Search results for: annular photocatalytic reactor
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 985

Search results for: annular photocatalytic reactor

385 Titania Assisted Metal-Organic Framework Matrix for Elevated Hydrogen Generation Combined with the Production of Graphene Sheets through Water-Splitting Process

Authors: Heba M. Gobara, Ahmed A. M. El-Naggar, Rasha S. El-Sayed, Amal A. AlKahlawy

Abstract:

In this study, metal organic framework (Cr-MIL-101) and TiO₂ nanoparticles were utilized as two semiconductors for water splitting process. The coupling of both semiconductors in order to improve the photocatalytic reactivity for the hydrogen production in presence of methanol as a hole scavenger under visible light (sunlight) has been performed. The forementioned semiconductors and the collected samples after water splitting application are characterized by several techniques viz., XRD, N₂ adsorption-desorption, TEM, ED, EDX, Raman spectroscopy and the total content of carbon. The results revealed an efficient yield of H₂ production with maximum purity 99.3% with the in-situ formation of graphene oxide nanosheets and multiwalled carbon nanotubes coated over the surface of the physically mixed Cr-MIL-101–TiO₂ system. The amount of H₂ gas produced was stored when using Cr-MIL-101 catalyst individually. The obtained data in this work provides promising candidate materials for pure hydrogen production as a clean fuel acquired from the water splitting process. In addition, the in-situ production of graphene nanosheets and carbon nanotubes is counted as promising advances for the presented process.

Keywords: hydrogen production, water splitting, photocatalysts, Graphene

Procedia PDF Downloads 165
384 Production of Geopolymers for Structural Applications from Fluidized Bed Combustion Bottom Ash

Authors: Thapelo Aubrey Motsieng

Abstract:

Fluidized bed combustion (FBC) is a clean coal technology used in the combustion of low-grade coals for power generation. The production of large solid wastes such as bottom ashes from this process is a problem. The bottom ash contains some toxic elements which can leach out soils and contaminate surface and ground water; for this reason, they can neither be disposed of in landfills nor lagoons anymore. The production of geopolymers from bottom ash for structural and concrete applications is an option for their disposal. In this study, the waste bottom ash obtained from the combustion of three low grade South African coals in a bubbling fluidized bed reactor was used to produce geopolymers. The geopolymers were cured in a household microwave. The results showed that the microwave curing enhanced the reactivity and strength of the geopolymers.

Keywords: bottom ash, geopolymers, coal, compressive strength

Procedia PDF Downloads 294
383 Detergent Removal from Rinsing Water by Peroxi Electrocoagulation Process

Authors: A. Benhadji, M. Taleb Ahmed

Abstract:

Among the various methods of treatment, advanced oxidation processes (AOP) are the most promising ones. In this study, Peroxi Electrocoagulation Process (PEP) was investigated for the treatment of detergent wastewater. The process was compared with electrooxidation treatment. The results showed that chemical oxygen demand (COD) was high 7584 mgO2.L-1, while the biochemical oxygen demand was low (250 mgO2.L-1). This wastewater was hardly biodegradable. Electrochemical process was carried out for the removal of detergent using a glass reactor with a volume of 1 L and fitted with three electrodes. A direct current (DC) supply was used. Samples were taken at various current density (0.0227 A/cm2 to 0.0378 A/cm2) and reaction time (1-2-3-4 and 5 hour). Finally, the COD was determined. The results indicated that COD removal efficiency of PEP was observed to increase with current intensity and reached to 77% after 5 h. The highest removal efficiency was observed after 5 h of treatment.

Keywords: AOP, COD, detergent, PEP, wastewater

Procedia PDF Downloads 98
382 Anatomical and Histological Characters of Cymbopogon nardus Roots and Its Mutagenic Properties

Authors: Pravaree Phuneerub, Chanida Palanuvej, Nijsiri Ruangrungsi

Abstract:

Cymbopogon nardus Rendel (Family Gramineae) is commonly known as citronella grass. The dried root of C. nardus is used for antipyretic, anti-inflammation, anti-analgesic and anticancer in traditional Thai medicine. Transverse sectional and pulverized C. nardus root were illustrated. The volatile oil was extracted from oil gland by hydrodistillation and analysed by GC/MS. Cymbopogon nardus root was exhaustively extracted by continuously maceration in ethanol and water respectively. The mutagenic and antimutagenic properties of the ethanol extract and fractionated water extract of C. nardus root were evaluated by Ames assay using the S. typhimurium strains TA98 and TA100 as the models. The result indicated that the anatomical character of root transverse section displayed epidermis, parenchyma, oil gland, phloem, xylem vessel, endodermis and pith. Histological characters of root powder showed parenchyma containing oleoresin, parenchyma in longitudinal view, reticulate vessel, annular vessel, starch granules and fragment of fiber. The root volatile oil was rich in sesquiterpenes dominated by elemol (22.87%) and alpha-eudesmol (16.09%). For mutagenic activity, the both extracts of C. nardus were no mutagenic toward S. typhimurium strains TA98 and TA100. Furthermore, the ethanol extract and fractionated water extract of C. nardus root demonstrated strong antimutagenic effect against of nitrite treated 1-aminopyrene to S. typhimurium strains TA98 and TA100. This present investigation suggested that the dried root extract of C. nardus can be further developed as promising antimutagenic agent.

Keywords: Cymbopogon nardus, volatile oil analysis, mutagenic, antimutagenic effect, Ames Salmonella assay

Procedia PDF Downloads 320
381 An Intelligent Prediction Method for Annular Pressure Driven by Mechanism and Data

Authors: Zhaopeng Zhu, Xianzhi Song, Gensheng Li, Shuo Zhu, Shiming Duan, Xuezhe Yao

Abstract:

Accurate calculation of wellbore pressure is of great significance to prevent wellbore risk during drilling. The traditional mechanism model needs a lot of iterative solving procedures in the calculation process, which reduces the calculation efficiency and is difficult to meet the demand of dynamic control of wellbore pressure. In recent years, many scholars have introduced artificial intelligence algorithms into wellbore pressure calculation, which significantly improves the calculation efficiency and accuracy of wellbore pressure. However, due to the ‘black box’ property of intelligent algorithm, the existing intelligent calculation model of wellbore pressure is difficult to play a role outside the scope of training data and overreacts to data noise, often resulting in abnormal calculation results. In this study, the multi-phase flow mechanism is embedded into the objective function of the neural network model as a constraint condition, and an intelligent prediction model of wellbore pressure under the constraint condition is established based on more than 400,000 sets of pressure measurement while drilling (MPD) data. The constraint of the multi-phase flow mechanism makes the prediction results of the neural network model more consistent with the distribution law of wellbore pressure, which overcomes the black-box attribute of the neural network model to some extent. The main performance is that the accuracy of the independent test data set is further improved, and the abnormal calculation values basically disappear. This method is a prediction method driven by MPD data and multi-phase flow mechanism, and it is the main way to predict wellbore pressure accurately and efficiently in the future.

Keywords: multiphase flow mechanism, pressure while drilling data, wellbore pressure, mechanism constraints, combined drive

Procedia PDF Downloads 152
380 Predicting Polyethylene Processing Properties Based on Reaction Conditions via a Coupled Kinetic, Stochastic and Rheological Modelling Approach

Authors: Kristina Pflug, Markus Busch

Abstract:

Being able to predict polymer properties and processing behavior based on the applied operating reaction conditions in one of the key challenges in modern polymer reaction engineering. Especially, for cost-intensive processes such as the high-pressure polymerization of low-density polyethylene (LDPE) with high safety-requirements, the need for simulation-based process optimization and product design is high. A multi-scale modelling approach was set-up and validated via a series of high-pressure mini-plant autoclave reactor experiments. The approach starts with the numerical modelling of the complex reaction network of the LDPE polymerization taking into consideration the actual reaction conditions. While this gives average product properties, the complex polymeric microstructure including random short- and long-chain branching is calculated via a hybrid Monte Carlo-approach. Finally, the processing behavior of LDPE -its melt flow behavior- is determined in dependence of the previously determined polymeric microstructure using the branch on branch algorithm for randomly branched polymer systems. All three steps of the multi-scale modelling approach can be independently validated against analytical data. A triple-detector GPC containing an IR, viscosimetry and multi-angle light scattering detector is applied. It serves to determine molecular weight distributions as well as chain-length dependent short- and long-chain branching frequencies. 13C-NMR measurements give average branching frequencies, and rheological measurements in shear and extension serve to characterize the polymeric flow behavior. The accordance of experimental and modelled results was found to be extraordinary, especially taking into consideration that the applied multi-scale modelling approach does not contain parameter fitting of the data. This validates the suggested approach and proves its universality at the same time. In the next step, the modelling approach can be applied to other reactor types, such as tubular reactors or industrial scale. Moreover, sensitivity analysis for systematically varying process conditions is easily feasible. The developed multi-scale modelling approach finally gives the opportunity to predict and design LDPE processing behavior simply based on process conditions such as feed streams and inlet temperatures and pressures.

Keywords: low-density polyethylene, multi-scale modelling, polymer properties, reaction engineering, rheology

Procedia PDF Downloads 107
379 Measurements of Radial Velocity in Fixed Fluidized Bed for Fischer-Tropsch Synthesis Using LDV

Authors: Xiaolai Zhang, Haitao Zhang, Qiwen Sun, Weixin Qian, Weiyong Ying

Abstract:

High temperature Fischer-Tropsch synthesis process use fixed fluidized bed as a reactor. In order to understand the flow behavior in the fluidized bed better, the research of how the radial velocity affect the entire flow field is necessary. Laser Doppler Velocimetry (LDV) was used to study the radial velocity distribution along the diameter direction of the cross-section of the particle in a fixed fluidized bed. The velocity in the cross-section is fluctuating within a small range. The direction of the speed is a random phenomenon. In addition to r/R is 1, the axial velocity are more than 6 times of the radial velocity, the radial velocity has little impact on the axial velocity in a fixed fluidized bed.

Keywords: Fischer-Tropsch synthesis, Fixed fluidized bed, LDV, Velocity

Procedia PDF Downloads 368
378 Landfill Leachate: A Promising Substrate for Microbial Fuel Cells

Authors: Jayesh M. Sonawane, Prakash C. Ghosh

Abstract:

Landfill leachate emerges as a promising feedstock for microbial fuel cells (MFCs). In the present investigation, direct air-breathing cathode-based MFCs are fabricated to investigate the potential of landfill leachate. Three MFCs that have different cathode areas are fabricated and investigated for 17 days under open circuit conditions. The maximum open circuit voltage (OCV) is observed to be as high as 1.29 V. The maximum cathode area specific power density achieved in the reactor is 1513 mW m-2. Further studies are under progress to understand the origin of high OCV obtained from landfill leachate-based MFCs.

Keywords: microbial fuel cells, landfill leachate, air-breathing cathode, performance study

Procedia PDF Downloads 284
377 Torrefaction of Biomass Pellets: Modeling of the Process in a Fixed Bed Reactor

Authors: Ekaterina Artiukhina, Panagiotis Grammelis

Abstract:

Torrefaction of biomass pellets is considered as a useful pretreatment technology in order to convert them into a high quality solid biofuel that is more suitable for pyrolysis, gasification, combustion and co-firing applications. In the course of torrefaction the temperature varies across the pellet, and therefore chemical reactions proceed unevenly within the pellet. However, the uniformity of the thermal distribution along the pellet is generally assumed. The torrefaction process of a single cylindrical pellet is modeled here, accounting for heat transfer coupled with chemical kinetics. The drying sub-model was also introduced. The non-stationary process of wood pellet decomposition is described by the system of non-linear partial differential equations over the temperature and mass. The model captures well the main features of the experimental data.

Keywords: torrefaction, biomass pellets, model, heat, mass transfer

Procedia PDF Downloads 455
376 Renewable Natural Gas Production from Biomass and Applications in Industry

Authors: Sarah Alamolhoda, Kevin J. Smith, Xiaotao Bi, Naoko Ellis

Abstract:

For millennials, biomass has been the most important source of fuel used to produce energy. Energy derived from biomass is renewable by re-growth of biomass. Various technologies are used to convert biomass to potential renewable products including combustion, gasification, pyrolysis and fermentation. Gasification is the incomplete combustion of biomass in a controlled environment that results in valuable products such as syngas, biooil and biochar. Syngas is a combustible gas consisting of hydrogen (H₂), carbon monoxide (CO), carbon dioxide (CO₂), and traces of methane (CH₄) and nitrogen (N₂). Cleaned syngas can be used as a turbine fuel to generate electricity, raw material for hydrogen and synthetic natural gas production, or as the anode gas of solid oxide fuel cells. In this work, syngas as a product of woody biomass gasification in British Columbia, Canada, was introduced to two consecutive fixed bed reactors to perform a catalytic water gas shift reaction followed by a catalytic methanation reaction. The water gas shift reaction is a well-established industrial process and used to increase the hydrogen content of the syngas before the methanation process. Catalysts were used in the process since both reactions are reversible exothermic, and thermodynamically preferred at lower temperatures while kinetically favored at elevated temperatures. The water gas shift reactor and the methanation reactor were packed with Cu-based catalyst and Ni-based catalyst, respectively. Simulated syngas with different percentages of CO, H₂, CH₄, and CO₂ were fed to the reactors to investigate the effect of operating conditions in the unit. The water gas shift reaction experiments were done in the temperature of 150 ˚C to 200 ˚C, and the pressure of 550 kPa to 830 kPa. Similarly, methanation experiments were run in the temperature of 300 ˚C to 400 ˚C, and the pressure of 2340 kPa to 3450 kPa. The Methanation reaction reached 98% of CO conversion at 340 ˚C and 3450 kPa, in which more than half of CO was converted to CH₄. Increasing the reaction temperature caused reduction in the CO conversion and increase in the CH₄ selectivity. The process was designed to be renewable and release low greenhouse gas emissions. Syngas is a clean burning fuel, however by going through water gas shift reaction, toxic CO was removed, and hydrogen as a green fuel was produced. Moreover, in the methanation process, the syngas energy was transformed to a fuel with higher energy density (per volume) leading to reduction in the amount of required fuel that flows through the equipment and improvement in the process efficiency. Natural gas is about 3.5 times more efficient (energy/ volume) than hydrogen and easier to store and transport. When modification of existing infrastructure is not practical, the partial conversion of renewable hydrogen to natural gas (with up to 15% hydrogen content), the efficiency would be preserved while greenhouse gas emission footprint is eliminated.

Keywords: renewable natural gas, methane, hydrogen, gasification, syngas, catalysis, fuel

Procedia PDF Downloads 81
375 Electromagnetic-Mechanical Stimulation on PC12 for Enhancement of Nerve Axonal Extension

Authors: E. Nakamachi, K. Matsumoto, K. Yamamoto, Y. Morita, H. Sakamoto

Abstract:

In recently, electromagnetic and mechanical stimulations have been recognized as the effective extracellular environment stimulation technique to enhance the defected peripheral nerve tissue regeneration. In this study, we developed a new hybrid bioreactor by adopting 50 Hz uniform alternative current (AC) magnetic stimulation and 4% strain mechanical stimulation. The guide tube for nerve regeneration is mesh structured tube made of biodegradable polymer, such as polylatic acid (PLA). However, when neural damage is large, there is a possibility that peripheral nerve undergoes necrosis. So it is quite important to accelerate the nerve tissue regeneration by achieving enhancement of nerve axonal extension rate. Therefore, we try to design and fabricate the system that can simultaneously load the uniform AC magnetic field stimulation and the stretch stimulation to cells for enhancement of nerve axonal extension. Next, we evaluated systems performance and the effectiveness of each stimulation for rat adrenal pheochromocytoma cells (PC12). First, we designed and fabricated the uniform AC magnetic field system and the stretch stimulation system. For the AC magnetic stimulation system, we focused on the use of pole piece structure to carry out in-situ microscopic observation. We designed an optimum pole piece structure using the magnetic field finite element analyses and the response surface methodology. We fabricated the uniform AC magnetic field stimulation system as a bio-reactor by adopting analytically determined design specifications. We measured magnetic flux density that is generated by the uniform AC magnetic field stimulation system. We confirmed that measurement values show good agreement with analytical results, where the uniform magnetic field was observed. Second, we fabricated the cyclic stretch stimulation device under the conditions of particular strains, where the chamber was made of polyoxymethylene (POM). We measured strains in the PC12 cell culture region to confirm the uniform strain. We found slightly different values from the target strain. Finally, we concluded that these differences were allowable in this mechanical stimulation system. We evaluated the effectiveness of each stimulation to enhance the nerve axonal extension using PC12. We confirmed that the average axonal extension length of PC12 under the uniform AC magnetic stimulation was increased by 16 % at 96 h in our bio-reactor. We could not confirm that the axonal extension enhancement under the stretch stimulation condition, where we found the exfoliating of cells. Further, the hybrid stimulation enhanced the axonal extension. Because the magnetic stimulation inhibits the exfoliating of cells. Finally, we concluded that the enhancement of PC12 axonal extension is due to the magnetic stimulation rather than the mechanical stimulation. Finally, we confirmed that the effectiveness of the uniform AC magnetic field stimulation for the nerve axonal extension using PC12 cells.

Keywords: nerve cell PC12, axonal extension, nerve regeneration, electromagnetic-mechanical stimulation, bioreactor

Procedia PDF Downloads 244
374 Radiation Hardness Materials Article Review

Authors: S. Abou El-Azm, U. Kruchonak, M. Gostkin, A. Guskov, A. Zhemchugov

Abstract:

Semiconductor detectors are widely used in nuclear physics and high-energy physics experiments. The application of semiconductor detectors could be limited by their ultimate radiation resistance. The increase of radiation defects concentration leads to significant degradation of the working parameters of semiconductor detectors. The investigation of radiation defects properties in order to enhance the radiation hardness of semiconductor detectors is an important task for the successful implementation of a number of nuclear physics experiments; we presented some information about radiation hardness materials like diamond, sapphire and CdTe. Also, the results of measurements I-V characteristics, charge collection efficiency and its dependence on the bias voltage for different doses of high resistivity (GaAs: Cr) and Si at LINAC-200 accelerator and reactor IBR-2 are presented.

Keywords: semiconductor detectors, radiation hardness, GaAs, Si, CCE, I-V, C-V

Procedia PDF Downloads 85
373 High Rate Bio-Methane Generation from Petrochemical Wastewater Using Improved CSTR

Authors: Md. Nurul Islam Siddique, A. W. Zularisam

Abstract:

The effect of gradual increase in organic loading rate (OLR) and temperature on biomethanation from petrochemical wastewater treatment was investigated using CSTR. The digester performance was measured at hydraulic retention time (HRT) of 4 to 2d, and start up procedure of the reactor was monitored for 60 days via chemical oxygen demand (COD) removal, biogas and methane production. By enhancing the temperature from 30 to 55 ˚C Thermophilic condition was attained, and pH was adjusted at 7 ± 0.5 during the experiment. Supreme COD removal competence was 98±0.5% (r = 0.84) at an OLR of 7.5 g-COD/Ld and 4d HRT. Biogas and methane yield were logged to an extreme of 0.80 L/g-CODremoved d (r = 0.81), 0.60 L/g-CODremoved d (r = 0.83), and mean methane content of biogas was 65.49%. The full acclimatization was established at 55 ˚C with high COD removal efficiency and biogas production. An OLR of 7.5 g-COD/L d and HRT of 4 days were apposite for petrochemical wastewater treatment.

Keywords: anaerobic digestion, petrochemical wastewater, CSTR, methane

Procedia PDF Downloads 333
372 Microwave Production of Geopolymers Using Fluidized Bed Combustion Bottom Ash

Authors: Osholana Tobi Stephen, Rotimi Emmanuel Sadiku, Bilainu Oboirien.o

Abstract:

Fluidized bed combustion (FBC) is a clean coal technology used in the combustion of low-grade coals for power generation. The production of large solid wastes such as bottom ashes from this process is a problem. The bottom ash contains some toxic elements which can leach out soils and contaminate surface and ground water; for this reason, they can neither be disposed in landfills nor lagoons anymore. The production of geopolymers from bottom ash for structural and concrete applications is an option for their disposal. In this study, the waste bottom ash obtained from the combustion of three low grade South African coals in a bubbling fluidized bed reactor was used to produce geopolymers. The geopolymers were cured in a household microwave. The results showed that the microwave curing enhanced the reactivity and strength of the geopolymers.

Keywords: bottom ash, coal, fluidized bed combustion (FBC) geopolymer, compressive strength

Procedia PDF Downloads 291
371 Comparison between Conventional Bacterial and Algal-Bacterial Aerobic Granular Sludge Systems in the Treatment of Saline Wastewater

Authors: Philip Semaha, Zhongfang Lei, Ziwen Zhao, Sen Liu, Zhenya Zhang, Kazuya Shimizu

Abstract:

The increasing generation of saline wastewater through various industrial activities is becoming a global concern for activated sludge (AS) based biological treatment which is widely applied in wastewater treatment plants (WWTPs). As for the AS process, an increase in wastewater salinity has negative impact on its overall performance. The advent of conventional aerobic granular sludge (AGS) or bacterial AGS biotechnology has gained much attention because of its superior performance. The development of algal-bacterial AGS could enhance better nutrients removal, potentially reduce aeration cost through symbiotic algae-bacterial activity, and thus, can also reduce overall treatment cost. Nonetheless, the potential of salt stress to decrease biomass growth, microbial activity and nutrient removal exist. Up to the present, little information is available on saline wastewater treatment by algal-bacterial AGS. To the authors’ best knowledge, a comparison of the two AGS systems has not been done to evaluate nutrients removal capacity in the context of salinity increase. This study sought to figure out the impact of salinity on the algal-bacterial AGS system in comparison to bacterial AGS one, contributing to the application of AGS technology in the real world of saline wastewater treatment. In this study, the salt concentrations tested were 0 g/L, 1 g/L, 5 g/L, 10 g/L and 15 g/L of NaCl with 24-hr artificial illuminance of approximately 97.2 µmol m¯²s¯¹, and mature bacterial and algal-bacterial AGS were used for the operation of two identical sequencing batch reactors (SBRs) with a working volume of 0.9 L each, respectively. The results showed that salinity increase caused no apparent change in the color of bacterial AGS; while for algal-bacterial AGS, its color was progressively changed from green to dark green. A consequent increase in granule diameter and fluffiness was observed in the bacterial AGS reactor with the increase of salinity in comparison to a decrease in algal-bacterial AGS diameter. However, nitrite accumulation peaked from 1.0 mg/L and 0.4 mg/L at 1 g/L NaCl in the bacterial and algal-bacterial AGS systems, respectively to 9.8 mg/L in both systems when NaCl concentration varied from 5 g/L to 15 g/L. Almost no ammonia nitrogen was detected in the effluent except at 10 g/L NaCl concentration, where it averaged 4.2 mg/L and 2.4 mg/L, respectively, in the bacterial and algal-bacterial AGS systems. Nutrients removal in the algal-bacterial system was relatively higher than the bacterial AGS in terms of nitrogen and phosphorus removals. Nonetheless, the nutrient removal rate was almost 50% or lower. Results show that algal-bacterial AGS is more adaptable to salinity increase and could be more suitable for saline wastewater treatment. Optimization of operation conditions for algal-bacterial AGS system would be important to ensure its stably high efficiency in practice.

Keywords: algal-bacterial aerobic granular sludge, bacterial aerobic granular sludge, Nutrients removal, saline wastewater, sequencing batch reactor

Procedia PDF Downloads 125
370 The Analysis of TRACE/PARCS in the Simulation of Ultimate Response Guideline for Lungmen ABWR

Authors: J. R. Wang, W. Y. Li, H. T. Lin, B. H. Lee, C. Shih, S. W. Chen

Abstract:

In this research, the TRACE/PARCS model of Lungmen ABWR has been developed for verification of ultimate response guideline (URG) efficiency. This ultimate measure was named as DIVing plan, abbreviated from system depressurization, water injection and containment venting. The simulation initial condition is 100% rated power/100% rated core flow. This research focuses on the estimation of the time when the fuel might be damaged with no water injection by using TRACE/PARCS first. Then, the effect of the reactor core isolation system (RCIC), control depressurization and ac-independent water addition system (ACIWA), which can provide the injection with 950 gpm are also estimated for the station blackout (SBO) transient.

Keywords: ABWR, TRACE, safety analysis, PARCS

Procedia PDF Downloads 439
369 Sono- and Photocatalytic Degradation of Indigocarmine in Water Using ZnO

Authors: V. Veena, Suguna Yesodharan, E. P. Yesodharan

Abstract:

Two Advanced Oxidation Processes (AOP) i.e., sono- and photo-catalysis mediated by semiconductor oxide catalyst, ZnO has been found effective for the removal of trace amounts of the toxic dye pollutant Indigocarmine (IC) from water. The effect of various reaction parameters such as concentration of the dye, catalyst dosage, temperature, pH, dissolved oxygen etc. as well as the addition of oxidisers and presence of salts in water on the rate of degradation has been evaluated and optimised. The degradation follows variable kinetics depending on the concentration of the substrate, the order of reaction varying from 1 to 0 with increase in concentration. The reaction proceeds through a number of intermediates and many of them have been identified using GCMS technique. The intermediates do not affect the rate of degradation significantly. The influence of anions such as chloride, sulphate, fluoride, carbonate, bicarbonate, phosphate etc. on the degradation of IC is not consistent and does not follow any predictable pattern. Phosphates and fluorides inhibit the degradation while chloride, sulphate, carbonate and bicarbonate enhance. Adsorption studies of the dye in the absence as well as presence of these anions show that there may not be any direct correlation between the adsorption of the dye on the catalyst and the degradation. Oxidants such as hydrogen peroxide and persulphate enhance the degradation though the combined effect and it is less than the cumulative effect of individual components. COD measurements show that the degradation proceeds to complete mineralisation. The results will be presented and probable mechanism for the degradation will be discussed.

Keywords: AOP, COD, indigocarmine, photocatalysis, sonocatalysis

Procedia PDF Downloads 307
368 Comparison of Two-Phase Critical Flow Models for Estimation of Leak Flow Rate through Cracks

Authors: Tadashi Watanabe, Jinya Katsuyama, Akihiro Mano

Abstract:

The estimation of leak flow rates through narrow cracks in structures is of importance for nuclear reactor safety, since the leak flow could be detected before occurrence of loss-of-coolant accidents. The two-phase critical leak flow rates are calculated using the system analysis code, and two representative non-homogeneous critical flow models, Henry-Fauske model and Ransom-Trapp model, are compared. The pressure decrease and vapor generation in the crack, and the leak flow rates are found to be larger for the Henry-Fauske model. It is shown that the leak flow rates are not affected by the structural temperature, but affected largely by the roughness of crack surface.

Keywords: crack, critical flow, leak, roughness

Procedia PDF Downloads 155
367 Systematic Study of Mutually Inclusive Influence of Temperature and Substitution on the Coordination Geometry of Co(II) in a Series of Coordination Polymer and Their Properties

Authors: Manasi Roy, Raju Mondal

Abstract:

During last two decades the synthesis and design of MOFs or novel coordination polymers (CPs) has flourished as an emerging area of research due to their role as functional materials. Accordingly, ten new cobalt-based MOFs have been synthesized using a simple bispyrazole ligand, 4,4′-methylene-bispyrazole (H2MBP), and isophthalic acid (H2IPA) and its four 5-substituted derivatives R-H2IPA (R = COOH, OH, tBu, NH2). The major aim of this study was to validate the mutual influence of temperature and substitutions on the final structural self-assembly. Five different isophthalic acid derivatives were used to study the influence of substituents while each reaction was carried out at two different temperatures to assess the temperature effect. A clear correlation was observed between the reaction temperature and the coordination number of the cobalt atoms which consequently changes the self assembly pattern. Another fact that the periodical change in coordination number did bring about some systematic changes in the structural network via secondary building unit selectivity. With the presence of a tunable cavity inside the network, and unsaturated metal centers, MOFs show highly encouraging photocatalytic degradation of toxic dye with a potential application in waste water purification. Another fascinating aspect of this work is the construction of magnetic coordination polymers with the occurrence of a not-so-common MCE behavior of cobalt-based MOF.

Keywords: MOFs, temperature effect, MCE, dye degradation

Procedia PDF Downloads 114
366 High Productivity Fed-Batch Process for Biosurfactant Production for Enhanced Oil Recovery Applications

Authors: G. A. Amin, A. D. Al-Talhi

Abstract:

The bacterium B. subtilis produced surfactin in conventional batch culture as a growth associated product and a growth rate (0.4 h-1). A fed-batch process was developed and the fermentative substrate and other nutrients were fed on hourly basis and according to the growth rate of the bacterium. Conversion of different quantities of Maldex-15 into surfactin was investigated in five different fermentation runs. In all runs, most of Maldex-15 was consumed and converted into surfactin and cell biomass with appreciable efficiencies. The best results were obtained with fermentation run supplied with 200 g Maldex-15. Up to 35.4 g.l-1 of surfactin and cell biomass of 30.2 g.l-1 were achieved in 12 hrs. Also, markedly substrate yield of 0.269 g/g and volumetric reactor productivity of 2.61 g.1-1.h-1 were obtained confirming the establishment of a cost effective commercial surfactin production.

Keywords: Bacillus subtilis, biosurfactant, exponentially fed-batch fermentation, surfactin

Procedia PDF Downloads 507
365 Ab Initio Multiscale Catalytic Synthesis/Cracking Reaction Modelling of Ammonia as Liquid Hydrogen Carrier

Authors: Blaž Likozar, Andraž Pavlišič, Matic Pavlin, Taja Žibert, Aleksandra Zamljen, Sašo Gyergyek, Matej Huš

Abstract:

Ammonia is gaining recognition as a carbon-free fuel for energy-intensive applications, particularly transportation, industry, and power generation. Due to its physical properties, high energy density of 3 kWh kg-1, and high gravimetric hydrogen capacity of 17.6 wt%, ammonia is an efficient energy vector for green hydrogen, capable of mitigating hydrogen’s storage, distribution, and infrastructure deployment limitations. Chemicalstorage in the form of ammonia provides an efficient and affordable solution for energy storage, which is currently a critical step in overcoming the intermittency of abundant renewable energy sources with minimal or no environmental impact. Experiments were carried out to validate the modelling in a packed bed reactor, which proved to be agreeing.

Keywords: hydrogen, ammonia, catalysis, modelling, kinetics

Procedia PDF Downloads 34
364 Measurements of Scattering Cross Sections for 5.895 keV Photons in Various Polymers

Authors: H. Duggal, G. Singh, G. Singh, A. Bhalla, S. Kumar, J. S. Shahi, D. Mehta

Abstract:

The total differential cross section for scattering of the 5.895 keV photons by various polymers has been measured at scattering angle of 135o. The experimental measurements were carried out using the energy dispersive setup involving annular source of the 55Fe radioisotope and a low energy germanium (LEGe) detector. The cross section values are measured for 20 polymer targets namely, Paraffin Wax, Polytetrafluoro ethylene (PTFE), Cellulose, Silicone oil, Polyvinyl alcohol (PVA), Polyvinyl purrolidone (PVP), Polymethyl methacrylate (PMMA), Kapton, Mylar, Chitosan, Polyvinyl chloride (PVC), Bakelite, Carbopol, Chlorobutyl rubber (CBR), Polyetylene glycol (PEG), Polysorbate-20, Nylon-6, Cetyl alcohol, Carboxyl methyl sodium cellulose and Sodium starch glucolate. The measurements were performed in vacuum so as to avoid scattering contribution due to air and strong absorption of low energy photons in the air column. In the present investigations, the geometrical factor and efficiency of the detector were determined by measuring the K x-rays emitted from the 22Ti and 23V targets excited by the Mn K x-rays in the same experimental set up. The measured scattering cross sections have been compared with the sum of theoretically calculated elastic and inelastic scattering cross sections. The theoretical elastic (Rayleigh) scattering cross sections based on the various form factor approximations, namely, non-relativistic form factor (NF), relativistic form factor (RF), modified form factor (MF), and MF with anomalous scattering factor (ASF) as well as the second order S-matrix formalisms, and the inelastic scattering differential cross sections based on the Klein-Nishina formula after including the inelastic scattering function (KN+ISF) have been calculated. The experimental results show fairly good agreement with theoretical cross sections.

Keywords: photon, polymers, elastic and inelastic, scattering cross sections

Procedia PDF Downloads 664
363 Pervaporation of Dimethyl Carbonate / Methanol / Water Mixtures Using Zeolite Membranes

Authors: Jong-Ho Moon, Dong-Ho Lee, Hyunuk Kim, Young Cheol Park, Jong-Seop Lee, Jae-deok Jeon, Hyung-Keun Lee

Abstract:

A novel membrane reactor process for DMC synthesis from carbon dioxide has been developing in Korea Institute of Energy Research. The scheme of direct synthesis of DMC from CO₂ and Methanol is 'CO₂ + 2MeOH ↔ DMC + H₂O'. Among them, reactants are CO₂ and MeOH, product is DMC, and byproduct is H₂O (water). According to Le Chatelier’s principle, removing byproduct (water) can shift the reaction equilibrium to the right (DMC production). The main purpose of this process is removing water during the reaction. For efficient in situ water removal (dehydration) and DMC separation, zeolite 4A membranes with very small pore diameter and hydrophilicity were introduced. In this study, pervaporation performances of binary and ternary DMC / methanol / water mixtures were evaluated.

Keywords: dimehtyl carbonate, methanol, water, zeolite membrane, pervaporation

Procedia PDF Downloads 341
362 Right Ventricular Dynamics During Breast Cancer Chemotherapy in Low Cardiovascular Risk Patients

Authors: Nana Gorgiladze, Tamar Gaprindashvili, Mikheil Shavdia, Zurab Pagava

Abstract:

Introduction/Purpose Chemotherapy is a common treatment for breast cancer, but it can also cause damage to the heart and blood vessels. This damage, known as cancer therapy-related cardiovascular toxicity (CTR-CVT), can increase the risk of heart failure and death in breast cancer patients. The left ventricle is often affected by CTR-CVT, but the right ventricle (RV) may also be vulnerable to CTR-CVT and may show signs of dysfunction before the left ventricle. The study aims to investigate how the RV function changes during chemotherapy for breast cancer by using conventional echocardiographic and global longitudinal strain (GLS) techniques. By measuring the GLS strain of the RV, researchers tend to detect early signs of CTR-CVT and improve the management of breast cancer patients. Methods The study was conducted on 28 women with low cardiovascular risk who received anthracycline chemotherapy for breast cancer. Conventional 2D echocardiography (LVEF, RVS’, TAPSE) and speckle-tracking echocardiography (STE) measurements of the left and right ventricles (LVGLS, RVGLS) were used to assess cardiac function before and after chemotherapy. All patients had normal LVEF at the beginning of the study. Cardiotoxicity was defined as a new LVEF reduction of 10 percentage points to an LVEF of 40-49% and/or a new decline in GLS of 15% from baseline, as proposed by the most recent cardio-oncology guideline. ResultsThe research found that the LVGLS decreased from -21.2%2.1% to -18.6%2.6% (t-test = -4.116; df = 54, p=0.001). The change in value LV-GLS was 2.6%3.0%. The mean percentage change of the LVGLS was 11,6%13,3%; p=0.001. Similarly, the right ventricular global longitudinal strain (RVGLS) decreased from -25.2%2.9% to -21.4%4.4% (t-test = -3.82; df = 54, p=0.001). The RV-GLS value of change was 3.8%3.6%. Likewise, the percentage decrease of the RVGLS was 15,0%14,3%, p=0.001.However, the measurements of the right ventricular systolic function (RVS) and tricuspid annular plane systolic excursion (TAPSE) were insignificant, and the left ventricular ejection fraction ( LVEF) remained unchanged.

Keywords: cardiotoxicity, chemotherapy, GLS, right ventricle

Procedia PDF Downloads 43
361 Comparison of Chemical Coagulation and Electrocoagulation for Boron Removal from Synthetic Wastewater Using Aluminium

Authors: Kartikaningsih Danis, Yao-Hui Huang

Abstract:

Various techniques including conventional and advanced have been employed for the boron treatment from water and wastewater. The electrocoagulation involves an electrolytic reactor for coagulation/flotation with aluminium as anode and cathode. There is aluminium as coagulant to be used for removal which may induce secondary pollution in chemical coagulation. The purpose of this study is to investigate and compare the performance between electrocoagulation and chemical coagulation on boron removal from synthetic wastewater. The effect of different parameters, such as pH reaction, coagulant dosage, and initial boron concentration were examined. The results show that the boron removal using chemical coagulation was lower. At the optimum condition (e.g. pH 8 and 0.8 mol coagulant dosage), boron removal efficiencies for chemical coagulation and electrocoagulation were 61% and 91%, respectively. In addition, the electrocoagulation needs no chemical reagents and makes the boron treatment easy for application.

Keywords: boron removal, chemical coagulation, aluminum, electro-coagulation

Procedia PDF Downloads 378
360 Photocatalytic Degradation of Toxic Phenols Using Zinc Oxide Doped Prussian Blue Nanocomposite

Authors: Rachna, Uma Shanker

Abstract:

Aromatic phenols, being priority pollutants, are found in various industrial effluents and seeking the attention of environmentalists worldwide, owing to their life-threatening effects. In the present study, the coupling of zinc oxide with Prussian blue was achieved involving co-precipitation synthesis process using Azadirachta indica plant extract. The fabricated nanocatalyst was employed for the sunlight mediated photodegradation of various phenols (Phenol, 3-Aminophenol, and 2,4-Dinitrophenol). Doping of zinc oxide with Prussian blue caused an increase in the surface area to value 80.109 m²g⁻¹ and also enhanced the semiconducting tendency of the nanocomposite with band gap energy 1.101 eV. The experiment was performed at different parameters of phenols concentration, catalyst amount, pH, time, and exposure of sunlight. The obtained results showed a lower elimination of 2,4-DNP (93%) than 3-AP (97%) and phenol (95%) owing to their molecular weight and basicity differences. In comparison to the starting material (zinc oxide and Prussian blue), nanocomposite was more capable in degrading the phenols and lowered the t1/2 value of phenol (4.405 h), 3-AP (4.04 h) and 2,4-DNP (4.68 h) to a greater extent. Effect of different foreign anions was also studied to check nanocomposite’s liability under natural conditions. The extent of charge recombination being the most limiting factor in the photodegradation of pollutants was determined through the photoluminescence. Sunlight active ZnO@FeHCF nanocomposite was proven to exhibit good catalytic ability up to 10 cycles.

Keywords: nanocomposite, phenols, photodegradation, sunlight, water

Procedia PDF Downloads 98
359 The Gasification of Acetone via Partial Oxidation in Supercritical Water

Authors: Shyh-Ming Chern, Kai-Ting Hsieh

Abstract:

Organic solvents find various applications in many industrial sectors and laboratories as dilution solvents, dispersion solvents, cleaners and even lubricants. Millions of tons of Spent Organic Solvents (SOS) are generated each year worldwide, prompting the need for more efficient, cleaner and safer methods for the treatment and resource recovery of SOS. As a result, acetone, selected as a model compound for SOS, was gasified in supercritical water to assess the feasibility of resource recovery of SOS by means of supercritical water processes. Experiments were conducted with an autoclave reactor. Gaseous product is mainly consists of H2, CO, CO2 and CH4. The effects of three major operating parameters, the reaction temperature, from 673 to 773K, the dosage of oxidizing agent, from 0.3 to 0.5 stoichiometric oxygen, and the concentration of acetone in the feed, 0.1 and 0.2M, on the product gas composition, yield and heating value were evaluated with the water density fixed at about 0.188g/ml.

Keywords: acetone, gasification, SCW, supercritical water

Procedia PDF Downloads 365
358 Investigation of a Single Feedstock Particle during Pyrolysis in Fluidized Bed Reactors via X-Ray Imaging Technique

Authors: Stefano Iannello, Massimiliano Materazzi

Abstract:

Fluidized bed reactor technologies are one of the most valuable pathways for thermochemical conversions of biogenic fuels due to their good operating flexibility. Nevertheless, there are still issues related to the mixing and separation of heterogeneous phases during operation with highly volatile feedstocks, including biomass and waste. At high temperatures, the volatile content of the feedstock is released in the form of the so-called endogenous bubbles, which generally exert a “lift” effect on the particle itself by dragging it up to the bed surface. Such phenomenon leads to high release of volatile matter into the freeboard and limited mass and heat transfer with particles of the bed inventory. The aim of this work is to get a better understanding of the behaviour of a single reacting particle in a hot fluidized bed reactor during the devolatilization stage. The analysis has been undertaken at different fluidization regimes and temperatures to closely mirror the operating conditions of waste-to-energy processes. Beechwood and polypropylene particles were used to resemble the biomass and plastic fractions present in waste materials, respectively. The non-invasive X-ray technique was coupled to particle tracking algorithms to characterize the motion of a single feedstock particle during the devolatilization with high resolution. A high-energy X-ray beam passes through the vessel where absorption occurs, depending on the distribution and amount of solids and fluids along the beam path. A high-speed video camera is synchronised to the beam and provides frame-by-frame imaging of the flow patterns of fluids and solids within the fluidized bed up to 72 fps (frames per second). A comprehensive mathematical model has been developed in order to validate the experimental results. Beech wood and polypropylene particles have shown a very different dynamic behaviour during the pyrolysis stage. When the feedstock is fed from the bottom, the plastic material tends to spend more time within the bed than the biomass. This behaviour can be attributed to the presence of the endogenous bubbles, which drag effect is more pronounced during the devolatilization of biomass, resulting in a lower residence time of the particle within the bed. At the typical operating temperatures of thermochemical conversions, the synthetic polymer softens and melts, and the bed particles attach on its outer surface, generating a wet plastic-sand agglomerate. Consequently, this additional layer of sand may hinder the rapid evolution of volatiles in the form of endogenous bubbles, and therefore the establishment of a poor drag effect acting on the feedstock itself. Information about the mixing and segregation of solid feedstock is of prime importance for the design and development of more efficient industrial-scale operations.

Keywords: fluidized bed, pyrolysis, waste feedstock, X-ray

Procedia PDF Downloads 149
357 Production, Quality Control and Biodistribution Assessment of 166 Ho-BPAMD as a New Bone Seeking Agent

Authors: H. Yousefnia, N. Amraee, M. Hosntalab, S. Zolghadri, A. Bahrami-Samani

Abstract:

The aim of this study was the preparation of a new agent for bone marrow ablation in patients with multiple myeloma. 166Ho was produced at Tehran research reactor via 165Ho(n,γ)166Ho reaction. Complexion of Ho‐166 with BPAMD was carried out by the addition of about 200µg of BPAMD in absolute water to 1 mci of 166HoCl3 and warming up the mixture 90 0C for 1 h. 166Ho-BPAMD was prepared successfully with radio chemical purity of 95% which was measured by ITLC method. The final solution was injected to wild-type mice and bio distribution was determined up to 48 h. SPECT images were acquired after 2 and 48 h post injection. Both the bio distribution studies and SPECT imaging indicated high bone uptake, while accumulation in other organs was approximately negligible. The results show that 166Ho-BPAMD has suitable characteristics and can be used as a new bone marrow ablative agent.

Keywords: bone marrow ablation, BPAMD, 166Ho, SPECT

Procedia PDF Downloads 483
356 Biogas Control: Methane Production Monitoring Using Arduino

Authors: W. Ait Ahmed, M. Aggour, M. Naciri

Abstract:

Extracting energy from biomass is an important alternative to produce different types of energy (heat, electricity, or both) assuring low pollution and better efficiency. It is a new yet reliable approach to reduce green gas emission by extracting methane from industry effluents and use it to power machinery. We focused in our project on using paper and mill effluents, treated in a UASB reactor. The methane produced is used in the factory’s power supply. The aim of this work is to develop an electronic system using Arduino platform connected to a gas sensor, to measure and display the curve of daily methane production on processing. The sensor will send the gas values in ppm to the Arduino board so that the later sends the RS232 hardware protocol. The code developed with processing will transform the values into a curve and display it on the computer screen.

Keywords: biogas, Arduino, processing, code, methane, gas sensor, program

Procedia PDF Downloads 285