicrobial properties and comfortability in the headrest design. Also, the single layer of SCOBY was chosen regarding light transparency and lower thermal conductivity for the creation of a lighting unit built into the bed headboard.

Keywords: anti-microbial, bamboo, rib, SCOPY, upholstery

Procedia PDF Downloads 48
5087 An Experimental Study to Control Single Droplet by Actuating Waveform with Preliminary and Suppressing Vibration

Authors: Oke Oktavianty, Tadayuki Kyoutani, Shigeyuki Haruyama, Ken Kaminishi

Abstract:

For advancing the experiment system standard of Inkjet printer that is being developed, the actual natural period, fire limitation number in droplet weight measurement and observation distance in droplet velocity measurement was investigated. In another side, the study to control the droplet volume in inkjet printer with negative actuating waveform method is still limited. Therefore, the effect of negative waveform with preliminary and suppressing vibration addition on the droplet formation process, droplet shape, volume and velocity were evaluated. The different voltage and print-head temperature were exerted to obtain the optimum preliminary and suppressing vibration. The mechanism of different phenomenon from each waveform was also discussed.

Keywords: inkjet printer, DoD, waveform, preliminary and suppressing vibration

Procedia PDF Downloads 226
5086 Arithmetic Operations in Deterministic P Systems Based on the Weak Rule Priority

Authors: Chinedu Peter, Dashrath Singh

Abstract:

Membrane computing is a computability model which abstracts its structures and functions from the biological cell. The main ingredient of membrane computing is the notion of a membrane structure, which consists of several cell-like membranes recurrently placed inside a unique skin membrane. The emergence of several variants of membrane computing gives rise to the notion of a P system. The paper presents a variant of P systems for arithmetic operations on non-negative integers based on the weak priorities for rule application. Consequently, we obtain deterministic P systems. Two membranes suffice. There are at most four objects for multiplication and five objects for division throughout the computation processes. The model is simple and has a potential for possible extension to non-negative integers and real numbers in general.

Keywords: P system, binary operation, determinism, weak rule priority

Procedia PDF Downloads 434
5085 Comparison between Two Groups of Pathogenic Bacteria under Different Essential Oil Extract of Ocimum basilicum L.

Authors: A. M. Daneshian Moghaddam, J. Shayegh, J. Dolghari Sharaf

Abstract:

This study was conducted to assessment the antibacterial activities of different part of basil essential oil on the standard gram-negative bacteria include Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi, and gram-positive ones including Bacillus cereus, Staphylococcus aureus, and Listeria monocytogen. The basil essential oil was provided from two part of plant (leaf and herb) at the two different developmental stage. The antibacterial properties of basil essential oil was studied Also agar disk diffusion, minimal inhibition concentration (MIC) and minimum bactericidal concentration (MBC) were detected. The results of agar disk diffusion tests showed the inhibition zones as follow: Listeria monocytogen 17.11-17.42 mm, St. aureus 29.20-30.56 mm, B. cereus 14.73-16.06 mm, E. coli 21.60-23.58 mm, Salmonella typhi 21.63-24.80 mm and for P. aeruginosa the maximum inhibition zones were seen on leaf essential oil. From the herb part of basil almost similar results were obtained: Listeria monocytogen 17.02-17.67 mm, St. aureus 29.60-30.41 mm, B. cereus 10.66-16.11 mm, E. coli 17.48-23.54 mm, Salmonella typhi 21.58-21.64 mm and for P. aeruginosa the maximum inhibition zones were seen. The MICs for gram-positive bacteria were as: B. cereus ranging 36-18 μg/mL, S. aureus 18 μg/mL, Listeria monocytogen 18-36 μg/mL and for gram-negative bacteria of E. coli, Salmonella typhi and P. aeruginosa were 18-9 μg/mL.

Keywords: basil (Ocimum basilicum) essential oil, gram-positive and gram negative bacteria, antibacterial activity, MIC, MBC

Procedia PDF Downloads 429
5084 The Influence of Knowledge Spillovers on High-Impact Firm Growth: A Comparison of Indigenous and Foreign Firms

Authors: Yazid Abdullahi Abubakar, Jay Mitra

Abstract:

This paper is concerned with entrepreneurial high-impact firms, which are firms that generate ‘both’ disproportionate levels of employment and sales growth, and have high levels of innovative activity. It investigates differences in factors influencing high-impact growth between indigenous and foreign firms. The study is based on an analysis of data from United Kingdom (UK) Innovation Scoreboard on 865 firms, which were divided into high-impact firms (those achieving positive growth in both sales and employment) and low-impact firms (negative or no growth in sales or employment); in order to identifying the critical differences in regional, sectorial and size related factors that facilitate knowledge spillovers and high-impact growth between indigenous and foreign firms. The findings suggest that: 1) Firms’ access to regional knowledge spillovers (from businesses and higher education institutions) is more significantly associated with high-impact growth of UK firms in comparison to foreign firms, 2) Because high-tech sectors have greater use of knowledge spillovers (compared to low-tech sectors), high-tech sectors are more associated with high-impact growth, but the relationship is stronger for UK firms compared to foreign firms, 3) Because small firms have greater need for knowledge spillovers (relative to large firms), there is a negative relationship between firm size and high-impact growth, but the negative relationship is greater for UK firms in comparison to foreign firms.

Keywords: entrepreneurship, high-growth, indigenous firms, foreign firms, small firms, large firms

Procedia PDF Downloads 411
5083 Still a Man’s World? Rape Myth Acceptance, Attitudes Towards Women and Traditional Male Gender Role Beliefs in a Sample of British Military Veterans

Authors: Jessica Beck

Abstract:

Despite efforts to address the issue through prevention and education, sexual assault remains an issue within the military. Rape supportive beliefs have been identified as a risk factor linked to sexually aggressive and coercive behaviours. Rape myth acceptance is part of a wider cognitive framework of attitudes which perpetuate negative sociocultural norms about the male role. Notwithstanding the established links between rape myth acceptance, attitudinal variables, and rape proclivity, relatively little research has been conducted with military samples. In this study, 151 British military veterans completed an online survey measuring their rape myth acceptance, attitudes towards women, belief in male role norms and basic personality traits. Consistent with previous research, male veterans had higher levels of rape myth acceptance, more negative attitudes towards women, and subscribed to more traditional notions of masculinity. The types of myths endorsed also varied by gender, with male veterans significantly more likely to blame rape victims or believe women regularly lie about being raped. A relationship between rape myth acceptance, negative attitudes towards women, and adherence to male norms was found, which explained a significant proportion of the variance in rape myth acceptance. Implications for sexual assault prevention programmes are discussed.

Keywords: rape myths, rape myth acceptance, military sexual assault, sexual assault beliefs

Procedia PDF Downloads 72
5082 Assessment of Spatial and Temporal Variations of Some Biological Water Quality Parameters in Mat River, Albania

Authors: Etleva Hamzaraj, Eva Kica, Anila Paparisto, Pranvera Lazo

Abstract:

Worldwide demographic developments of recent decades have been associated with negative environmental consequences. For this reason, there is a growing interest in assessing the state of natural ecosystems or assessing human impact on them. In this respect, this study aims to evaluate the change in water quality of the Mat River for a period of about ten years to highlight human impact. In one year, period of study, several biological and environmental parameters are determined to evaluate river water quality, and the data collected are compared with those of a similar study in 2007. Samples are collected every month in five stations evenly distributed along the river. Total coliform bacteria, the number of heterotrophic bacteria in water, and benthic macroinvertebrates are used as biological parameters of water quality. The most probable number index is used for evaluation of total coliform bacteria in water, while the number of heterotrophic bacteria is determined by counting colonies on plates with Plate Count Agar, cultivated with 0.1 ml sample after series dilutions. Benthic macroinvertebrates are analyzed by the number of individuals per taxa, the value of biotic index, EPT Richness Index value and tolerance value. Environmental parameters like pH, temperature, and electrical conductivity are measured onsite. As expected, the bacterial load was higher near urban areas, and the pollution increased with the course of the river. The maximum concentration of fecal coliforms was 1100 MPN/100 ml in summer and near the most urbanized area of the river. The data collected during this study show that after about ten years, there is a change in water quality of Mat River. According to a similar study carried out in 2007, the water of Mat River was of ‘excellent’ quality. But, according to this study, the water was classified as of ‘excellent’ quality only in one sampling site, near river source, while in all other stations was of ‘good’ quality. This result is based on biological and environmental parameters measured. The human impact on the quality of water of Mat River is more than evident.

Keywords: water quality, coliform bacteria, MPN index, benthic macroinvertebrates, biotic index

Procedia PDF Downloads 96
5081 Geomechanical Technologies for Assessing Three-Dimensional Stability of Underground Excavations Utilizing Remote-Sensing, Finite Element Analysis, and Scientific Visualization

Authors: Kwang Chun, John Kemeny

Abstract:

Light detection and ranging (LiDAR) has been a prevalent remote-sensing technology applied in the geological fields due to its high precision and ease of use. One of the major applications is to use the detailed geometrical information of underground structures as a basis for the generation of a three-dimensional numerical model that can be used in a geotechnical stability analysis such as FEM or DEM. To date, however, straightforward techniques in reconstructing the numerical model from the scanned data of the underground structures have not been well established or tested. In this paper, we propose a comprehensive approach integrating all the various processes, from LiDAR scanning to finite element numerical analysis. The study focuses on converting LiDAR 3D point clouds of geologic structures containing complex surface geometries into a finite element model. This methodology has been applied to Kartchner Caverns in Arizona, where detailed underground and surface point clouds can be used for the analysis of underground stability. Numerical simulations were performed using the finite element code Abaqus and presented by 3D computing visualization solution, ParaView. The results are useful in studying the stability of all types of underground excavations including underground mining and tunneling.

Keywords: finite element analysis, LiDAR, remote-sensing, scientific visualization, underground stability

Procedia PDF Downloads 150
5080 A Study of Mandarin Ba Constructions from the Perspective of Event Structure

Authors: Changyin Zhou

Abstract:

Ba constructions are a special type of constructions in Chinese. Their syntactic behaviors are closely related to their event structural properties. The existing study which treats the semantic function of Ba as causative meets difficulty in treating the discrepancy between Ba constructions and their corresponding constructions without Ba in expressing causativity. This paper holds that Ba in Ba constructions is a functional category expressing affectedness. The affectedness expressed by Ba can be positive or negative. The functional category Ba expressing negative affectedness has the semantic property of being 'expected'. The precondition of Ba construction is the boundedness of the event concerned. This paper, holding the parallelism between motion events and change-of-state events, proposes a syntactic model based on the notions of boundedness and affectedness, discusses the transformations between Ba constructions and the related resultative constructions, and derivates the various Ba constructions concerned.

Keywords: affectedness, Ba constructions, boundedness, event structure, resultative constructions

Procedia PDF Downloads 413
5079 The Relationship between Coping Styles and Internet Addiction among High School Students

Authors: Adil Kaval, Digdem Muge Siyez

Abstract:

With the negative effects of internet use in a person's life, the use of the Internet has become an issue. This subject was mostly considered as internet addiction, and it was investigated. In literature, it is noteworthy that some theoretical models have been proposed to explain the reasons for internet addiction. In addition to these theoretical models, it may be thought that the coping style for stressing events can be a predictor of internet addiction. It was aimed to test with logistic regression the effect of high school students' coping styles on internet addiction levels. Sample of the study consisted of 770 Turkish adolescents (471 girls, 299 boys) selected from high schools in the 2017-2018 academic year in İzmir province. Internet Addiction Test, Coping Scale for Child and Adolescents and a demographic information form were used in this study. The results of the logistic regression analysis indicated that the model of coping styles predicted internet addiction provides a statistically significant prediction of internet addiction. Gender does not predict whether or not to be addicted to the internet. The active coping style is not effective on internet addiction levels, while the avoiding and negative coping style are effective on internet addiction levels. With this model, % 79.1 of internet addiction in high school is estimated. The Negelkerke pseudo R2 indicated that the model accounted for %35 of the total variance. The results of this study on Turkish adolescents are similar to the results of other studies in the literature. It can be argued that avoiding and negative coping styles are important risk factors in the development of internet addiction.

Keywords: adolescents, coping, internet addiction, regression analysis

Procedia PDF Downloads 161
5078 Anti-Fibrillation Propensity of a Flavonoid Baicalein against the Fibrils of Hen Egg White Lysozyme: Potential Therapeutics for Lysozyme Amyloidosis

Authors: Naveed Ahmad Fazili

Abstract:

More than 20 human diseases involve the fibrillation of a specific protein/peptide which forms pathological deposits at various sites. Hereditary lysozyme amyloidosis is a systemic disorder which mostly affects liver, spleen and kidney. This conformational disorder is featured by lysozyme fibril formation. In vivo lysozyme fibrillation was simulated under in vitro conditions using a strong denaturant GdHCl at 3M concentration. Sharp decline in the ANS fluorescence intensity compared to the partially unfolded states, almost 20 fold increase in ThT fluorescence intensity, increase in absorbance at 450 nm suggesting turbidity, negative ellipticity peak in the far-UVCD at 217 nm, red shift of 50 nm compared to the native state in congo red assay and appearance of a network of long rope like fibrils in TEM analysis suggested HEWL fibrillation. Anti-fibrillation potency of baicalein against the preformed fibrils of HEWL was investigated following ThT assay in which there was a dose dependent decrease in ThT fluorescence intensity compared to the fibrillar state of HEWL with the maximum effect observed at 150 μM baicalein concentration, loss of negative ellipticity peak in the far-UVCD region, dip in the Rayleigh scattering intensity and absorbance at 350 nm and 450 nm respectively together with a reduction in the density of fibrillar structure in TEM imaging. Thus, it could be suggested that baicalein could prove to be a positive therapeutics for hereditary human lysozyme amyloidosis.

Keywords: amyloid fibrils, baicalein, congo red, negative ellipticity, therapeutics

Procedia PDF Downloads 281
5077 Carbon Nanotube-Based Catalyst Modification to Improve Proton Exchange Membrane Fuel Cell Interlayer Interactions

Authors: Ling Ai, Ziyu Zhao, Zeyu Zhou, Xiaochen Yang, Heng Zhai, Stuart Holmes

Abstract:

Optimizing the catalyst layer structure is crucial for enhancing the performance of proton exchange membrane fuel cells (PEMFCs) with low Platinum (Pt) loading. Current works focused on the utilization, durability, and site activity of Pt particles on support, and performance enhancement has been achieved by loading Pt onto porous support with different morphology, such as graphene, carbon fiber, and carbon black. Some schemes have also incorporated cost considerations to achieve lower Pt loading. However, the design of the catalyst layer (CL) structure in the membrane electrode assembly (MEA) must consider the interactions between the layers. Addressing the crucial aspects of water management, low contact resistance, and the establishment of effective three-phase boundary for MEA, multi-walled carbon nanotubes (MWCNTs) are promising CL support due to their intrinsically high hydrophobicity, high axial electrical conductivity, and potential for ordered alignment. However, the drawbacks of MWCNTs, such as strong agglomeration, wall surface chemical inertness, and unopened ends, are unfavorable for Pt nanoparticle loading, which is detrimental to MEA processing and leads to inhomogeneous CL surfaces. This further deteriorates the utilization of Pt and increases the contact resistance. Robust chemical oxidation or nitrogen doping can introduce polar functional groups onto the surface of MWCNTs, facilitating the creation of open tube ends and inducing defects in tube walls. This improves dispersibility and load capacity but reduces length and conductivity. Consequently, a trade-off exists between maintaining the intrinsic properties and the degree of functionalization of MWCNTs. In this work, MWCNTs were modified based on the operational requirements of the MEA from the viewpoint of interlayer interactions, including the search for the optimal degree of oxidation, N-doping, and micro-arrangement. MWCNT were functionalized by oxidizing, N-doping, as well as micro-alignment to achieve lower contact resistance between CL and proton exchange membrane (PEM), better hydrophobicity, and enhanced performance. Furthermore, this work expects to construct a more continuously distributed three-phase boundary by aligning MWCNT to form a locally ordered structure, which is essential for the efficient utilization of Pt active sites. Different from other chemical oxidation schemes that used HNO3:H2SO4 (1:3) mixed acid to strongly oxidize MWCNT, this scheme adopted pure HNO3 to partially oxidize MWCNT at a lower reflux temperature (80 ℃) and a shorter treatment time (0 to 10 h) to preserve the morphology and intrinsic conductivity of MWCNT. The maximum power density of 979.81 mw cm-2 was achieved by Pt loading on 6h MWCNT oxidation time (Pt-MWCNT6h). This represented a 59.53% improvement over the commercial Pt/C catalyst of 614.17 (mw cm-2). In addition, due to the stronger electrical conductivity, the charge transfer resistance of Pt-MWCNT6h in the electrochemical impedance spectroscopy (EIS) test was 0.09 Ohm cm-2, which was 48.86% lower than that of Pt/C. This study will discuss the developed catalysts and their efficacy in a working fuel cell system. This research will validate the impact of low-functionalization modification of MWCNTs on the performance of PEMFC, which simplifies the preparation challenges of CL and contributing for the widespread commercial application of PEMFCs on a larger scale.

Keywords: carbon nanotubes, electrocatalyst, membrane electrode assembly, proton exchange membrane fuel cell

Procedia PDF Downloads 46
5076 Characterization of 3D Printed Re-Entrant Chiral Auxetic Geometries

Authors: Tatheer Zahra

Abstract:

Auxetic materials have counteractive properties due to re-entrant geometry that enables them to possess Negative Poisson’s Ratio (NPR). These materials have better energy absorbing and shock resistance capabilities as compared to conventional positive Poisson’s ratio materials. The re-entrant geometry can be created through 3D printing for convenient application of these materials. This paper investigates the mechanical properties of 3D printed chiral auxetic geometries of various sizes. Small scale samples were printed using an ordinary 3D printer and were tested under compression and tension to ascertain their strength and deformation characteristics. A maximum NPR of -9 was obtained under compression and tension. The re-entrant chiral cell size has been shown to affect the mechanical properties of the re-entrant chiral auxetics.

Keywords: auxetic materials, 3D printing, Negative Poisson’s Ratio, re-entrant chiral auxetics

Procedia PDF Downloads 107
5075 Dielectric Study of Ethanol Water Mixtures at Different Concentration Using Hollow Channel Cantilever Platform

Authors: Maryam S. Ghoraishi, John E. Hawk, Thomas Thundat

Abstract:

Understanding liquid properties in small scale has become important in recent decades as immerging new microelectromechanical systems (MEMS) devices have been widely used for micro pumps, drug delivery, and many other laboratory-on-microchips analysis. Often in microfluidic devices, fluids are transported electrokinetically. Therefore, extensive knowledge of fluid flow, heat transport, electrokinetics and electrochemistry are key to successful lab on a chip design. Among different microfluidic devices, recently developed hollow channel cantilever offers an ideal platform to study different fluid properties simultaneously without drastic decrease in quality factor which normally occurs when traditional cantilevers operate in the liquid phase. Using hollow channel cantilever, we monitor changes in density and viscosity of liquid while simultaneously investigating dielectric properties of alcohol water binary mixtures. Considerable research has been conducted on alcohol-water mixtures since such a mixture is a typical prototype for biomolecules, Micelle formation, and structural stability of proteins (to name a few). Here we show that hollow channel cantilever can be employed to investigate dielectric properties of ethanol/water mixtures in different concentrations. We study dynamic amplitude shifts of hollow channel cantilever oscillation at different concentrations of ethanol/water for different voltages. Our results show how interactions between solute and solvent, and possibly cluster formation, could change dielectric properties and dipole reorientation of the mixture, as well as the resulting force on the hollow cantilever. For comparison, we also examine higher conductivity ionic mixtures of sodium sulfate solution under the same conditions as low conductivity ethanol/water mixtures. We will show the results from systematic investigation of solvent effects on dielectric properties of the binary mixture. We will also address the question of resolution limits in dielectric study of analyte molecules imposed by solvent concentrations.

Keywords: dielectric constant, cantilever sensors, ethanol water mixtures, low frequency

Procedia PDF Downloads 182
5074 The Interconnection between Curriculum Development and ICT

Authors: Hanane Sarnou, Sabri Koç

Abstract:

In this paper, the interconnection between curriculum development for basic education and the use of information and communication technologies (ICTs) in the classroom referring to the Licence, Master's and Doctorate (LMD) benefits under such link will be presented and analysed. This study seeks to achieve to what extent LMD, competency-based approach (CBA) and ICTs use are interrelated. Likewise, the data collected from the responses of our teachers and learners who are concerned with LMD impact on their learning and teaching through interviews will be discussed, analysed, and classified. This paper is divided into two sections. The first section is about the curriculum development for basic education and its relation with higher education under the LMD and its link with ICTs in the university while the second section is about the classification of learners’ and teachers’ positive/negative responses concerning their positive or negative attitudes towards the ICT integration. The focus will be on the positive aspects of students’ expectations, opinions and assumptions regarding the integration of ICTs into the classroom under LMD and CBA.

Keywords: LMD system, CBA approach, curriculum development, ICT

Procedia PDF Downloads 398
5073 Jordanian Health Care Providers' Attitudes toward Overweigth and Obese Women during Childbirth

Authors: Salwa Obeisat

Abstract:

Obesity had become a global issue and a major public health concern, because of its impact on the public health. Obstetric and midwifery evidences reported that maternal obesity an important issue, because of its associated complications like obstructed labors, infections, and hemorrhage. People who are obese are often stigmatized and blamed for their weight. Health care providers are not immune to obesity-related prejudice, and the literature features several examples of their negative attitudes towards obese patients. In Jordan, few studies were conducted to investigate obesity prevalence rate and its associated factors. The purposes of this study were to assess the health care providers' attitudes toward overweight and obese women during the childbirth in the North of Jordan and to investigate the relationships between health care providers' socio-demographic characteristics and their attitudes. A descriptive, cross-sectional design was utilized. A convenient sample was consisted of 95 midwives, 30 nurses and 62 obstetricians, who were working in the labor rooms. A self-administered questionnaire consisted of three sections: demographical data, Arabic version of Fat Phobia Scale (FPS), and Arabic version of Nurses' Attitudes toward Obesity and Obese Patients Scale (NATOOPS). Results: The study findings revealed that the majority of Jordanian health care providers held negative attitudes toward overweight and obese women during childbirth. Midwives held less negative attitudes than did obstetricians and nurses. The majority of participants were perceived the overweight and obese pregnant women during childbirth as overate people, shapeless, slow and unattractive. Age, specialty, education and years of experience were found to be associated with health care providers’ attitudes. The Conclusion: Health care providers negative attitudes toward overweight and obese pregnant women are a cause for concern. Therefore, maternal obesity was needed to be more adequately addressed in basic education courses, and in the continuing professional education classes of practicing health care providers.

Keywords: attitudes, obesity, prevalence rate, nurses, midwives, obstetrician, childbirth

Procedia PDF Downloads 313
5072 Forecast Dispersion, Investor Sentiment and the Cross Section of Stock Returns

Authors: Guoyu Lin

Abstract:

This paper explores the role investor sentiment plays in the relationship between analyst forecast dispersion and stock returns. With short sale constraints, stock prices are determined by the optimistic investors. During the high sentiment periods when investors suffer more from psychological bias, there are more optimistic investors. This is the first paper to document that following the high sentiment periods, stocks with the most analyst forecast dispersion are overpriced, earning significantly negative returns, while those with the least analyst forecast dispersion are not overpriced as the degree of belief dispersion is low. However, following the low sentiment periods, both are not overpriced. A portfolio which longs the least dispersed stocks and shorts the most dispersed stocks yields significantly positive returns only following the high sentiment periods. My findings can potentially reconcile the puzzling risk effect and mispricing effect in the literature. The risk (mispricing) effect suggests a positive (negative) relation between analyst forecast dispersion and future stock returns. Presumably, the magnitude of the mispricing effect depends on the proportion of irrational investors and their bias, which is positively related to investor sentiment. During the high sentiment period, the mispricing effect takes over and the overall effect is negative. During the low sentiment period, the percentage of irrational investors is mediate, and the mispricing effect and the risk effect counter each other, leading to insignificant relation.

Keywords: analyst forecast dispersion, short-sale constraints, investor sentiment, stock returns

Procedia PDF Downloads 125
5071 Effects of Coastal Structure Construction on Ecosystem

Authors: Afshin Jahangirzadeh, Shatirah Akib, Keyvan Kimiaei, Hossein Basser

Abstract:

Coastal defense structures were built to protect part of shore from beach erosion and flooding by sea water. Effects of coastal defense structures can be negative or positive. Some of the effects are beneficial in socioeconomic aspect, but environment matters should be given more concerns because it can bring bad consequences to the earth landscape and make the ecosystem be unbalanced. This study concerns on the negative impacts as they are dominant. Coastal structures can extremely impact the shoreline configuration. Artificial structures can influence sediment transport, split the coastal space, etc. This can result in habitats loss and lead to noise and visual disturbance of birds. There are two types of coastal defense structures, hard coastal structure and soft coastal structure. Both coastal structures have their own impacts. The impacts are induced during the construction, maintaining, and operation of the structures.

Keywords: ecosystem, environmental impact, hard coastal structures, soft coastal structures

Procedia PDF Downloads 466
5070 Properties of Hot-Pressed Alumina-Graphene Composites

Authors: P. Rutkowski, G. Górny, L. Stobierski, D. Zientara, W. Piekarczyk, K. Tran

Abstract:

The polycrystalline dense alumina shows thermal conductivity about 30 W/mK and very high electrical resistivity. These last two properties can be modified by introducing commercial relatively cheap graphene nanoparticles which, as two-dimensional flakes show very high thermal and electrical properties. The aim of this work is to show that it is possible to manufacture the anisotropic alumina-graphene material with directed multilayer graphene particles. Such materials can show the anisotropic properties mentioned before.

Keywords: alumina, composite, hot-pressed, graphene, properties

Procedia PDF Downloads 248