Search results for: gradual change detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10405

Search results for: gradual change detection

9805 Periodic Change in the Earth’s Rotation Velocity

Authors: Sung Duk Kim, Kwan U. Kim, Jin Sim, Ryong Jin Jang

Abstract:

The phenomenon of seasonal variations in the Earth’s rotation velocity was discovered in the 1930s when a crystal clock was developed and analyzed in a quantitative way for the first time between 1955 and 1968 when observation data of the seasonal variations was analyzed by an atomic clock. According to the previous investigation, atmospheric circulation is supposed to be a factor affecting the seasonal variations in the Earth’s rotation velocity in many cases, but the problem has not been solved yet. In order to solve the problem, it is necessary to apply dynamics to consider the Earth’s spatial motion, rotation, and change of shape of the Earth (movement of materials in and out of the Earth and change of the Earth’s figure) at the same time and in interrelation to the accuracy of post-Newtonian approximation regarding the Earth body as a system of mass points because the stability of the Earth’s rotation angular velocity is in the range of 10⁻⁸~10⁻⁹. For it, the equation was derived, which can consider the 3 kinds of motion above mentioned at the same time by taking the effect of the resultant external force on the Earth’s rotation into account in a relativistic way to the accuracy of post-Newtonian approximation. Therefore, the equation has been solved to obtain the theoretical values of periodic change in the Earth’s rotation velocity, and they have been compared with the astronomical observation data so to reveal the cause for the periodic change in the Earth’s rotation velocity.

Keywords: Earth rotation, moment function, periodic change, seasonal variation, relativistic change

Procedia PDF Downloads 73
9804 Ubuntu: A Holistic Social Framework for Preserving Ecosystem Amidst the Climate Change Challenges

Authors: Gabriel Sunday Ayayia

Abstract:

The paper argues that Ubuntu, as a philosophy that emphasizes the interconnectedness of all living things and importance of community and mutual support, can be used as a social framework to address the problems of climate change and promote environmental sustainability. The research demonstrate that Ubuntu is an ideological concept that encourages collective action on climate change, with the emphasis on individual and collective commitment to taking concrete action to address the problems of climate change. The paper shows that Ubuntu can be employed as a social tool that would enhance the cultivation of shared identity and promote the sense of shared response responsibility to develop the resilience to cope with climate change. Using qualitative and quantitative methodologies, the study establishes the imperativeness of mutual support and cooperation through the lens of Ubuntu as a human-centered scalable response to the debacle of climate change. It recommends that we can build a society that values the environment and promotes sustainable practices by encouraging community involvement in sustainable initiatives by integrating Ubuntu-based principles to our decision-making processes, collaboration, leadership, human agency and governance.

Keywords: ubuntu, climate change, humanity, collective actions, community-based

Procedia PDF Downloads 186
9803 Comparative Analysis of Dissimilarity Detection between Binary Images Based on Equivalency and Non-Equivalency of Image Inversion

Authors: Adnan A. Y. Mustafa

Abstract:

Image matching is a fundamental problem that arises frequently in many aspects of robot and computer vision. It can become a time-consuming process when matching images to a database consisting of hundreds of images, especially if the images are big. One approach to reducing the time complexity of the matching process is to reduce the search space in a pre-matching stage, by simply removing dissimilar images quickly. The Probabilistic Matching Model for Binary Images (PMMBI) showed that dissimilarity detection between binary images can be accomplished quickly by random pixel mapping and is size invariant. The model is based on the gamma binary similarity distance that recognizes an image and its inverse as containing the same scene and hence considers them to be the same image. However, in many applications, an image and its inverse are not treated as being the same but rather dissimilar. In this paper, we present a comparative analysis of dissimilarity detection between PMMBI based on the gamma binary similarity distance and a modified PMMBI model based on a similarity distance that does distinguish between an image and its inverse as being dissimilar.

Keywords: binary image, dissimilarity detection, probabilistic matching model for binary images, image mapping

Procedia PDF Downloads 151
9802 Behavioral Stages of Change in Calorie Balanced Dietary Intake; Effects of Decisional Balance and Self–Efficacy in Obese and Overweight Women

Authors: Abdmohammad Mousavi, Mohsen Shams, Mehdi Akbartabar Toori, Ali Mousavizadeh, Mohammad Ali Morowatisharifabad

Abstract:

Introduction: The effectiveness of Transtheoretical Model constructs on dietary behavior change has been subject to questions by some studies. The objective of this study was to determine the relationship between self–efficacy and decisional balance as mediator variables and transfer obese and overweight women among the stages of behavior change of calorie balanced dietary intake. Method: In this cross-sectional study, 448 obese and overweight 20-44 years old women were selected from three health centers in Yasuj, a city in south west of Iran. Anthropometric data were measured using standard techniques. Demographic, stages of change, self-efficacy and decisional balance data were collected by questionnaires and analyzed using One–Way ANOVA and Generalized Linear Models tests. Results: Demographic and anthropometric variables were not different significantly in different stages of change related to calorie intake except the pre-high school level of education (P=.047, OR=502, 95% CI= .255 ~ .990). Mean scores of Self-efficacy ( F(4.425)= 27.09, P= .000), decisional balance (F(4.394), P= .004), and pros (F(4.430)=5.33, P=000) were different significantly in five stages of change. However, the cons did not show a significant change in this regard (F(4.400)=1.83, P=.123). Discussion: Women movement through the stages of changes for calorie intake behavior can be predicted by self efficacy, decisional balance and pros.

Keywords: transtheoretical model, stages of change, self efficacy, decisional balance, calorie intake, women

Procedia PDF Downloads 426
9801 Multi-Layer Multi-Feature Background Subtraction Using Codebook Model Framework

Authors: Yun-Tao Zhang, Jong-Yeop Bae, Whoi-Yul Kim

Abstract:

Background modeling and subtraction in video analysis has been widely proved to be an effective method for moving objects detection in many computer vision applications. Over the past years, a large number of approaches have been developed to tackle different types of challenges in this field. However, the dynamic background and illumination variations are two of the most frequently occurring issues in the practical situation. This paper presents a new two-layer model based on codebook algorithm incorporated with local binary pattern (LBP) texture measure, targeted for handling dynamic background and illumination variation problems. More specifically, the first layer is designed by block-based codebook combining with LBP histogram and mean values of RGB color channels. Because of the invariance of the LBP features with respect to monotonic gray-scale changes, this layer can produce block-wise detection results with considerable tolerance of illumination variations. The pixel-based codebook is employed to reinforce the precision from the outputs of the first layer which is to eliminate false positives further. As a result, the proposed approach can greatly promote the accuracy under the circumstances of dynamic background and illumination changes. Experimental results on several popular background subtraction datasets demonstrate a very competitive performance compared to previous models.

Keywords: background subtraction, codebook model, local binary pattern, dynamic background, illumination change

Procedia PDF Downloads 214
9800 An Android Application for ECG Monitoring and Evaluation Using Pan-Tompkins Algorithm

Authors: Cebrail Çiflikli, Emre Öner Tartan

Abstract:

Parallel to the fast worldwide increase of elderly population and spreading unhealthy life habits, there is a significant rise in the number of patients and health problems. The supervision of people who have health problems and oversight in detection of people who have potential risks, bring a considerable cost to health system and increase workload of physician. To provide an efficient solution to this problem, in the recent years mobile applications have shown their potential for wide usage in health monitoring. In this paper we present an Android mobile application that records and evaluates ECG signal using Pan-Tompkins algorithm for QRS detection. The application model includes an alarm mechanism that is proposed to be used for sending message including abnormality information and location information to health supervisor.

Keywords: Android mobile application, ECG monitoring, QRS detection, Pan-Tompkins Algorithm

Procedia PDF Downloads 231
9799 Climate Change Effects on Agriculture

Authors: Abdellatif Chebboub

Abstract:

Agricultural production is sensitive to weather and thus directly affected by climate change. Plausible estimates of these climate change impacts require combined use of climate, crop, and economic models. Results from previous studies vary substantially due to differences in models, scenarios, and data. This paper is part of a collective effort to systematically integrate these three types of models. We focus on the economic component of the assessment, investigating how nine global economic models of agriculture represent endogenous responses to seven standardized climate change scenarios produced by two climate and five crop models. These responses include adjustments in yields, area, consumption, and international trade. We apply biophysical shocks derived from the Intergovernmental Panel on Climate Change’s representative concentration pathway with end-of-century radiative forcing of 8.5 W/m2. The mean biophysical yield effect with no incremental CO2 fertilization is a 17% reduction globally by 2050 relative to a scenario with unchanging climate. Endogenous economic responses reduce yield loss to 11%, increase area of major crops by 11%, and reduce consumption by 3%. Agricultural production, cropland area, trade, and prices show the greatest degree of variability in response to climate change, and consumption the lowest. The sources of these differences include model structure and specification; in particular, model assumptions about ease of land use conversion, intensification, and trade. This study identifies where models disagree on the relative responses to climate shocks and highlights research activities needed to improve the representation of agricultural adaptation responses to climate change.

Keywords: climate change, agriculture, weather change, danger of climate change

Procedia PDF Downloads 314
9798 Distorted Document Images Dataset for Text Detection and Recognition

Authors: Ilia Zharikov, Philipp Nikitin, Ilia Vasiliev, Vladimir Dokholyan

Abstract:

With the increasing popularity of document analysis and recognition systems, text detection (TD) and optical character recognition (OCR) in document images become challenging tasks. However, according to our best knowledge, no publicly available datasets for these particular problems exist. In this paper, we introduce a Distorted Document Images dataset (DDI-100) and provide a detailed analysis of the DDI-100 in its current state. To create the dataset we collected 7000 unique document pages, and extend it by applying different types of distortions and geometric transformations. In total, DDI-100 contains more than 100,000 document images together with binary text masks, text and character locations in terms of bounding boxes. We also present an analysis of several state-of-the-art TD and OCR approaches on the presented dataset. Lastly, we demonstrate the usefulness of DDI-100 to improve accuracy and stability of the considered TD and OCR models.

Keywords: document analysis, open dataset, optical character recognition, text detection

Procedia PDF Downloads 170
9797 A Diagnostic Accuracy Study: Comparison of Two Different Molecular-Based Tests (Genotype HelicoDR and Seeplex Clar-H. pylori ACE Detection), in the Diagnosis of Helicobacter pylori Infections

Authors: Recep Kesli, Huseyin Bilgin, Yasar Unlu, Gokhan Gungor

Abstract:

Aim: The aim of this study was to compare diagnostic values of two different molecular-based tests (GenoType® HelicoDR ve Seeplex® H. pylori-ClaR- ACE Detection) in detection presence of the H. pylori from gastric biopsy specimens. In addition to this also was aimed to determine resistance ratios of H. pylori strains against to clarytromycine and quinolone isolated from gastric biopsy material cultures by using both the genotypic (GenoType® HelicoDR, Seeplex ® H. pylori -ClaR- ACE Detection) and phenotypic (gradient strip, E-test) methods. Material and methods: A total of 266 patients who admitted to Konya Education and Research Hospital Department of Gastroenterology with dyspeptic complaints, between January 2011-June 2013, were included in the study. Microbiological and histopathological examinations of biopsy specimens taken from antrum and corpus regions were performed. The presence of H. pylori in all the biopsy samples was investigated by five differnt dignostic methods together: culture (C) (Portagerm pylori-PORT PYL, Pylori agar-PYL, GENbox microaer, bioMerieux, France), histology (H) (Giemsa, Hematoxylin and Eosin staining), rapid urease test (RUT) (CLOtest, Cimberly-Clark, USA), and two different molecular tests; GenoType® HelicoDR, Hain, Germany, based on DNA strip assay, and Seeplex ® H. pylori -ClaR- ACE Detection, Seegene, South Korea, based on multiplex PCR. Antimicrobial resistance of H. pylori isolates against clarithromycin and levofloxacin was determined by GenoType® HelicoDR, Seeplex ® H. pylori -ClaR- ACE Detection, and gradient strip (E-test, bioMerieux, France) methods. Culture positivity alone or positivities of both histology and RUT together was accepted as the gold standard for H. pylori positivity. Sensitivity and specificity rates of two molecular methods used in the study were calculated by taking the two gold standards previously mentioned. Results: A total of 266 patients between 16-83 years old who 144 (54.1 %) were female, 122 (45.9 %) were male were included in the study. 144 patients were found as culture positive, and 157 were H and RUT were positive together. 179 patients were found as positive with GenoType® HelicoDR and Seeplex ® H. pylori -ClaR- ACE Detection together. Sensitivity and specificity rates of studied five different methods were found as follows: C were 80.9 % and 84.4 %, H + RUT were 88.2 % and 75.4 %, GenoType® HelicoDR were 100 % and 71.3 %, and Seeplex ® H. pylori -ClaR- ACE Detection were, 100 % and 71.3 %. A strong correlation was found between C and H+RUT, C and GenoType® HelicoDR, and C and Seeplex ® H. pylori -ClaR- ACE Detection (r:0.644 and p:0.000, r:0.757 and p:0.000, r:0.757 and p:0.000, respectively). Of all the isolated 144 H. pylori strains 24 (16.6 %) were detected as resistant to claritromycine, and 18 (12.5 %) were levofloxacin. Genotypic claritromycine resistance was detected only in 15 cases with GenoType® HelicoDR, and 6 cases with Seeplex ® H. pylori -ClaR- ACE Detection. Conclusion: In our study, it was concluded that; GenoType® HelicoDR and Seeplex ® H. pylori -ClaR- ACE Detection was found as the most sensitive diagnostic methods when comparing all the investigated other ones (C, H, and RUT).

Keywords: Helicobacter pylori, GenoType® HelicoDR, Seeplex ® H. pylori -ClaR- ACE Detection, antimicrobial resistance

Procedia PDF Downloads 167
9796 An Experimental Study for Assessing Email Classification Attributes Using Feature Selection Methods

Authors: Issa Qabaja, Fadi Thabtah

Abstract:

Email phishing classification is one of the vital problems in the online security research domain that have attracted several scholars due to its impact on the users payments performed daily online. One aspect to reach a good performance by the detection algorithms in the email phishing problem is to identify the minimal set of features that significantly have an impact on raising the phishing detection rate. This paper investigate three known feature selection methods named Information Gain (IG), Chi-square and Correlation Features Set (CFS) on the email phishing problem to separate high influential features from low influential ones in phishing detection. We measure the degree of influentially by applying four data mining algorithms on a large set of features. We compare the accuracy of these algorithms on the complete features set before feature selection has been applied and after feature selection has been applied. After conducting experiments, the results show 12 common significant features have been chosen among the considered features by the feature selection methods. Further, the average detection accuracy derived by the data mining algorithms on the reduced 12-features set was very slight affected when compared with the one derived from the 47-features set.

Keywords: data mining, email classification, phishing, online security

Procedia PDF Downloads 430
9795 Green-synthesized of Selenium Nanoparticles Using Garlic Extract and Their Application for Rapid Detection of Salicylic Acid in Milk

Authors: Kashif Jabbar

Abstract:

Milk adulteration is a global concern, and the current study was plan to synthesize Selenium nanoparticles by green method using plant extract of garlic, Allium Sativum, and to characterize Selenium nanoparticles through different analytical techniques and to apply Selenium nanoparticles as fast and easy technique for the detection of salicylic acid in milk. The highly selective, sensitive, and quick interference green synthesis-based sensing of possible milk adulterants i.e., salicylic acid, has been reported here. Salicylic acid interacts with nanoparticles through strong bonding interactions, hence resulting in an interruption within the formation of selenium nanoparticles which is confirmed by UV-VIS spectroscopy, scanning electron microscopy, and x-ray diffraction. This interaction in the synthesis of nanoparticles resulted in transmittance wavelength that decrease with the increasing amount of salicylic acid, showing strong binding of selenium nanoparticles with adulterant, thereby permitting in-situ fast detection of salicylic acid from milk having a limit of detection at 10-3 mol and linear coefficient correlation of 0.9907. Conclusively, it can be draw that colloidal selenium could be synthesize successfully by garlic extract in order to serve as a probe for fast and cheap testing of milk adulteration.

Keywords: adulteration, green synthesis, selenium nanoparticles, salicylic acid, aggregation

Procedia PDF Downloads 80
9794 Surface-Enhanced Raman Spectroscopy-Based Detection of SARS-CoV-2 Through In Situ One-pot Electrochemical Synthesis of 3D Au-Lysate Nanocomposite Structures on Plasmonic Au Electrodes

Authors: Ansah Iris Baffour, Dong-Ho Kim, Sung-Gyu Park

Abstract:

The ongoing COVID-19 pandemic, caused by the SARS-CoV-2 virus and is gradually shifting to an endemic phase which implies the outbreak is far from over and will be difficult to eradicate. Global cooperation has led to unified precautions that aim to suppress epidemiological spread (e.g., through travel restrictions) and reach herd immunity (through vaccinations); however, the primary strategy to restrain the spread of the virus in mass populations relies on screening protocols that enable rapid on-site diagnosis of infections. Herein, we employed surface enhanced Raman spectroscopy (SERS) for the rapid detection of SARS-CoV-2 lysate on an Au-modified Au nanodimple(AuND)electrode. Through in situone-pot Au electrodeposition on the AuND electrode, Au-lysate nanocomposites were synthesized, generating3D internal hotspots for large SERS signal enhancements within 30 s of the deposition. The capture of lysate into newly generated plasmonic nanogaps within the nanocomposite structures enhanced metal-spike protein contact in 3D spaces and served as hotspots for sensitive detection. The limit of detection of SARS-CoV-2 lysate was 5 x 10-2 PFU/mL. Interestingly, ultrasensitive detection of the lysates of influenza A/H1N1 and respiratory syncytial virus (RSV) was possible, but the method showed ultimate selectivity for SARS-CoV-2 in lysate solution mixtures. We investigated the practical application of the approach for rapid on-site diagnosis by detecting SARS-CoV-2 lysate spiked in normal human saliva at ultralow concentrations. The results presented demonstrate the reliability and sensitivity of the assay for rapid diagnosis of COVID-19.

Keywords: label-free detection, nanocomposites, SARS-CoV-2, surface-enhanced raman spectroscopy

Procedia PDF Downloads 121
9793 Climate Change and Land Grabbing

Authors: Akachi Odoemene

Abstract:

Climate change and land grabbing are tightly interconnected in ways that are both diverse and complex. They have impacted each other in significant ways too. Both phenomena are not only a political reality, but have diverse dire implications, especially for food and livelihood security of vulnerable populations in developing economies. The critical nexus and interactions of climate change and land grabbing remain one of the challenges of sustainable development in modern times. The nuanced understanding of the nexus, importance and implications of climate change and land grabbing are the primary focus of this chapter. It begins with conceptual clarifications, particularly arguing that the absence of some important principles of engagement underline and define a land grab. It also analyses and notes a good number of contemporary land deals as 'one-sided', in which wealthy entities connive with local elites to exploit and disposes rural poor populations. The paper not only examines both global and local factors that drive land grabbing and, in some cases, their connections with the incidence of climate change, but also explores their crucial links with such sector as agriculture. It is argued and exhibited in the paper why certain societies are susceptible to the incidence of climate change and land grabbing, while the overall consequences of these phenomena on the affected societies are further interrogated. The paper concludes that the lack of political will by global political leaders to effectively combat and resolve critical issues associated with both climate change and land grabbing remains a daunting challenge. It notes that these phenomena – climate change and land grabbing – if not abated, will certainly become another set of global tragic episodes to be regretted in the future.

Keywords: climate change, land grabbing, global governance, developing economies

Procedia PDF Downloads 291
9792 Spatial Variability of Brahmaputra River Flow Characteristics

Authors: Hemant Kumar

Abstract:

Brahmaputra River is known according to the Hindu mythology the son of the Lord Brahma. According to this name, the river Brahmaputra creates mass destruction during the monsoon season in Assam, India. It is a state situated in North-East part of India. This is one of the essential states out of the seven countries of eastern India, where almost all entire Brahmaputra flow carried out. The other states carry their tributaries. In the present case study, the spatial analysis performed in this specific case the number of MODIS data are acquired. In the method of detecting the change, the spray content was found during heavy rainfall and in the flooded monsoon season. By this method, particularly the analysis over the Brahmaputra outflow determines the flooded season. The charged particle-associated in aerosol content genuinely verifies the heavy water content below the ground surface, which is validated by trend analysis through rainfall spectrum data. This is confirmed by in-situ sampled view data from a different position of Brahmaputra River. Further, a Hyperion Hyperspectral 30 m resolution data were used to scan the sediment deposits, which is also confirmed by in-situ sampled view data from a different position.

Keywords: aerosol, change detection, spatial analysis, trend analysis

Procedia PDF Downloads 146
9791 Malware Detection in Mobile Devices by Analyzing Sequences of System Calls

Authors: Jorge Maestre Vidal, Ana Lucila Sandoval Orozco, Luis Javier García Villalba

Abstract:

With the increase in popularity of mobile devices, new and varied forms of malware have emerged. Consequently, the organizations for cyberdefense have echoed the need to deploy more effective defensive schemes adapted to the challenges posed by these recent monitoring environments. In order to contribute to their development, this paper presents a malware detection strategy for mobile devices based on sequence alignment algorithms. Unlike the previous proposals, only the system calls performed during the startup of applications are studied. In this way, it is possible to efficiently study in depth, the sequences of system calls executed by the applications just downloaded from app stores, and initialize them in a secure and isolated environment. As demonstrated in the performed experimentation, most of the analyzed malicious activities were successfully identified in their boot processes.

Keywords: android, information security, intrusion detection systems, malware, mobile devices

Procedia PDF Downloads 298
9790 Remote Assessment and Change Detection of GreenLAI of Cotton Crop Using Different Vegetation Indices

Authors: Ganesh B. Shinde, Vijaya B. Musande

Abstract:

Cotton crop identification based on the timely information has significant advantage to the different implications of food, economic and environment. Due to the significant advantages, the accurate detection of cotton crop regions using supervised learning procedure is challenging problem in remote sensing. Here, classifiers on the direct image are played a major role but the results are not much satisfactorily. In order to further improve the effectiveness, variety of vegetation indices are proposed in the literature. But, recently, the major challenge is to find the better vegetation indices for the cotton crop identification through the proposed methodology. Accordingly, fuzzy c-means clustering is combined with neural network algorithm, trained by Levenberg-Marquardt for cotton crop classification. To experiment the proposed method, five LISS-III satellite images was taken and the experimentation was done with six vegetation indices such as Simple Ratio, Normalized Difference Vegetation Index, Enhanced Vegetation Index, Green Atmospherically Resistant Vegetation Index, Wide-Dynamic Range Vegetation Index, Green Chlorophyll Index. Along with these indices, Green Leaf Area Index is also considered for investigation. From the research outcome, Green Atmospherically Resistant Vegetation Index outperformed with all other indices by reaching the average accuracy value of 95.21%.

Keywords: Fuzzy C-Means clustering (FCM), neural network, Levenberg-Marquardt (LM) algorithm, vegetation indices

Procedia PDF Downloads 317
9789 Conformance to Spatial Planning between the Kampala Physical Development Plan of 2012 and the Existing Land Use in 2021

Authors: Brendah Nagula, Omolo Fredrick Okalebo, Ronald Ssengendo, Ivan Bamweyana

Abstract:

The Kampala Physical Development Plan (KPDP) was developed in 2012 and projected both long term and short term developments within the City .The purpose of the plan was to not only shape the city into a spatially planned area but also to control the urban sprawl trends that had expanded with pronounced instances of informal settlements. This plan was approved by the National Physical Planning Board and a signature was appended by the Minister in 2013. Much as the KPDP plan has been implemented using different approaches such as detailed planning, development control, subdivision planning, carrying out construction inspections, greening and beautification, there is still limited knowledge on the level of conformance towards this plan. Therefore, it is yet to be determined whether it has been effective in shaping the City into an ideal spatially planned area. Attaining a clear picture of the level of conformance towards the KPDP 2012 through evaluation between the planned and the existing land use in Kampala City was performed. Methods such as Supervised Classification and Post Classification Change Detection were adopted to perform this evaluation. Scrutiny of findings revealed Central Division registered the lowest level of conformance to the planning standards specified in the KPDP 2012 followed by Nakawa, Rubaga, Kawempe, and Makindye. Furthermore, mixed-use development was identified as the land use with the highest level of non-conformity of 25.11% and institutional land use registered the highest level of conformance of 84.45 %. The results show that the aspect of location was not carefully considered while allocating uses in the KPDP whereby areas located near the Central Business District have higher land rents and hence require uses that ensure profit maximization. Also, the prominence of development towards mixed-use denotes an increased demand for land towards compact development that was not catered for in the plan. Therefore in order to transform Kampala city into a spatially planned area, there is need to carefully develop detailed plans especially for all the Central Division planning precincts indicating considerations for land use densification.

Keywords: spatial plan, post classification change detection, Kampala city, landuse

Procedia PDF Downloads 90
9788 Moving Object Detection Using Histogram of Uniformly Oriented Gradient

Authors: Wei-Jong Yang, Yu-Siang Su, Pau-Choo Chung, Jar-Ferr Yang

Abstract:

Moving object detection (MOD) is an important issue in advanced driver assistance systems (ADAS). There are two important moving objects, pedestrians and scooters in ADAS. In real-world systems, there exist two important challenges for MOD, including the computational complexity and the detection accuracy. The histogram of oriented gradient (HOG) features can easily detect the edge of object without invariance to changes in illumination and shadowing. However, to reduce the execution time for real-time systems, the image size should be down sampled which would lead the outlier influence to increase. For this reason, we propose the histogram of uniformly-oriented gradient (HUG) features to get better accurate description of the contour of human body. In the testing phase, the support vector machine (SVM) with linear kernel function is involved. Experimental results show the correctness and effectiveness of the proposed method. With SVM classifiers, the real testing results show the proposed HUG features achieve better than classification performance than the HOG ones.

Keywords: moving object detection, histogram of oriented gradient, histogram of uniformly-oriented gradient, linear support vector machine

Procedia PDF Downloads 592
9787 Basic Study of Mammographic Image Magnification System with Eye-Detector and Simple EEG Scanner

Authors: Aika Umemuro, Mitsuru Sato, Mizuki Narita, Saya Hori, Saya Sakurai, Tomomi Nakayama, Ayano Nakazawa, Toshihiro Ogura

Abstract:

Mammography requires the detection of very small calcifications, and physicians search for microcalcifications by magnifying the images as they read them. The mouse is necessary to zoom in on the images, but this can be tiring and distracting when many images are read in a single day. Therefore, an image magnification system combining an eye-detector and a simple electroencephalograph (EEG) scanner was devised, and its operability was evaluated. Two experiments were conducted in this study: the measurement of eye-detection error using an eye-detector and the measurement of the time required for image magnification using a simple EEG scanner. Eye-detector validation showed that the mean distance of eye-detection error ranged from 0.64 cm to 2.17 cm, with an overall mean of 1.24 ± 0.81 cm for the observers. The results showed that the eye detection error was small enough for the magnified area of the mammographic image. The average time required for point magnification in the verification of the simple EEG scanner ranged from 5.85 to 16.73 seconds, and individual differences were observed. The reason for this may be that the size of the simple EEG scanner used was not adjustable, so it did not fit well for some subjects. The use of a simple EEG scanner with size adjustment would solve this problem. Therefore, the image magnification system using the eye-detector and the simple EEG scanner is useful.

Keywords: EEG scanner, eye-detector, mammography, observers

Procedia PDF Downloads 214
9786 An Intelligent Nondestructive Testing System of Ultrasonic Infrared Thermal Imaging Based on Embedded Linux

Authors: Hao Mi, Ming Yang, Tian-yue Yang

Abstract:

Ultrasonic infrared nondestructive testing is a kind of testing method with high speed, accuracy and localization. However, there are still some problems, such as the detection requires manual real-time field judgment, the methods of result storage and viewing are still primitive. An intelligent non-destructive detection system based on embedded linux is put forward in this paper. The hardware part of the detection system is based on the ARM (Advanced Reduced Instruction Set Computer Machine) core and an embedded linux system is built to realize image processing and defect detection of thermal images. The CLAHE algorithm and the Butterworth filter are used to process the thermal image, and then the boa server and CGI (Common Gateway Interface) technology are used to transmit the test results to the display terminal through the network for real-time monitoring and remote monitoring. The system also liberates labor and eliminates the obstacle of manual judgment. According to the experiment result, the system provides a convenient and quick solution for industrial non-destructive testing.

Keywords: remote monitoring, non-destructive testing, embedded Linux system, image processing

Procedia PDF Downloads 221
9785 Comparison of Different Techniques to Estimate Surface Soil Moisture

Authors: S. Farid F. Mojtahedi, Ali Khosravi, Behnaz Naeimian, S. Adel A. Hosseini

Abstract:

Land subsidence is a gradual settling or sudden sinking of the land surface from changes that take place underground. There are different causes of land subsidence; most notably, ground-water overdraft and severe weather conditions. Subsidence of the land surface due to ground water overdraft is caused by an increase in the intergranular pressure in unconsolidated aquifers, which results in a loss of buoyancy of solid particles in the zone dewatered by the falling water table and accordingly compaction of the aquifer. On the other hand, exploitation of underground water may result in significant changes in degree of saturation of soil layers above the water table, increasing the effective stress in these layers, and considerable soil settlements. This study focuses on estimation of soil moisture at surface using different methods. Specifically, different methods for the estimation of moisture content at the soil surface, as an important term to solve Richard’s equation and estimate soil moisture profile are presented, and their results are discussed through comparison with field measurements obtained from Yanco1 station in south-eastern Australia. Surface soil moisture is not easy to measure at the spatial scale of a catchment. Due to the heterogeneity of soil type, land use, and topography, surface soil moisture may change considerably in space and time.

Keywords: artificial neural network, empirical method, remote sensing, surface soil moisture, unsaturated soil

Procedia PDF Downloads 358
9784 Planning and Urban Climate Change Adaptation: Italian Literature Review

Authors: Mara Balestrieri

Abstract:

Climate change has long been the focus of attention for the growing impact of extreme weather events and global warming in many areas of the planet and the evidence of economic, social, and environmental damage caused by global warming. Nowadays, climate change is recognized as a critical global problem. Several initiatives have been undertaken over time to enhance the long theoretical debate and field experience in order to reduce Co2 emissions and contain climate alteration. However, the awareness that climate change is already taking place has led to a growing demand for adaptation. It is certainly a matter of anticipating the negative effects of climate change but, at the same time, implementing appropriate actions to prevent climate change-related damage, minimize the problems that may result, and also seize any opportunities that may arise. Consequently, adaptation has become a core element of climate policy and research. However, the attention to this issue has not developed in a uniform manner across countries. Some countries are further ahead than others. This paper examines the literature on climate change adaptation developed until 2018 in Italy, considering the urban dimension, to provide a framework for it, and to identify main topics and features. The papers were selected from Scopus and were analyzed through a matrix that we propose. Results demonstrate that adaptation to climate change studies attracted increasing attention from Italian scientific communities in the last years, although Italian scientific production is still quantitatively lower than in other countries and describes strengths and weaknesses in line with international panorama with respect to objectives, sectors, and problems.

Keywords: adaptation, bibliometric literature, climate change, urban studies

Procedia PDF Downloads 72
9783 Off-Topic Text Detection System Using a Hybrid Model

Authors: Usama Shahid

Abstract:

Be it written documents, news columns, or students' essays, verifying the content can be a time-consuming task. Apart from the spelling and grammar mistakes, the proofreader is also supposed to verify whether the content included in the essay or document is relevant or not. The irrelevant content in any document or essay is referred to as off-topic text and in this paper, we will address the problem of off-topic text detection from a document using machine learning techniques. Our study aims to identify the off-topic content from a document using Echo state network model and we will also compare data with other models. The previous study uses Convolutional Neural Networks and TFIDF to detect off-topic text. We will rearrange the existing datasets and take new classifiers along with new word embeddings and implement them on existing and new datasets in order to compare the results with the previously existing CNN model.

Keywords: off topic, text detection, eco state network, machine learning

Procedia PDF Downloads 85
9782 Ecotourism Adaptation Practices to Climate Change in the Context of Sustainable Management in Dana Biosphere Reserve, Jordan

Authors: Malek Jamaliah, Robert Powell

Abstract:

In spite of the influence of climate change on tourism destinations, particularly those rely heavily on natural resources, little attention paid to study the appropriate adaptation efforts to cope with, moderate and benefit from the impacts of climate change. The existing literature indicated that the research of climate change adaptation in the tourism and outdoor recreation field is at least 5-7 years behind other sectors such as water resources and agriculture. In Jordan, there are many observed changes in climate patterns such as higher temperatures, decreased precipitation and increased severity and frequency of drought. Dana Biosphere Reserve (DBR), the largest protected area and the major eco-tourism destination in Jordan, is facing climate change, which gradually degrading environment, shifting tourism seasons and changing livelihood and lifestyle of local communities. This study aims to assess climate change adaptation practices and policies used in DBR to cope with climate change related-risks. We conducted qualitative semi-structured interviews with key informants in DBR to assess climate change adaptation practices. Direct content analysis (or a priori content analysis) was used to determine the components and indicators of climate change adaptation. The results found that DBR has implemented a wide range of adaptation practices, including infrastructure development, diversification of tourism products, environmentally-friendly practices, visitor management, land use management, rainwater collection, environmental monitoring and research, environmental education and collaboration with stakeholders. These diverse practices implicitly and explicitly play an important role in coping with the social, economic and environmental impacts caused by climate change. Finally, this study demonstrated that climate change adaptation is closely related to sustainable management of eco-tourism.

Keywords: climate change adaptation, dana biosphere reserve, ecotourism, sustainable management

Procedia PDF Downloads 508
9781 A Comprehensive Approach to Mitigate Return-Oriented Programming Attacks: Combining Operating System Protection Mechanisms and Hardware-Assisted Techniques

Authors: Zhang Xingnan, Huang Jingjia, Feng Yue, Burra Venkata Durga Kumar

Abstract:

This paper proposes a comprehensive approach to mitigate ROP (Return-Oriented Programming) attacks by combining internal operating system protection mechanisms and hardware-assisted techniques. Through extensive literature review, we identify the effectiveness of ASLR (Address Space Layout Randomization) and LBR (Last Branch Record) in preventing ROP attacks. We present a process involving buffer overflow detection, hardware-assisted ROP attack detection, and the use of Turing detection technology to monitor control flow behavior. We envision a specialized tool that views and analyzes the last branch record, compares control flow with a baseline, and outputs differences in natural language. This tool offers a graphical interface, facilitating the prevention and detection of ROP attacks. The proposed approach and tool provide practical solutions for enhancing software security.

Keywords: operating system, ROP attacks, returning-oriented programming attacks, ASLR, LBR, CFI, DEP, code randomization, hardware-assisted CFI

Procedia PDF Downloads 94
9780 Comparison of Various Classification Techniques Using WEKA for Colon Cancer Detection

Authors: Beema Akbar, Varun P. Gopi, V. Suresh Babu

Abstract:

Colon cancer causes the deaths of about half a million people every year. The common method of its detection is histopathological tissue analysis, it leads to tiredness and workload to the pathologist. A novel method is proposed that combines both structural and statistical pattern recognition used for the detection of colon cancer. This paper presents a comparison among the different classifiers such as Multilayer Perception (MLP), Sequential Minimal Optimization (SMO), Bayesian Logistic Regression (BLR) and k-star by using classification accuracy and error rate based on the percentage split method. The result shows that the best algorithm in WEKA is MLP classifier with an accuracy of 83.333% and kappa statistics is 0.625. The MLP classifier which has a lower error rate, will be preferred as more powerful classification capability.

Keywords: colon cancer, histopathological image, structural and statistical pattern recognition, multilayer perception

Procedia PDF Downloads 573
9779 Deleterious SNP’s Detection Using Machine Learning

Authors: Hamza Zidoum

Abstract:

This paper investigates the impact of human genetic variation on the function of human proteins using machine-learning algorithms. Single-Nucleotide Polymorphism represents the most common form of human genome variation. We focus on the single amino-acid polymorphism located in the coding region as they can affect the protein function leading to pathologic phenotypic change. We use several supervised Machine Learning methods to identify structural properties correlated with increased risk of the missense mutation being damaging. SVM associated with Principal Component Analysis give the best performance.

Keywords: single-nucleotide polymorphism, machine learning, feature selection, SVM

Procedia PDF Downloads 375
9778 Graphene-Based Nanobiosensors and Lab on Chip for Sensitive Pesticide Detection

Authors: Martin Pumera

Abstract:

Graphene materials are being widely used in electrochemistry due to their versatility and excellent properties as platforms for biosensing. Here we present current trends in the electrochemical biosensing of pesticides and other toxic compounds. We explore two fundamentally different designs, (i) using graphene and other 2-D nanomaterials as an electrochemical platform and (ii) using these nanomaterials in the laboratory on chip design, together with paramagnetic beads. More specifically: (i) We explore graphene as transducer platform with very good conductivity, large surface area, and fast heterogeneous electron transfer for the biosensing. We will present the comparison of these materials and of the immobilization techniques. (ii) We present use of the graphene in the laboratory on chip systems. Laboratory on the chip had a huge advantage due to small footprint, fast analysis times and sample handling. We will show the application of these systems for pesticide detection and detection of other toxic compounds.

Keywords: graphene, 2D nanomaterials, biosensing, chip design

Procedia PDF Downloads 548
9777 Adapting Built Heritage to Address Climate Change: A Perspective from the Maltese Islands

Authors: Nadia Theuma

Abstract:

Climate change is a reality that has started to leave an impact on the physical environment as well as on the built environment, in particular built heritage. This paper explores the argument that climate change is also a trigger which can lead to identifying a number of creative solutions that can transform built heritage into sustainable buildings. Using the Maltese Islands, and in particular the city of Valletta which is also a World Heritage Site, this paper illustrates some of the innovative solutions that are being developed to make heritage buildings more sustainable and in doing so, mitigating the negative impacts of climate change. The paper looks in detail at the most notable initiatives being developed, their implementation and application, which at times is not easy considering the restrictions within protected built heritage areas and the positive impacts that they will have on visitor experience and overall sustainability of the Maltese tourism product. The paper will conclude by outlining how these solutions can be adapted to buildings with similar climatic conditions.

Keywords: built heritage, creative solutions, climate change, Maltese Islands

Procedia PDF Downloads 288
9776 Instance Segmentation of Wildfire Smoke Plumes using Mask-RCNN

Authors: Jamison Duckworth, Shankarachary Ragi

Abstract:

Detection and segmentation of wildfire smoke plumes from remote sensing imagery are being pursued as a solution for early fire detection and response. Smoke plume detection can be automated and made robust by the application of artificial intelligence methods. Specifically, in this study, the deep learning approach Mask Region-based Convolutional Neural Network (RCNN) is being proposed to learn smoke patterns across different spectral bands. This method is proposed to separate the smoke regions from the background and return masks placed over the smoke plumes. Multispectral data was acquired using NASA’s Earthdata and WorldView and services and satellite imagery. Due to the use of multispectral bands along with the three visual bands, we show that Mask R-CNN can be applied to distinguish smoke plumes from clouds and other landscape features that resemble smoke.

Keywords: deep learning, mask-RCNN, smoke plumes, spectral bands

Procedia PDF Downloads 126