Search results for: enzyme production
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8119

Search results for: enzyme production

7519 An Overview of the Advice Process and the Scientific Production of the Adviser-Advised Relationship in the Areas of Engineering

Authors: Tales H. J. Moreira, Thiago M. R. Dias, Gray F. Moita

Abstract:

The adviser-advised relationship, in addition to the evident propagation of knowledge, can provide an increase in the scientific production of the advisors. Specifically, in post-graduate programs, in which the advised submit diverse papers in different means of publication, these end up boosting the production of their advisor, since in general the advisors appear as co-authors, responsible for instructing and assisting in the development of the work. Therefore, to visualize the orientation process and the scientific production resulting from this relation is another important way of analyzing the scientific collaboration in the different areas of knowledge. In this work, are used the data of orientations and postgraduate supervisions from the Lattes curricula, from the main advisors who work in the Engineering area, to obtain an overview of the process of orientation of this group, and even, to produce Academic genealogical trees, where it is possible to verify how knowledge has spread in the diverse areas of engineering.

Keywords: academic genealogy, advice, engineering, lattes platform

Procedia PDF Downloads 324
7518 Negotiating Increased Food Production with African Indigenous Agricultural Knowledge: The Ugandan Case

Authors: Harriet Najjemba, Simon Peter Rutabajuuka, Deo Katono Nzarwa

Abstract:

Scientific agricultural knowledge was introduced in Africa, including Uganda, during colonial rule. While this form of knowledge was introduced as part of Western scientific canon, African indigenous knowledge was not destroyed and has remained vital in food production. Modern scientific methods were devoted to export crops while food crop production was left to Africans who continued to use indigenous knowledge. Today, indigenous agricultural knowledge still provides farming skills and practices, more than a century since modern scientific agricultural knowledge was introduced in Uganda. It is evident that there is need to promote the still useful and more accessible indigenous agricultural practices in order to sustain increased food production. It is also important to have a tailor made agricultural knowledge system that combines practical indigenous practices with financially viable western scientific agricultural practices for sustained food production. The proposed paper will explain why the African indigenous agricultural knowledge has persisted and survived for over a century after colonial introduction of western scientific agricultural knowledge. The paper draws on research findings for a PhD study at Makerere University, Uganda. The study uses both written and oral sources, including colonial and postcolonial archival documents, and interviews. It critiques the parameters within which Western farming methods were introduced to African farmers.

Keywords: food production, food shortage, indigenous agricultural knowledge, western scientific agricultural practices

Procedia PDF Downloads 460
7517 Evaluation of Different Cropping Systems under Organic, Inorganic and Integrated Production Systems

Authors: Sidramappa Gaddnakeri, Lokanath Malligawad

Abstract:

Any kind of research on production technology of individual crop / commodity /breed has not brought sustainability or stability in crop production. The sustainability of the system over years depends on the maintenance of the soil health. Organic production system includes use of organic manures, biofertilizers, green manuring for nutrient supply and biopesticides for plant protection helps to sustain the productivity even under adverse climatic condition. The study was initiated to evaluate the performance of different cropping systems under organic, inorganic and integrated production systems at The Institute of Organic Farming, University of Agricultural Sciences, Dharwad (Karnataka-India) under ICAR Network Project on Organic Farming. The trial was conducted for four years (2013-14 to 2016-17) on fixed site. Five cropping systems viz., sequence cropping of cowpea – safflower, greengram– rabi sorghum, maize-bengalgram, sole cropping of pigeonpea and intercropping of groundnut + cotton were evaluated under six nutrient management practices. The nutrient management practices are NM1 (100% Organic farming (Organic manures equivalent to 100% N (Cereals/cotton) or 100% P2O5 (Legumes), NM2 (75% Organic farming (Organic manures equivalent to 75% N (Cereals/cotton) or 100% P2O5 (Legumes) + Cow urine and Vermi-wash application), NM3 (Integrated farming (50% Organic + 50% Inorganic nutrients, NM4 (Integrated farming (75% Organic + 25% Inorganic nutrients, NM5 (100% Inorganic farming (Recommended dose of inorganic fertilizers)) and NM6 (Recommended dose of inorganic fertilizers + Recommended rate of farm yard manure (FYM). Among the cropping systems evaluated for different production systems indicated that the Groundnut + Hybrid cotton (2:1) intercropping system found more remunerative as compared to Sole pigeonpea cropping system, Greengram-Sorghum sequence cropping system, Maize-Chickpea sequence cropping system and Cowpea-Safflower sequence cropping system irrespective of the production systems. Production practices involving application of recommended rates of fertilizers + recommended rates of organic manures (Farmyard manure) produced higher net monetary returns and higher B:C ratio as compared to integrated production system involving application of 50 % organics + 50 % inorganic and application of 75 % organics + 25 % inorganic and organic production system only Both the two organic production systems viz., 100 % Organic production system (Organic manures equivalent to 100 % N (Cereals/cotton) or 100 % P2O5 (Legumes) and 75 % Organic production system (Organic manures equivalent to 75 % N (Cereals) or 100 % P2O5 (Legumes) + Cow urine and Vermi-wash application) are found to be on par. Further, integrated production system involving application of organic manures and inorganic fertilizers found more beneficial over organic production systems.

Keywords: cropping systems, production systems, cowpea, safflower, greengram, pigeonpea, groundnut, cotton

Procedia PDF Downloads 199
7516 International-Migration and Land Use Change in Ghana: Assessment of the Multidimensional Effects on National Development

Authors: Baffoe Kingsley

Abstract:

The consequence of the migration of young people from rural farming communities in the global south to the global north is a well-known phenomenon. While climate change and its accompanying socio-economic structures continue to be the driver, what is not really known is how left behinds are compelled to convert lands meant for the production of traditional staples such as cereals, vegetables, and tubers to the production of export-driven cashew plantations due to youth migration. The consequence of such migration on the development of Ghana and its food security is multidimensional. Using an ethnographic research design, the study revealed that the majority of farmers in the area are now aged, and farm labor has become scarce, which has impeded the cultivation of traditional staples for the population. It has also been established that in the absence of farm labor, most farmers have reduced farm sizes for the production of staples and increased the production of cashews. The practice has, in tend, resulted in a scarcity of land for the cultivation of staples. The study recommends further inquiry into how the effects of migration and cashew production as diversification in agriculture influence national development in Ghana.

Keywords: staple food crops, cashew plantations, climate change, migration

Procedia PDF Downloads 53
7515 Assessment of Rural Youth Adoption of Cassava Production Technologies in Southwestern Nigeria

Authors: J. O. Ayinde, S. O. Olatunji

Abstract:

This study assessed rural youth adoption of cassava production technologies in Southwestern, Nigeria. Specifically, it examine the level of awareness and adoption of cassava production technologies by rural youth, determined the extent of usage of cassava production technologies available to the rural youth, examined constrains to the adoption of cassava production technologies by youth and suggested possible solutions. Multistage sampling procedure was adopted for the study. In the first stage, two states were purposively selected in southwest, Nigeria which are Osun and Oyo states due to high level of cassava production and access to cassava production technology in the areas. In the second stage, purposive sampling technique was used to select two local governments each from the states selected which are Ibarapa central (Igbo-Ora) and Ibarapa East (Eruwa) Local Government Areas (LGAs) in Oyo state; and Ife North (Ipetumodu) and Ede South (Oke Ireesi) LGAs in Osun State. In the third stage, proportionate sampling technique was used to randomly select five, four, six and four communities from the selected LGAs respectively representing 20 percent of the rural communities in them, in all 19 communities were selected. In the fourth stage, Snow ball sampling technique was used to select about 7 rural youths in each community selected to make a total of 133 respondents. Validated structured interview schedule was used to elicit information from the respondents. The data collected were analyzed using both descriptive and inferential statistics to summarize and test the hypotheses of the study. The results show that the average age of rural youths participating in cassava production in the study area is 29 ± 2.6 years and 60 percent aged between 30 and 35 years. Also, more male (67.4 %) were involved in cassava production than females (32.6 %). The result also reveals that the average size of farm land of the respondents is 2.5 ± 0.3 hectares. Also, more male (67.4 %) were involved in cassava production than females (32.6 %). Also, extent of usage of the technologies (r = 0.363, p ≤ 0.01) shows significant relationship with level of adoption of the technologies. Household size (b = 0.183; P ≤ 0.01) and membership of social organizations were significant at 0.01 (b = 0.331; P ≤ 0.01) while age was significant at 0.10 (b = 0.097; P ≤ 0.05). On the other hand 0.01, years of residence (b = - 0.063; P ≤ 0.01) and income (b = - 0.204; P ≤ 0.01) had negative values and implies that a unit increase in each of these variables would decrease extent of usage of the Cassava production technologies. It was concluded that the extent of usage of the technologies in the communities will affect the rate of adoption positively and this will change the negative perception of youths on cassava production thereby ensure food security in the study area.

Keywords: assessment, rural youths’, Cassava production technologies, agricultural production, food security

Procedia PDF Downloads 207
7514 Comparison of Irradiance Decomposition and Energy Production Methods in a Solar Photovoltaic System

Authors: Tisciane Perpetuo e Oliveira, Dante Inga Narvaez, Marcelo Gradella Villalva

Abstract:

Installations of solar photovoltaic systems have increased considerably in the last decade. Therefore, it has been noticed that monitoring of meteorological data (solar irradiance, air temperature, wind velocity, etc.) is important to predict the potential of a given geographical area in solar energy production. In this sense, the present work compares two computational tools that are capable of estimating the energy generation of a photovoltaic system through correlation analyzes of solar radiation data: PVsyst software and an algorithm based on the PVlib package implemented in MATLAB. In order to achieve the objective, it was necessary to obtain solar radiation data (measured and from a solarimetric database), analyze the decomposition of global solar irradiance in direct normal and horizontal diffuse components, as well as analyze the modeling of the devices of a photovoltaic system (solar modules and inverters) for energy production calculations. Simulated results were compared with experimental data in order to evaluate the performance of the studied methods. Errors in estimation of energy production were less than 30% for the MATLAB algorithm and less than 20% for the PVsyst software.

Keywords: energy production, meteorological data, irradiance decomposition, solar photovoltaic system

Procedia PDF Downloads 142
7513 Enhancing of Biogas Production from Slaughterhouse and Dairy Farm Waste with Pasteurization

Authors: Mahmoud Hassan Onsa, Saadelnour Abdueljabbar Adam

Abstract:

Wastes from slaughterhouses in most towns in Sudan are often poorly managed and sometimes discharged into adjoining streams due to poor implementation of standards, thus causing environmental and public health hazards and also there is a large amount of manure from dairy farms. This paper presents solution of organic waste from cow dairy farms and slaughterhouse the anaerobic digestion and biogas production. The paper presents the findings of experimental investigation of biogas production with and without pasteurization using cow manure, blood and rumen content were mixed at two proportions, 72.3% manure, 21.7%, rumen content and 6% blood for bio digester1with 62% dry matter at the beginning and without pasteurization and 72.3% manure, 21.7%, rumen content and 6% blood for bio-digester2 with 10% dry matter and pasteurization. The paper analyses the quantitative and qualitative composition of biogas: gas content, the concentration of methane. The highest biogas output 2.9 mL/g dry matter/day (from bio-digester2) together with a high quality biogas of 87.4% methane content which is useful for combustion and energy production and healthy bio-fertilizer but biodigester1 gave 1.68 mL/g dry matter/day with methane content 85% which is useful for combustion, energy production and can be considered as new technology of dryer bio-digesters.

Keywords: anaerobic digestion, bio-digester, blood, cow manure, rumen content

Procedia PDF Downloads 727
7512 Transforming the Automotive Production: A Bibliometric Analysis on Lean-Green Management

Authors: Ayse Melissa Ergun

Abstract:

The lean management concept is a widely used and implemented production improvement solution especially in the automotive sector. However, in the recent years the need for an efficient production system became no longer sufficient for companies. The increasing importance of green production and environmental sustainability pushed companies to modify their manufacturing systems in a more environmentally conscious way. As a result, the recent improvements in the automotive sector has surpassed the lean management directives and currently are in need of a more sustainable and green transformation. At this point a comprehensive approach like Lean-Green (LG) Management, which combines lean management and green applications, gains popularity in the sector. This study conducts a bibliometric analysis between the years 2015-2023 for LG management. This study aims to identify the current standing of the literature. The most researched branches of the concept have been determined by the conducted analysis. Furthermore, this study sheds a light on the future research directions for scholars.

Keywords: LG management, sustainability, lean, green, automotive, bibliometric analysis

Procedia PDF Downloads 11
7511 The Effects of Plantation Size and Internal Transport on Energy Efficiency of Biofuel Production

Authors: Olga Orynycz, Andrzej Wasiak

Abstract:

Mathematical model describing energetic efficiency (defined as a ratio of energy obtained in the form of biofuel to the sum of energy inputs necessary to facilitate production) of agricultural subsystem as a function of technological parameters was developed. Production technology is characterized by parameters of machinery, topological characteristics of the plantation as well as transportation routes inside and outside of plantation. The relationship between the energetic efficiency of agricultural and industrial subsystems is also derived. Due to the assumed large area of the individual field, the operations last for several days increasing inter-fields routes because of several returns. The total distance driven outside of the fields is, however, small as compared to the distance driven inside of the fields. This results in small energy consumption during inter-fields transport that, however, causes a substantial decrease of the energetic effectiveness of the whole system.

Keywords: biofuel, energetic efficiency, EROEI, mathematical modelling, production system

Procedia PDF Downloads 346
7510 Experimental Study on a Solar Heat Concentrating Steam Generator

Authors: Qiangqiang Xu, Xu Ji, Jingyang Han, Changchun Yang, Ming Li

Abstract:

Replacing of complex solar concentrating unit, this paper designs a solar heat-concentrating medium-temperature steam-generating system. Solar radiation is collected by using a large solar collecting and heat concentrating plate and is converged to the metal evaporating pipe with high efficient heat transfer. In the meantime, the heat loss is reduced by employing a double-glazed cover and other heat insulating structures. Thus, a high temperature is reached in the metal evaporating pipe. The influences of the system's structure parameters on system performance are analyzed. The steam production rate and the steam production under different solar irradiance, solar collecting and heat concentrating plate area, solar collecting and heat concentrating plate temperature and heat loss are obtained. The results show that when solar irradiance is higher than 600 W/m2, the effective heat collecting area is 7.6 m2 and the double-glazing cover is adopted, the system heat loss amount is lower than the solar irradiance value. The stable steam is produced in the metal evaporating pipe at 100 ℃, 110 ℃, and 120 ℃, respectively. When the average solar irradiance is about 896 W/m2, and the steaming cumulative time is about 5 hours, the daily steam production of the system is about 6.174 kg. In a single day, the solar irradiance is larger at noon, thus the steam production rate is large at that time. Before 9:00 and after 16:00, the solar irradiance is smaller, and the steam production rate is almost 0.

Keywords: heat concentrating, heat loss, medium temperature, solar steam production

Procedia PDF Downloads 181
7509 The Model of Learning Centre on OTOP Production Process Based on Sufficiency Economic Philosophy for Sustainable Life Quality

Authors: Napasri Suwanajote

Abstract:

The purposes of this research were to analyse and evaluate successful factors in OTOP production process for the developing of learning centre on OTOP production process based on Sufficiency Economic Philosophy for sustainable life quality. The research has been designed as a qualitative study to gather information from 30 OTOP producers in Bangkontee District, Samudsongkram Province. They were all interviewed on 3 main parts. Part 1 was about the production process including 1) production 2) product development 3) the community strength 4) marketing possibility and 5) product quality. Part 2 evaluated appropriate successful factors including 1) the analysis of the successful factors 2) evaluate the strategy based on Sufficiency Economic Philosophy and 3) the model of learning centre on OTOP production process based on Sufficiency Economic Philosophy for sustainable life quality. The results showed that the production did not affect the environment with potential in continuing standard quality production. They used the raw materials in the country. On the aspect of product and community strength in the past 1 year, it was found that there was no appropriate packaging showing product identity according to global market standard. They needed the training on packaging especially for food and drink products. On the aspect of product quality and product specification, it was found that the products were certified by the local OTOP standard. There should be a responsible organization to help the uncertified producers pass the standard. However, there was a problem on food contamination which was hazardous to the consumers. The producers should cooperate with the government sector or educational institutes involving with food processing to reach FDA standard. The results from small group discussion showed that the community expected high education and better standard living. Some problems reported by the community included informal debt and drugs in the community. There were 8 steps in developing the model of learning centre on OTOP production process based on Sufficiency Economic Philosophy for sustainable life quality.

Keywords: production process, OTOP, sufficiency economic philosophy, marketing management

Procedia PDF Downloads 234
7508 Benchmarking Energy Challenges in Palm Oil Production Industry in Ghana

Authors: Mathias B. Michael, Esther T. Akinlabi, Tien-Chien Jen

Abstract:

The current energy crisis in Ghana has affected significant number of industries which have direct impact on the country’s economy. Amongst the affected industries are palm oil production industries even though the impact is less as compared to fully relied national grid industries. Most of the large and medium palm oil production industries are partially grid reliance, however, the unavailability and the high cost palm biomass poses huge challenge. This paper aimed to identify and analyse the energy challenges associated with the palm oil production industries in Ghana. The study is conducted on the nine largest palm oil production plants in Ghana. Data is obtained by the use of questionnaire and observation. Since the study aimed to compare the respective energy challenges associated with nine industrial plants under study and establish a benchmark that represents a common problem of all the nine plants under study, the study uses percentile analysis and Analysis of Variance (ANOVA) as the statistical tools to validate the benchmark. The results indicate that lack of sustainability of palm biomass supply chain is the key energy challenge in the palm oil production industries in Ghana. Other problems include intermittent power supply from the grid and the low boiler efficiency due to outmoded conversion technology of the boilers. The result also demonstrates that there are statistically significant differences between the technologies in different age groups in relation to technology conversion efficiency.

Keywords: palm biomass, steam supply, energy challenges, energy benchmark

Procedia PDF Downloads 370
7507 Acoustic Radiation Pressure Detaches Myoblast from Culture Substrate by Assistance of Serum-Free Medium

Authors: Yuta Kurashina, Chikahiro Imashiro, Kiyoshi Ohnuma, Kenjiro Takemura

Abstract:

Research objectives and goals: To realize clinical applications of regenerative medicine, a mass cell culture is highly required. In a conventional cell culture, trypsinization was employed for cell detachment. However, trypsinization causes proliferation decrease due to injury of cell membrane. In order to detach cells using an enzyme-free method, therefore, this study proposes a novel cell detachment method capable of detaching adherent cells using acoustic radiation pressure exposed to the dish by the assistance of serum-free medium with ITS liquid medium supplement. Methods used In order to generate acoustic radiation pressure, a piezoelectric ceramic plate was glued on a glass plate to configure an ultrasonic transducer. The glass plate and a chamber wall compose a chamber in which a culture dish is placed in glycerol. Glycerol transmits acoustic radiation pressure to adhered cells on the culture dish. To excite a resonance vibration of transducer, AC signal with 29-31 kHz (swept) and 150, 300, and 450 V was input to the transducer for 5 min. As a pretreatment to reduce cell adhesivity, serum-free medium with ITS liquid medium supplement was spread to the culture dish before exposed to acoustic radiation pressure. To evaluate the proposed cell detachment method, C2C12 myoblast cells (8.0 × 104 cells) were cultured on a ø35 culture dish for 48 hr, and then the medium was replaced with the serum-free medium with ITS liquid medium supplement for 24 hr. We replaced the medium with phosphate buffered saline and incubated cells for 10 min. After that, cells were exposed to the acoustic radiation pressure for 5 min. We also collected cells by using trypsinization as control. Cells collected by the proposed method and trypsinization were respectively reseeded in ø60 culture dishes and cultured for 24 hr. Then, the number of proliferated cells was counted. Results achieved: By a phase contrast microscope imaging, shrink of lamellipodia was observed before exposed to acoustic radiation pressure, and no cells remained on the culture dish after the exposed of acoustic radiation pressure. This result suggests that serum-free medium with ITS liquid inhibits adhesivity of cells and acoustic radiation pressure detaches cells from the dish. Moreover, the number of proliferated cells 24 hr after collected by the proposed method with 150 and 300 V is the same or more than that by trypsinization, i.e., cells were proliferated 15% higher with the proposed method using acoustic radiation pressure than with the traditional cell collecting method of trypsinization. These results proved that cells were able to be collected by using the appropriate exposure of acoustic radiation pressure. Conclusions: This study proposed a cell detachment method using acoustic radiation pressure by the assistance of serum-free medium. The proposed method provides an enzyme-free cell detachment method so that it may be used in future clinical applications instead of trypsinization.

Keywords: acoustic radiation pressure, cell detachment, enzyme free, ultrasonic transducer

Procedia PDF Downloads 254
7506 Production of New Hadron States in Effective Field Theory

Authors: Qi Wu, Dian-Yong Chen, Feng-Kun Guo, Gang Li

Abstract:

In the past decade, a growing number of new hadron states have been observed, which are dubbed as XYZ states in the heavy quarkonium mass regions. In this work, we present our study on the production of some new hadron states. In particular, we investigate the processes Υ(5S,6S)→ Zb (10610)/Zb (10650)π, Bc→ Zc (3900)/Zc (4020)π and Λb→ Pc (4312)/Pc (4440)/Pc (4457)K. (1) For the production of Zb (10610)/Zb (10650) from Υ(5S,6S) decay, two types of bottom-meson loops were discussed within a nonrelativistic effective field theory. We found that the loop contributions with all intermediate states being the S-wave ground state bottom mesons are negligible, while the loops with one bottom meson being the broad B₀* or B₁' resonance could provide the dominant contributions to the Υ(5S)→ Zb⁽'⁾ π. (2) For the production of Zc (3900)/Zc (4020) from Bc decay, the branching ratios of Bc⁺→ Z (3900)⁺ π⁰ and Bc⁺→ Zc (4020)⁺ π⁰ are estimated to be of order of 10⁽⁻⁴⁾ and 10⁽⁻⁷⁾ in an effective Lagrangian approach. The large production rate of Zc (3900) could provide an important source of the production of Zc (3900) from the semi-exclusive decay of b-flavored hadrons reported by D0 Collaboration, which can be tested by the exclusive measurements in LHCb. (3) For the production of Pc (4312), Pc (4440) and Pc (4457) from Λb decay, the ratio of the branching fraction of Λb→ Pc K was predicted in a molecular scenario by using an effective Lagrangian approach, which is weakly dependent on our model parameter. We also find the ratios of the productions of the branching fractions of Λb→ Pc K and Pc→ J/ψ p can be well interpreted in the molecular scenario. Moreover, the estimated branching fractions of Λb→ Pc K are of order 10⁽⁻⁶⁾, which could be tested by further measurements in LHCb Collaboration.

Keywords: effective Lagrangian approach, hadron loops, molecular states, new hadron states

Procedia PDF Downloads 132
7505 Production Planning for Animal Food Industry under Demand Uncertainty

Authors: Pirom Thangchitpianpol, Suttipong Jumroonrut

Abstract:

This research investigates the distribution of food demand for animal food and the optimum amount of that food production at minimum cost. The data consist of customer purchase orders for the food of laying hens, price of food for laying hens, cost per unit for the food inventory, cost related to food of laying hens in which the food is out of stock, such as fine, overtime, urgent purchase for material. They were collected from January, 1990 to December, 2013 from a factory in Nakhonratchasima province. The collected data are analyzed in order to explore the distribution of the monthly food demand for the laying hens and to see the rate of inventory per unit. The results are used in a stochastic linear programming model for aggregate planning in which the optimum production or minimum cost could be obtained. Programming algorithms in MATLAB and tools in Linprog software are used to get the solution. The distribution of the food demand for laying hens and the random numbers are used in the model. The study shows that the distribution of monthly food demand for laying has a normal distribution, the monthly average amount (unit: 30 kg) of production from January to December. The minimum total cost average for 12 months is Baht 62,329,181.77. Therefore, the production planning can reduce the cost by 14.64% from real cost.

Keywords: animal food, stochastic linear programming, aggregate planning, production planning, demand uncertainty

Procedia PDF Downloads 380
7504 Control System Design for a Simulated Microbial Electrolysis Cell

Authors: Pujari Muruga, T. K. Radhakrishnan, N. Samsudeen

Abstract:

Hydrogen is considered as the most important energy carrier and fuel of the future because of its high energy density and zero emission properties. Microbial Electrolysis Cell (MEC) is a new and promising approach for hydrogen production from organic matter, including wastewater and other renewable resources. By utilizing anode microorganism activity, MEC can produce hydrogen gas with smaller voltages (as low as 0.2 V) than those required for electrolytic hydrogen production ( ≥ 1.23 V). The hydrogen production processes of the MEC reactor are very nonlinear and highly complex because of the presence of microbial interactions and highly complex phenomena in the system. Increasing the hydrogen production rate and lowering the energy input are two important challenges of MEC technology. The mathematical model of the MEC is based on material balance with the integration of bioelectrochemical reactions. The main objective of the research is to produce biohydrogen by selecting the optimum current and controlling applied voltage to the MEC. Precise control is required for the MEC reactor, so that the amount of current required to produce hydrogen gas can be controlled according to the composition of the substrate in the reactor. Various simulation tests involving multiple set-point changes disturbance and noise rejection were performed to evaluate the performance using PID controller tuned with Ziegler Nichols settings. Simulation results shows that other good controller can provide better control effect on the MEC system, so that higher hydrogen production can be obtained.

Keywords: microbial electrolysis cell, hydrogen production, applied voltage, PID controller

Procedia PDF Downloads 247
7503 The Use of Fertilizers in the Context of Agricultural Extension

Authors: Ahmed Altalb

Abstract:

Fertilizers are natural materials, or industrial contain nutrients, which help to improve soil fertility and is considered (nitrogen, phosphorus, and potassium) is important elements for the growth of crops properly. Fertilization is necessary in order to improve the quality of agricultural products and the recovery in agricultural activities. The use of organic fertilizers and chemical lead to reduce the loss of nutrients in agricultural soils, and this leads to an increase in the production of agricultural crops. Fertilizers are one of the key factors in the increase of agricultural production as well as other factors such as irrigation and improved seeds and Prevention and others; the fertilizers will continue to be a cornerstone of the agriculture in order to produce the food to feed of world population. The use of fertilizers has become commonplace today, especially the chemical fertilizers for the development of agricultural production, due to the provision of nutrients for plants and in high concentrations and easily dissolves in water and ease of use. The choose the right type of fertilizer depends on the soil type and the type of crop. In this subject, find the relationship between the agricultural extension and the optimal use of fertilizers. The extension plays the important role in the advise and educate of farmers in how they optimal use the fertilizers in a scientific way. This article aims to identify the concept the fertilizers. Identify the role of fertilizers in increasing the agricultural production, identify the role of agricultural extension in the optimal use of fertilizers and rural development.

Keywords: agricultural, extension, fertilizers, production

Procedia PDF Downloads 437
7502 The Effects of COVID-19 on the Energy Trends and Production Capacity of Turkish Cement Industry

Authors: Adem Atmaca

Abstract:

More than 500 million COVID-19 cases were noted in February 2022 in Turkey. The country is one of the most impacted countries all around the world with twenty million cases. The cement industry in Turkey ranks among the most energy-intensive sectors with huge production capacities among the biggest exporter countries. The purpose of this paper is to clarify the effects of the pandemic on the cement industry in Turkey by showing the changes in manufacturing capacities and export rates of all facilities in the country. The investigation has revealed that the epidemic has slight effects on the factory production capacities and export rates. Even though the capacity usage rates of the factories decreased dramatically in 2019, it seems that Turkish cement companies turned the pandemic to their advantage by increasing their production capacities, capacity usage rates and export rates gradually by reaching new markets during the pandemic.

Keywords: energy, emissions, cement industry, COVID-19

Procedia PDF Downloads 120
7501 The Effect of Dendrobium nobile Lindl. Alkaloids on the Blood Glucose and Amyloid Precursor Protein Metabolic Pathways in Db/Db Mice

Authors: Juan Huang, Nanqu Huang, Jingshan Shi, Yu Qiu

Abstract:

Objectives: There are pathophysiological connections between type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD), and research on drugs with hypoglycemic and beta-amyloid (Aβ)-clearing effects have great therapeutic potential for AD. Dendrobium nobile Lindl. Alkaloids (DNLA) as one of the active compounds of Dendrobium nobile Lindl. In this study, we attempted to verify the hypoglycemic effect and investigate the effects of DNLA on the amyloid precursor protein (APP) metabolic pathway of the hippocampus in db/db mice. Methods: 4-weeks-old male C57BL/KsJ mice were the control group. And the same age and sexuality db/db mice were: model, DNLA-L (20 mg/kg), DNLA-M (40 mg/kg), and DNLA-H (80 mg/kg). After, mice were treated with different concentrations of DNLA for 17 weeks. The fasting blood glucose (FBG) was detected by glucose oxidase assay every week from the 4th to last week. The protein expression of β-amyloid 1-42 (Aβ1-42), β-site amyloid precursor protein-cleaving enzyme 1 (BACE1), and APP were examined by Western blotting. Results: The concentration of FBG and the protein expression of Aβ1-42, BACE1, and APP were increased in the hippocampus of the model group. Moreover, DNLA not only significantly decreased the concentration of FBG but also reduced the protein expressions of Aβ1-42, BACE1 and APP in the hippocampus of db/db mice in a dose-dependent manner. Conclusions: DNLA can decrease the protein expressions of Aβ1-42 in the hippocampus of db/db mice, and the mechanism may be involved in the APP metabolic pathway.

Keywords: Alzheimer's disease, type 2 diabetes mellitus, β-site amyloid precursor protein-cleaving enzyme 1, traditional Chinese medicines, beta-amyloid

Procedia PDF Downloads 252
7500 Economic Determinants of Maize Production in 2013-2014 in the Individual Farm

Authors: Ewa Krasnodębska

Abstract:

The article presents the costs and income maize cultivation for grain four selected varieties with different numbers of FAO in 2013-2014. Results of the experiments are derived from a field experiment conducted in indywidulnym farm specializing in the production plant located in the eastern part of Mazowieckie voivodship. The experiment examined the profitability of four varieties of maize cultivation: medium early: P8400 (FAO 240) and P8589 (FAO 250), and an average of late: PR38N86 (FAO 270) and P9027 (FAO 260). In order to evaluate the profitability of grain maize production was calculated income from 1 ha of crops in zł and profitability index taking into account the direct payments up to 1 ha. Analyzing the value of crop production can be concluded that the value of the total production of each variety was very much varied and very much depend on the sales price and yield of maize obtained from 1 ha of cultivation. The largest average seed yield of two years at a moisture content of 15% was achieved in a variety PR38N86, which amounted to 12.1 t / ha and the lowest in the variety P8400 - 9.8 t / ha. Income from 1 ha of crops including EU subsidies ranged from 4916.4 zł / ha in 2013 for variety and only 528.7 PR38N86 zł / ha for a variety of P8400 in 2014. Profitability index reached the highest average late PR38N86 variety of FAO 290 over the entire two-year period under study, and the lowest rate of profitability achieved P8400 medium early variety of FAO 240. The profitability of production ranged from 8964.0 zł / ha in 2013 for a variety of PR38N86 to 5616.0 zł / ha for a variety of P8400 in 2014. Cultivation of maize for grain production is attractive and does not require large amounts of work, but its economic rationale is based primarily on the resulting yield and the price of buying.

Keywords: corn, grain, income, profitability

Procedia PDF Downloads 391
7499 Antioxidant Responses and Malondialdehyde Levels in African Cat Fish (Clarias gariepinus) from Eleyele River in Nigeria

Authors: Oluwatosin Adetola Arojojoye, Olajumoke Olufunlayo Alao, Philip Odigili

Abstract:

This study investigated the extent of pollution in Eleyele River in Oyo State, Nigeria by investigating the antioxidant status and malondialdehyde levels (index of lipid peroxidation) in the organs of African Catfish, Clarias gariepinus from the river. Clarias gariepinus weighing between 250g-400g were collected from Eleyele River (a suspected polluted river) and Clarias gariepinus from a clean fish farm (Durantee fisheries) were used as the control. Levels of malondialdehyde, glutathione concentration (GSH) and activities of antioxidant enzymes - superoxide dismutase, catalase and glutathione-S-transferase (GST) were evaluated in the post-mitochondrial fractions of the liver, kidney and gills of the fishes. From the results, there were increases in malondialdehyde level and GSH concentration in the liver, kidney and gills of Clarias gariepinus from Eleyele River when compared with control. Glutathione-S-transferase activity was induced in the liver and kidney of Clarias gariepinus from Eleyele River when compared with control. However, the activity of this enzyme was depleted in the gills of fishes from Eleyele River compared with control. Also there was an induction in SOD activity in the liver of Clarias gariepinus from Eleyele River when compared with control but there was a decrease in the activity of this enzyme in the kidney and gills of fishes from Eleyele River compared with control. Increase in lipid peroxidation and alterations in antioxidant system in Clarias gariepinus from Eleyele River show that the fishes were under oxidative stress. These suggest that the river is polluted probably as a result of industrial, domestic and agricultural wastes frequently discharged into the river. This could pose serious health risks to consumers of water and aquatic organisms from the river.

Keywords: antioxidant, lipid peroxidation, Clarias gariepinus, Eleyele River

Procedia PDF Downloads 529
7498 Screening and Optimization of Pretreatments for Rice Straw and Their Utilization for Bioethanol Production Using Developed Yeast Strain

Authors: Ganesh Dattatraya Saratale, Min Kyu Oh

Abstract:

Rice straw is one of the most abundant lignocellulosic waste materials and its annual production is about 731 Mt in the world. This study treats the subject of effective utilization of this waste biomass for biofuels production. We have showed a comparative assessment of numerous pretreatment strategies for rice straw, comprising of major physical, chemical and physicochemical methods. Among the different methods employed for pretreatment alkaline pretreatment in combination with sodium chlorite/acetic acid delignification found efficient pretreatment with significant improvement in the enzymatic digestibility of rice straw. A cellulase dose of 20 filter paper units (FPU) released a maximum 63.21 g/L of reducing sugar with 94.45% hydrolysis yield and 64.64% glucose yield from rice straw, respectively. The effects of different pretreatment methods on biomass structure and complexity were investigated by FTIR, XRD and SEM analytical techniques. Finally the enzymatic hydrolysate of rice straw was used for ethanol production using developed Saccharomyces cerevisiae SR8. The developed yeast strain enabled efficient fermentation of xylose and glucose and produced higher ethanol production. Thus development of bioethanol production from lignocellulosic waste biomass is generic, applicable methodology and have great implication for using ‘green raw materials’ and producing ‘green products’ much needed today.

Keywords: rice straw, pretreatment, enzymatic hydrolysis, FPU, Saccharomyces cerevisiae SR8, ethanol fermentation

Procedia PDF Downloads 538
7497 CO₂ Capture by Membrane Applied to Steel Production Process

Authors: Alexandra-Veronica Luca, Letitia Petrescu

Abstract:

Steel production is a major contributor to global warming potential. An average value of 1.83 tons of CO₂ is emitted for every ton of steel produced, resulting in over 3.3 Mt of CO₂ emissions each year. The present paper is focused on the investigation and comparison of two O₂ separation methods and two CO₂ capture technologies applicable to iron and steel industry. The O₂ used in steel production comes from an Air Separation Unit (ASU) using distillation or from air separation using membranes. The CO₂ capture technologies are represented by a two-stage membrane separation process and the gas-liquid absorption using methyl di-ethanol amine (MDEA). Process modelling and simulation tools, as well as environmental tools, are used in the present study. The production capacity of the steel mill is 4,000,000 tones/year. In order to compare the two CO₂ capture technologies in terms of efficiency, performance, and sustainability, the following cases have been investigated: Case 1: steel production using O₂ from ASU and no CO₂ capture; Case 2: steel production using O₂ from ASU and gas-liquid absorption for CO₂ capture; Case 3: steel production using O₂ from ASU and membranes for CO₂ capture; Case 4: steel production using O₂ from membrane separation method and gas-liquid absorption for CO₂ capture and Case-5: steel production using membranes for air separation and CO₂ capture. The O₂ separation rate obtained in the distillation technology was about 96%, and about 33% in the membrane technology. Similarly, the O₂ purity resulting in the conventional process (i.e. distillation) is higher compared to the O₂ purity obtained in the membrane unit (e.g., 99.50% vs. 73.66%). The air flow-rate required for membrane separation is about three times higher compared to the air flow-rate for cryogenic distillation (e.g., 549,096.93 kg/h vs. 189,743.82 kg/h). A CO₂ capture rate of 93.97% was obtained in the membrane case, while the CO₂ capture rate for the gas-liquid absorption was 89.97%. A quantity of 6,626.49 kg/h CO₂ with a purity of 95.45% is separated from the total 23,352.83 kg/h flue-gas in the membrane process, while with absorption of 6,173.94 kg/h CO₂ with a purity of 98.79% is obtained from 21,902.04 kg/h flue-gas and 156,041.80 kg/h MDEA is recycled. The simulation results, performed using ChemCAD process simulator software, lead to the conclusion that membrane-based technology can be a suitable alternative for CO₂ removal for steel production. An environmental evaluation using Life Cycle Assessment (LCA) methodology was also performed. Considering the electricity consumption, the performance, and environmental indicators, Case 3 can be considered the most effective. The environmental evaluation, performed using GaBi software, shows that membrane technology can lead to lower environmental emissions if membrane production is based on benzene derived from toluene hydrodealkilation and chlorine and sodium hydroxide are produced using mixed technologies.

Keywords: CO₂ capture, gas-liquid absorption, Life Cycle Assessment, membrane separation, steel production

Procedia PDF Downloads 291
7496 Classification Framework of Production Planning and Scheduling Solutions from Supply Chain Management Perspective

Authors: Kwan Hee Han

Abstract:

In today’s business environments, frequent change of customer requirements is a tough challenge to manufacturing company. To cope with these challenges, a production planning and scheduling (PP&S) function might be established to provide accountability for both customer service and operational efficiency. Nowadays, many manufacturing firms have utilized PP&S software solutions to generate a realistic production plan and schedule to adapt to external changes efficiently. However, companies which consider the introduction of PP&S software solution, still have difficulties for selecting adequate solution to meet their specific needs. Since the task of PP&S is the one of major building blocks of SCM (Supply Chain Management) architecture, which deals with short term decision making in the production process of SCM, it is needed that the functionalities of PP&S should be analysed within the whole SCM process. The aim of this paper is to analyse the PP&S functionalities and its system architecture from the SCM perspective by using the criteria of level of planning hierarchy, major 4 SCM processes and problem-solving approaches, and finally propose a classification framework of PP&S solutions to facilitate the comparison among various commercial software solutions. By using proposed framework, several major PP&S solutions are classified and positioned according to their functional characteristics in this paper. By using this framework, practitioners who consider the introduction of computerized PP&S solutions in manufacturing firms can prepare evaluation and benchmarking sheets for selecting the most suitable solution with ease and in less time.

Keywords: production planning, production scheduling, supply chain management, the advanced planning system

Procedia PDF Downloads 198
7495 Survival Analysis Based Delivery Time Estimates for Display FAB

Authors: Paul Han, Jun-Geol Baek

Abstract:

In the flat panel display industry, the scheduler and dispatching system to meet production target quantities and the deadline of production are the major production management system which controls each facility production order and distribution of WIP (Work in Process). In dispatching system, delivery time is a key factor for the time when a lot can be supplied to the facility. In this paper, we use survival analysis methods to identify main factors and a forecasting model of delivery time. Of survival analysis techniques to select important explanatory variables, the cox proportional hazard model is used to. To make a prediction model, the Accelerated Failure Time (AFT) model was used. Performance comparisons were conducted with two other models, which are the technical statistics model based on transfer history and the linear regression model using same explanatory variables with AFT model. As a result, the Mean Square Error (MSE) criteria, the AFT model decreased by 33.8% compared to the existing prediction model, decreased by 5.3% compared to the linear regression model. This survival analysis approach is applicable to implementing a delivery time estimator in display manufacturing. And it can contribute to improve the productivity and reliability of production management system.

Keywords: delivery time, survival analysis, Cox PH model, accelerated failure time model

Procedia PDF Downloads 543
7494 Managing the Water Projects and Controlling Its Boundary Disturbances Which Affect the Water Supply

Authors: Sead A. Bakheet, Salah M. Elkoum, Asharaf A. Almaghribi

Abstract:

Disturbance defined as activity that malfunction, intrusion, or interruption. We have to look around for the source of the disturbance affecting the inputs and outputs of engineering projects, take the necessary actions to control them. In this paper we will present and discuss a production system consisting of three elements, inputs, the production process and outputs. The production process which we chose is the production of large diameter pre-stressed concrete cylinder pipes (out puts), in reality, the outputs are the starting points of the operation (laying the concrete pipes for transporting drinkable water). The main objective also to address the controlling methods of the natural resources and raw materials (basic inputs), study the disturbances affecting them as well as the output quality. The importance of making the right decision, which effect the final product quality will be summarized. Finally, we will address the proposals regarding the managing of secure water supply to the customers.

Keywords: disturbances, management, inputs, outputs, decision

Procedia PDF Downloads 62
7493 High Titer Cellulosic Ethanol Production Achieved by Fed-Batch Prehydrolysis Simultaneous Enzymatic Saccharification and Fermentation of Sulfite Pretreated Softwood

Authors: Chengyu Dong, Shao-Yuan Leu

Abstract:

Cellulosic ethanol production from lignocellulosic biomass can reduce our reliance on fossil fuel, mitigate climate change, and stimulate rural economic development. The relative low ethanol production (60 g/L) limits the economic viable of lignocellulose-based biorefinery. The ethanol production can be increased up to 80 g/L by removing nearly all the non-cellulosic materials, while the capital of the pretreatment process increased significantly. In this study, a fed-batch prehydrolysis simultaneously saccharification and fermentation process (PSSF) was designed to converse the sulfite pretreated softwood (~30% residual lignin) to high concentrations of ethanol (80 g/L). The liquefaction time of hydrolysis process was shortened down to 24 h by employing the fed-batch strategy. Washing out the spent liquor with water could eliminate the inhibition of the pretreatment spent liquor. However, the ethanol yield of lignocellulose was reduced as the fermentable sugars were also lost during the process. Fed-batch prehydrolyzing the while slurry (i.e. liquid plus solid fraction) pretreated softwood for 24 h followed by simultaneously saccharification and fermentation process at 28 °C can generate 80 g/L ethanol production. Fed-batch strategy is very effectively to eliminate the “solid effect” of the high gravity saccharification, so concentrating the cellulose to nearly 90% by the pretreatment process is not a necessary step to get high ethanol production. Detoxification of the pretreatment spent liquor caused the loss of sugar and reduced the ethanol yield consequently. The tolerance of yeast to inhibitors was better at 28 °C, therefore, reducing the temperature of the following fermentation process is a simple and valid method to produce high ethanol production.

Keywords: cellulosic ethanol, sulfite pretreatment, Fed batch PSSF, temperature

Procedia PDF Downloads 367
7492 Structural and Biochemical Characterization of Red and Green Emitting Luciferase Enzymes

Authors: Wael M. Rabeh, Cesar Carrasco-Lopez, Juliana C. Ferreira, Pance Naumov

Abstract:

Bioluminescence, the emission of light from a biological process, is found in various living organisms including bacteria, fireflies, beetles, fungus and different marine organisms. Luciferase is an enzyme that catalyzes a two steps oxidation of luciferin in the presence of Mg2+ and ATP to produce oxyluciferin and releases energy in the form of light. The luciferase assay is used in biological research and clinical applications for in vivo imaging, cell proliferation, and protein folding and secretion analysis. The luciferase enzyme consists of two domains, a large N-terminal domain (1-436 residues) that is connected to a small C-terminal domain (440-544) by a flexible loop that functions as a hinge for opening and closing the active site. The two domains are separated by a large cleft housing the active site that closes after binding the substrates, luciferin and ATP. Even though all insect luciferases catalyze the same chemical reaction and share 50% to 90% sequence homology and high structural similarity, they emit light of different colors from green at 560nm to red at 640 nm. Currently, the majority of the structural and biochemical studies have been conducted on green-emitting firefly luciferases. To address the color emission mechanism, we expressed and purified two luciferase enzymes with blue-shifted green and red emission from indigenous Brazilian species Amydetes fanestratus and Phrixothrix, respectively. The two enzymes naturally emit light of different colors and they are an excellent system to study the color-emission mechanism of luciferases, as the current proposed mechanisms are based on mutagenesis studies. Using a vapor-diffusion method and a high-throughput approach, we crystallized and solved the crystal structure of both enzymes, at 1.7 Å and 3.1 Å resolution respectively, using X-ray crystallography. The free enzyme adopted two open conformations in the crystallographic unit cell that are different from the previously characterized firefly luciferase. The blue-shifted green luciferase crystalized as a monomer similar to other luciferases reported in literature, while the red luciferases crystalized as an octamer and was also purified as an octomer in solution. The octomer conformation is the first of its kind for any insect’s luciferase, which might be relate to the red color emission. Structurally designed mutations confirmed the importance of the transition between the open and close conformations in the fine-tuning of the color and the characterization of other interesting mutants is underway.

Keywords: bioluminescence, enzymology, structural biology, x-ray crystallography

Procedia PDF Downloads 326
7491 The Impact of the Genetic Groups of Microorganisms on the Production of Mousy-Compounds

Authors: Pierre Moulis, Markus Herderich, Doris Rauhut, Patricia Ballestra

Abstract:

Nowadays, it is starting to be more frequent to detect wines with mousy off-flavor. The reasons behind this could be the significant decrease in sulphur dioxide, the increase in pH, and the trend for spontaneous fermentation in wine. This off-flavor can be produced by Brettanomyces bruxellensis or some Lactic acid bacteria. So far there is no study working on the influence of the genetic group on the production of these microorganisms. Objectives: The objectives of this research are to increase knowledge and to have a better understanding of the microbiological phenomena related to the production of the mousy off-flavor in the wine. Methodologies: In this research, microorganisms were screened in an N-heterocycle assay medium (this medium contained all known precursors) and the production of mousy compounds was quantified by Stir Bar Sorptive Extraction-Gas Chromatography-Mass Spectrometry (SBSE-GC-MS). Main contributions: Brettanomyces bruxellensis and Oenococcus oeni could produce mousiness at a different amount depending on the strain. But there is no group effect.

Keywords: mousy off-flavor, wine, Brettanomyces bruxellensis, Oenococcus oeni

Procedia PDF Downloads 101
7490 Angiotensin Converting Enzyme (ACE) and Angiotensinogen (AGT) Gene Variants in Pakistani Patients of Diabetes Mellitus and Diabetic Nephropathy

Authors: Rozeena Shaikh, Syed M Shahid, Jamil Ahmad, Qaisar Mansoor, Muhammad Ismail, Abid Azhar

Abstract:

Introduction: Diabetes mellitus (DM) is a prevalent non-communicable disease worldwide. In most high-income countries as well as middle-income and low- income countries. DM is among the top causes of deaths. DM may lead to many vascular complications like hypertension, nephropathy, retinopathy, neuropathy, and foot. Diabetic nephropathy (DN) characterized by persistent albuminuria is a leading cause of end stage renal failure (ESRF). Pathogenesis of diabetic nephropathy is implicated by the polymorphisms in genes encoding the components of reninangiotensin- aldosteron system (RAAS) which include angiotensinogen (AGT), angiotensin-II receptor and particularly angiotensin converting enzyme (ACE) gene. Method: Study subjects include 110 control, 110 patients with DM without hypertension, 110 patients with DM with hypertension and 110 patients with DN. Blood samples were collected for Biochemical analysis and PCR and sequencing for the specific region of both genes. Results: The frequency of DD genotype and D allele of ACE (I/D) was significantly (p<0.05) high in DM normotensive, DM hypertensive and DN patients when compared to control. The ACE G2350A genotypes and allele frequencies were significantly different (p<0.05) in DM hypertensive patients as compared to control and DN, while no difference was observed between DM normotensive and DN when compared to control. The genotypes and alleles of AGT (M268T) polymorphism were significantly different (p<0.05) in DM normotensive, DM hypertensive and DN when compared to control. Conclusion: The DD genotype and D allele of ACE (I/D), GG genotype and G allele of ACE (G2350A) and the TT genotype and T allele of AGT (M268T) polymorphism have shown a significant difference in genotype and allele frequencies between controls and patients.

Keywords: genetic variations, ACE, AGT, diabetes mellitus, diabetic nephropathy, Pakistan

Procedia PDF Downloads 392