Search results for: agent based modelling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30228

Search results for: agent based modelling

29628 A Bacterial Foraging Optimization Algorithm Applied to the Synthesis of Polyacrylamide Hydrogels

Authors: Florin Leon, Silvia Curteanu

Abstract:

The Bacterial Foraging Optimization (BFO) algorithm is inspired by the behavior of bacteria such as Escherichia coli or Myxococcus xanthus when searching for food, more precisely the chemotaxis behavior. Bacteria perceive chemical gradients in the environment, such as nutrients, and also other individual bacteria, and move toward or in the opposite direction to those signals. The application example considered as a case study consists in establishing the dependency between the reaction yield of hydrogels based on polyacrylamide and the working conditions such as time, temperature, monomer, initiator, crosslinking agent and inclusion polymer concentrations, as well as type of the polymer added. This process is modeled with a neural network which is included in an optimization procedure based on BFO. An experimental study of BFO parameters is performed. The results show that the algorithm is quite robust and can obtain good results for diverse combinations of parameter values.

Keywords: bacterial foraging, hydrogels, modeling and optimization, neural networks

Procedia PDF Downloads 151
29627 Visco-Acoustic Full Wave Inversion in the Frequency Domain with Mixed Grids

Authors: Sheryl Avendaño, Miguel Ospina, Hebert Montegranario

Abstract:

Full Wave Inversion (FWI) is a variant of seismic tomography for obtaining velocity profiles by an optimization process that combine forward modelling (or solution of wave equation) with the misfit between synthetic and observed data. In this research we are modelling wave propagation in a visco-acoustic medium in the frequency domain. We apply finite differences for the numerical solution of the wave equation with a mix between usual and rotated grids, where density depends on velocity and there exists a damping function associated to a linear dissipative medium. The velocity profiles are obtained from an initial one and the data have been modeled for a frequency range 0-120 Hz. By an iterative procedure we obtain an estimated velocity profile in which are detailed the remarkable features of the velocity profile from which synthetic data were generated showing promising results for our method.

Keywords: seismic inversion, full wave inversion, visco acoustic wave equation, finite diffrence methods

Procedia PDF Downloads 459
29626 Simulation and Experimental Study on Dual Dense Medium Fluidization Features of Air Dense Medium Fluidized Bed

Authors: Cheng Sheng, Yuemin Zhao, Chenlong Duan

Abstract:

Air dense medium fluidized bed is a typical application of fluidization techniques for coal particle separation in arid areas, where it is costly to implement wet coal preparation technologies. In the last three decades, air dense medium fluidized bed, as an efficient dry coal separation technique, has been studied in many aspects, including energy and mass transfer, hydrodynamics, bubbling behaviors, etc. Despite numerous researches have been published, the fluidization features, especially dual dense medium fluidization features have been rarely reported. In dual dense medium fluidized beds, different combinations of different dense mediums play a significant role in fluidization quality variation, thus influencing coal separation efficiency. Moreover, to what extent different dense mediums mix and to what extent the two-component particulate mixture affects the fluidization performance and quality have been in suspense. The proposed work attempts to reveal underlying mechanisms of generation and evolution of two-component particulate mixture in the fluidization process. Based on computational fluid dynamics methods and discrete particle modelling, movement and evolution of dual dense mediums in air dense medium fluidized bed have been simulated. Dual dense medium fluidization experiments have been conducted. Electrical capacitance tomography was employed to investigate the distribution of two-component mixture in experiments. Underlying mechanisms involving two-component particulate fluidization are projected to be demonstrated with the analysis and comparison of simulation and experimental results.

Keywords: air dense medium fluidized bed, particle separation, computational fluid dynamics, discrete particle modelling

Procedia PDF Downloads 380
29625 Developing A Third Degree Of Freedom For Opinion Dynamics Models Using Scales

Authors: Dino Carpentras, Alejandro Dinkelberg, Michael Quayle

Abstract:

Opinion dynamics models use an agent-based modeling approach to model people’s opinions. Model's properties are usually explored by testing the two 'degrees of freedom': the interaction rule and the network topology. The latter defines the connection, and thus the possible interaction, among agents. The interaction rule, instead, determines how agents select each other and update their own opinion. Here we show the existence of the third degree of freedom. This can be used for turning one model into each other or to change the model’s output up to 100% of its initial value. Opinion dynamics models represent the evolution of real-world opinions parsimoniously. Thus, it is fundamental to know how real-world opinion (e.g., supporting a candidate) could be turned into a number. Specifically, we want to know if, by choosing a different opinion-to-number transformation, the model’s dynamics would be preserved. This transformation is typically not addressed in opinion dynamics literature. However, it has already been studied in psychometrics, a branch of psychology. In this field, real-world opinions are converted into numbers using abstract objects called 'scales.' These scales can be converted one into the other, in the same way as we convert meters to feet. Thus, in our work, we analyze how this scale transformation may affect opinion dynamics models. We perform our analysis both using mathematical modeling and validating it via agent-based simulations. To distinguish between scale transformation and measurement error, we first analyze the case of perfect scales (i.e., no error or noise). Here we show that a scale transformation may change the model’s dynamics up to a qualitative level. Meaning that a researcher may reach a totally different conclusion, even using the same dataset just by slightly changing the way data are pre-processed. Indeed, we quantify that this effect may alter the model’s output by 100%. By using two models from the standard literature, we show that a scale transformation can transform one model into the other. This transformation is exact, and it holds for every result. Lastly, we also test the case of using real-world data (i.e., finite precision). We perform this test using a 7-points Likert scale, showing how even a small scale change may result in different predictions or a number of opinion clusters. Because of this, we think that scale transformation should be considered as a third-degree of freedom for opinion dynamics. Indeed, its properties have a strong impact both on theoretical models and for their application to real-world data.

Keywords: degrees of freedom, empirical validation, opinion scale, opinion dynamics

Procedia PDF Downloads 154
29624 Effect of Tapioca Starch on Fresh Properties Concrete

Authors: C. Samita, W. Chalermchai

Abstract:

This project is aimed to be a preliminary study of using Tapioca Starch as a viscosity modifying agent (VMA) in concrete work. Tapioca starch effects on the viscosity of concrete, which could be investigated from the workability of corresponding mortar. Cement only mortars with water to cement ratio (w/c) 0.25 to 0.48, superplasticizer dosage of 1% to 2.5%, starch concentration of 0%, 0.25% and 0.5%, was tested for workability. Mortar mixes that have equivalent workability (flow diameter of 250 mm, and funnel flow time of 5 seconds) for each starch concentration were identified and checked for concrete properties. Concrete were tested for initial workability, workability loss, bleeding, setting times, and compressive strength. The results showed that all concrete mixes provide same initial workability, however the mix with higher starch concentration provides slower loss. Bleeding occurs when concrete has w/c more than 0.45. For setting times, mixing with higher starch concentration provide longer setting times (around 4 hours in this experiment). Compressive strength of starch concretes which always have higher w/c, are lower than that of cement only concrete as in this experiment initial workability were controlled to be same.

Keywords: viscosity modifying agent(VMA), self-leveling concrete, self-compacting concrete(SCC), low-binder SCC

Procedia PDF Downloads 297
29623 Evaluation of Labelling Conditions, Quality Control, and Biodistribution Study of 99mTc- D-Aminolevulinic Acid (5-ALA)

Authors: Kalimullah Khan, Samina Roohi, Mohammad Rafi, Rizwana Zahoor

Abstract:

Labeling of 5-Aminolevulinic acid (5-ALA) with 99 mTc was achieved by using tin chloride dihydrate (Sncl2.2H2O) as reducing agent. Radiochemical purity and labeling efficiency was determined by Whattman paper No.3 and instant thin layer chromatographic strips impregnated with silica gel (ITLC/SG). Labeling efficiency was dependent on many parameters such as amount of ligand, reducing agent, pH, and incubation time. Therefore, optimum conditions for maximum labeling were selected. Stability of 99 mTc- 5-ALA was also checked in fresh human serum. Tissue bio-distribution of 99 mTc-5-ALA was evaluated in Spargue Dawley rats. 5-ALA was 98% labeled with 99 mTc under optimum conditions, i.e. 100µg of 5-ALA, pH: 4, 10µg of Sncl2.2H2O and 30 minutes incubation at room temperature. 99 mTc labelled 5- ALA remained stable for 24 hours in human serum. Bio-distribution study (%ID/gm) in rats revealed that maximum accumulation of 99 mTc-5-ALA was in liver, spleen, stomach and intestine after half hour, 4 hours, and 24 hours. Significant activity in bladder and urine indicated urinary mode of excretion.

Keywords: 99mTc-ALA, aminolevulinic acid, quality control, radiopharmaceuticals

Procedia PDF Downloads 382
29622 Excel-VBA as Modelling Platform for Thermodynamic Optimisation of an R290/R600a Cascade Refrigeration System

Authors: M. M. El-Awad

Abstract:

The availability of computers and educational software nowadays helps engineering students acquire better understanding of engineering principles and their applications. With these facilities, students can perform sensitivity and optimisation analyses which were not possible in the past by using slide-rules and hand calculators. Standard textbooks in engineering thermodynamics also use software such as Engineering Equation Solver (EES) and Interactive Thermodynamics (IT) for solving calculation-intensive and design problems. Unfortunately, engineering students in most developing countries do not have access to such applications which are protected by intellectual-property rights. This paper shows how Microsoft ExcelTM and VBA (Visual Basic for Applications), which are normally distributed with personal computers and laptops, can be used as an alternative modelling platform for thermodynamic analyses and optimisation. The paper describes the VBA user-defined-functions developed for determining the refrigerants properties with Excel. For illustration, the combination is used to model and optimise the intermediate temperature for a propane/iso-butane cascade refrigeration system.

Keywords: thermodynamic optimisation, engineering education, excel, VBA, cascade refrigeration system

Procedia PDF Downloads 432
29621 Piezoelectric Approach on Harvesting Acoustic Energy

Authors: Khin Fai Chen, Jee-Hou Ho, Eng Hwa Yap

Abstract:

An acoustic micro-energy harvester (AMEH) is developed to convert wasted acoustical energy into useful electrical energy. AMEH is mathematically modeled using lumped element modelling (LEM) and Euler-Bernoulli beam (EBB) modelling. An experiment is designed to validate the mathematical model and assess the feasibility of AMEH. Comparison of theoretical and experimental data on critical parameter value such as Mm, Cms, dm and Ceb showed the variances are within 1% to 6%, which is reasonably acceptable. Hence, AMEH mathematical model is validated. Then, AMEH undergoes bandwidth tuning for performance optimization for further experimental work. The AMEH successfully produces 0.9 V⁄(m⁄s^2) and 1.79 μW⁄(m^2⁄s^4) at 60Hz and 400kΩ resistive load which only show variances about 7% compared to theoretical data. By integrating a capacitive load of 200µF, the discharge cycle time of AMEH is 1.8s and the usable energy bandwidth is available as low as 0.25g. At 1g and 60Hz resonance frequency, the averaged power output is about 2.2mW which fulfilled a range of wireless sensors and communication peripherals power requirements. Finally, the design for AMEH is assessed, validated and deemed as a feasible design.

Keywords: piezoelectric, acoustic, energy harvester

Procedia PDF Downloads 280
29620 A Multi-Agent System for Accelerating the Delivery Process of Clinical Diagnostic Laboratory Results Using GSM Technology

Authors: Ayman M. Mansour, Bilal Hawashin, Hesham Alsalem

Abstract:

Faster delivery of laboratory test results is one of the most noticeable signs of good laboratory service and is often used as a key performance indicator of laboratory performance. Despite the availability of technology, the delivery time of clinical laboratory test results continues to be a cause of customer dissatisfaction which makes patients feel frustrated and they became careless to get their laboratory test results. The Medical Clinical Laboratory test results are highly sensitive and could harm patients especially with the severe case if they deliver in wrong time. Such results affect the treatment done by physicians if arrived at correct time efforts should, therefore, be made to ensure faster delivery of lab test results by utilizing new trusted, Robust and fast system. In this paper, we proposed a distributed Multi-Agent System to enhance and faster the process of laboratory test results delivery using SMS. The developed system relies on SMS messages because of the wide availability of GSM network comparing to the other network. The software provides the capability of knowledge sharing between different units and different laboratory medical centers. The system was built using java programming. To implement the proposed system we had many possible techniques. One of these is to use the peer-to-peer (P2P) model, where all the peers are treated equally and the service is distributed among all the peers of the network. However, for the pure P2P model, it is difficult to maintain the coherence of the network, discover new peers and ensure security. Also, security is a quite important issue since each node is allowed to join the network without any control mechanism. We thus take the hybrid P2P model, a model between the Client/Server model and the pure P2P model using GSM technology through SMS messages. This model satisfies our need. A GUI has been developed to provide the laboratory staff with the simple and easy way to interact with the system. This system provides quick response rate and the decision is faster than the manual methods. This will save patients life.

Keywords: multi-agent system, delivery process, GSM technology, clinical laboratory results

Procedia PDF Downloads 248
29619 Towards Law Data Labelling Using Topic Modelling

Authors: Daniel Pinheiro Da Silva Junior, Aline Paes, Daniel De Oliveira, Christiano Lacerda Ghuerren, Marcio Duran

Abstract:

The Courts of Accounts are institutions responsible for overseeing and point out irregularities of Public Administration expenses. They have a high demand for processes to be analyzed, whose decisions must be grounded on severity laws. Despite the existing large amount of processes, there are several cases reporting similar subjects. Thus, previous decisions on already analyzed processes can be a precedent for current processes that refer to similar topics. Identifying similar topics is an open, yet essential task for identifying similarities between several processes. Since the actual amount of topics is considerably large, it is tedious and error-prone to identify topics using a pure manual approach. This paper presents a tool based on Machine Learning and Natural Language Processing to assists in building a labeled dataset. The tool relies on Topic Modelling with Latent Dirichlet Allocation to find the topics underlying a document followed by Jensen Shannon distance metric to generate a probability of similarity between documents pairs. Furthermore, in a case study with a corpus of decisions of the Rio de Janeiro State Court of Accounts, it was noted that data pre-processing plays an essential role in modeling relevant topics. Also, the combination of topic modeling and a calculated distance metric over document represented among generated topics has been proved useful in helping to construct a labeled base of similar and non-similar document pairs.

Keywords: courts of accounts, data labelling, document similarity, topic modeling

Procedia PDF Downloads 177
29618 Online Learning Versus Face to Face Learning: A Sentiment Analysis on General Education Mathematics in the Modern World of University of San Carlos School of Arts and Sciences Students Using Natural Language Processing

Authors: Derek Brandon G. Yu, Clyde Vincent O. Pilapil, Christine F. Peña

Abstract:

College students of Cebu province have been indoors since March 2020, and a challenge encountered is the sudden shift from face to face to online learning and with the lack of empirical data on online learning on Higher Education Institutions (HEIs) in the Philippines. Sentiments on face to face and online learning will be collected from University of San Carlos (USC), School of Arts and Sciences (SAS) students regarding Mathematics in the Modern World (MMW), a General Education (GE) course. Natural Language Processing with machine learning algorithms will be used to classify the sentiments of the students. Results of the research study are the themes identified through topic modelling and the overall sentiments of the students in USC SAS

Keywords: natural language processing, online learning, sentiment analysis, topic modelling

Procedia PDF Downloads 244
29617 Deep Reinforcement Learning Approach for Trading Automation in The Stock Market

Authors: Taylan Kabbani, Ekrem Duman

Abstract:

The design of adaptive systems that take advantage of financial markets while reducing the risk can bring more stagnant wealth into the global market. However, most efforts made to generate successful deals in trading financial assets rely on Supervised Learning (SL), which suffered from various limitations. Deep Reinforcement Learning (DRL) offers to solve these drawbacks of SL approaches by combining the financial assets price "prediction" step and the "allocation" step of the portfolio in one unified process to produce fully autonomous systems capable of interacting with its environment to make optimal decisions through trial and error. In this paper, a continuous action space approach is adopted to give the trading agent the ability to gradually adjust the portfolio's positions with each time step (dynamically re-allocate investments), resulting in better agent-environment interaction and faster convergence of the learning process. In addition, the approach supports the managing of a portfolio with several assets instead of a single one. This work represents a novel DRL model to generate profitable trades in the stock market, effectively overcoming the limitations of supervised learning approaches. We formulate the trading problem, or what is referred to as The Agent Environment as Partially observed Markov Decision Process (POMDP) model, considering the constraints imposed by the stock market, such as liquidity and transaction costs. More specifically, we design an environment that simulates the real-world trading process by augmenting the state representation with ten different technical indicators and sentiment analysis of news articles for each stock. We then solve the formulated POMDP problem using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm, which can learn policies in high-dimensional and continuous action spaces like those typically found in the stock market environment. From the point of view of stock market forecasting and the intelligent decision-making mechanism, this paper demonstrates the superiority of deep reinforcement learning in financial markets over other types of machine learning such as supervised learning and proves its credibility and advantages of strategic decision-making.

Keywords: the stock market, deep reinforcement learning, MDP, twin delayed deep deterministic policy gradient, sentiment analysis, technical indicators, autonomous agent

Procedia PDF Downloads 176
29616 Material Parameter Identification of Modified AbdelKarim-Ohno Model

Authors: Martin Cermak, Tomas Karasek, Jaroslav Rojicek

Abstract:

The key role in phenomenological modelling of cyclic plasticity is good understanding of stress-strain behaviour of given material. There are many models describing behaviour of materials using numerous parameters and constants. Combination of individual parameters in those material models significantly determines whether observed and predicted results are in compliance. Parameter identification techniques such as random gradient, genetic algorithm, and sensitivity analysis are used for identification of parameters using numerical modelling and simulation. In this paper genetic algorithm and sensitivity analysis are used to study effect of 4 parameters of modified AbdelKarim-Ohno cyclic plasticity model. Results predicted by Finite Element (FE) simulation are compared with experimental data from biaxial ratcheting test with semi-elliptical loading path.

Keywords: genetic algorithm, sensitivity analysis, inverse approach, finite element method, cyclic plasticity, ratcheting

Procedia PDF Downloads 451
29615 Coastal Modelling Studies for Jumeirah First Beach Stabilization

Authors: Zongyan Yang, Gagan K. Jena, Sankar B. Karanam, Noora M. A. Hokal

Abstract:

Jumeirah First beach, a segment of coastline of length 1.5 km, is one of the popular public beaches in Dubai, UAE. The stability of the beach has been affected by several coastal developmental projects, including The World, Island 2 and La Mer. A comprehensive stabilization scheme comprising of two composite groynes (of lengths 90 m and 125m), modification to the northern breakwater of Jumeirah Fishing Harbour and beach re-nourishment was implemented by Dubai Municipality in 2012. However, the performance of the implemented stabilization scheme has been compromised by La Mer project (built in 2016), which modified the wave climate at the Jumeirah First beach. The objective of the coastal modelling studies is to establish design basis for further beach stabilization scheme(s). Comprehensive coastal modelling studies had been conducted to establish the nearshore wave climate, equilibrium beach orientations and stable beach plan forms. Based on the outcomes of the modeling studies, recommendation had been made to extend the composite groynes to stabilize the Jumeirah First beach. Wave transformation was performed following an interpolation approach with wave transformation matrixes derived from simulations of a possible range of wave conditions in the region. The Dubai coastal wave model is developed with MIKE21 SW. The offshore wave conditions were determined from PERGOS wave data at 4 offshore locations with consideration of the spatial variation. The lateral boundary conditions corresponding to the offshore conditions, at Dubai/Abu Dhabi and Dubai Sharjah borders, were derived with application of LitDrift 1D wave transformation module. The Dubai coastal wave model was calibrated with wave records at monitoring stations operated by Dubai Municipality. The wave transformation matrix approach was validated with nearshore wave measurement at a Dubai Municipality monitoring station in the vicinity of the Jumeirah First beach. One typical year wave time series was transformed to 7 locations in front of the beach to count for the variation of wave conditions which are affected by adjacent and offshore developments. Equilibrium beach orientations were estimated with application of LitDrift by finding the beach orientations with null annual littoral transport at the 7 selected locations. The littoral transport calculation results were compared with beach erosion/accretion quantities estimated from the beach monitoring program (twice a year including bathymetric and topographical surveys). An innovative integral method was developed to outline the stable beach plan forms from the estimated equilibrium beach orientations, with predetermined minimum beach width. The optimal lengths for the composite groyne extensions were recommended based on the stable beach plan forms.

Keywords: composite groyne, equilibrium beach orientation, stable beach plan form, wave transformation matrix

Procedia PDF Downloads 262
29614 Comparative Study between the Absorbed Dose of 67ga-Ecc and 68ga-Ecc

Authors: H. Yousefnia, S. Zolghadri, S. Shanesazzadeh, A.Lahooti, A. R. Jalilian

Abstract:

In this study, 68Ga-ECC and 67Ga-ECC were both prepared with the radiochemical purity of higher than 97% in less than 30 min. The biodistribution data for 68Ga-ECC showed the extraction of the most of the activity from the urinary tract. The absorbed dose was estimated based on biodistribution data in mice by the medical internal radiation dose (MIRD) method. Comparison between human absorbed dose estimation for these two agents indicated the values of approximately ten-fold higher after injection of 67Ga-ECC than 68Ga-ECC in the most organs. The results showed that 68Ga-ECC can be considered as a more potential agent for renal imaging compared to 67Ga-ECC.

Keywords: effective absorbed dose, ethylenecysteamine cysteine, Ga-67, Ga-68

Procedia PDF Downloads 468
29613 Robust Diagnosability of PEMFC Based on Bond Graph LFT

Authors: Ould Bouamama, M. Bressel, D. Hissel, M. Hilairet

Abstract:

Fuel cell (FC) is one of the best alternatives of fossil energy. Recently, the research community of fuel cell has shown a considerable interest for diagnosis in view to ensure safety, security, and availability when faults occur in the process. The problematic for model based FC diagnosis consists in that the model is complex because of coupling of several kind of energies and the numerical values of parameters are not always known or are uncertain. The present paper deals with use of one tool: the Linear Fractional Transformation bond graph tool not only for uncertain modelling but also for monitorability (ability to detect and isolate faults) analysis and formal generation of robust fault indicators with respect to parameter uncertainties.The developed theory applied to a nonlinear FC system has proved its efficiency.

Keywords: bond graph, fuel cell, fault detection and isolation (FDI), robust diagnosis, structural analysis

Procedia PDF Downloads 364
29612 Assessing Social Vulnerability and Policy Adaption Application Responses Based on Landslide Risk Map

Authors: Z. A. Ahmad, R. C. Omar, I. Z. Baharuddin, R. Roslan

Abstract:

Assessments of social vulnerability, carried out holistically, can provide an important guide to the planning process and to decisions on resource allocation at various levels, and can help to raise public awareness of geo-hazard risks. The assessments can help to provide answers for basic questions such as the human vulnerability at the geo-hazard prone or disaster areas causing health damage, economic loss, loss of natural heritage and vulnerability impact of extreme natural hazard event. To overcome these issues, integrated framework for assessing the increasing human vulnerability to environmental changes caused by geo-hazards will be introduced using an indicator from landslide risk map that is related to agent based modeling platform. The indicators represent the underlying factors, which influence a community’s ability to deal with and recover from the damage associated with geo-hazards. Scope of this paper is particularly limited to landslides.

Keywords: social, vulnerability, geo-hazard, methodology, indicators

Procedia PDF Downloads 285
29611 A Review on Building Information Modelling in Nigeria and Its Potentials

Authors: Mansur Hamma-Adama, Tahar Kouider

Abstract:

Construction Industry has been evolving since the development of Building Information Modelling (BIM). This technological process is unstoppable; it is out to the market with remarkable case studies of solving the long industry’s history of fragmentation. This industry has been changing over time; United States has recorded the most significant development in construction digitalization, Australia, United Kingdom and some other developed nations are also amongst promoters of BIM process and its development. Recently, a developing country like China and Malaysia are keying into the industry’s digital shift, while very little move is seen in South Africa whose development is considered higher and perhaps leader in the digital transition amongst the African countries. To authors’ best knowledge, Nigerian construction industry has never engaged in BIM discussions hence has no attention at national level. Consequently, Nigeria has no “Noteworthy BIM publications.” Decision makers and key stakeholders need to be informed on the current trend of the industry’s development (BIM in specific) and the opportunities of adopting this digitalization trend in relation to the identified challenges. BIM concept can be traced mostly in Architectural practices than engineering practices in Nigeria. A superficial BIM practice is found to be at organisational level only and operating a model based - “BIM stage 1.” Research to adopting this innovation has received very little attention. This piece of work is literature review based, aimed at exploring BIM in Nigeria and its prospects. The exploration reveals limitations in the literature availability as to extensive research in the development of BIM in the country. Numerous challenges were noticed including building collapse, inefficiencies, cost overrun and late project delivery. BIM has potentials to overcome the above challenges and even beyond. Low level of BIM adoption with reasonable level of awareness is noticed. However, lack of policy and guideline as well as serious lack of experts in the field are amongst the major barriers to BIM adoption. The industry needs to embrace BIM to possibly compete with its global counterpart.

Keywords: adoption, BIM, CAD, construction industry, Nigeria, opportunities

Procedia PDF Downloads 151
29610 On Stochastic Models for Fine-Scale Rainfall Based on Doubly Stochastic Poisson Processes

Authors: Nadarajah I. Ramesh

Abstract:

Much of the research on stochastic point process models for rainfall has focused on Poisson cluster models constructed from either the Neyman-Scott or Bartlett-Lewis processes. The doubly stochastic Poisson process provides a rich class of point process models, especially for fine-scale rainfall modelling. This paper provides an account of recent development on this topic and presents the results based on some of the fine-scale rainfall models constructed from this class of stochastic point processes. Amongst the literature on stochastic models for rainfall, greater emphasis has been placed on modelling rainfall data recorded at hourly or daily aggregation levels. Stochastic models for sub-hourly rainfall are equally important, as there is a need to reproduce rainfall time series at fine temporal resolutions in some hydrological applications. For example, the study of climate change impacts on hydrology and water management initiatives requires the availability of data at fine temporal resolutions. One approach to generating such rainfall data relies on the combination of an hourly stochastic rainfall simulator, together with a disaggregator making use of downscaling techniques. Recent work on this topic adopted a different approach by developing specialist stochastic point process models for fine-scale rainfall aimed at generating synthetic precipitation time series directly from the proposed stochastic model. One strand of this approach focused on developing a class of doubly stochastic Poisson process (DSPP) models for fine-scale rainfall to analyse data collected in the form of rainfall bucket tip time series. In this context, the arrival pattern of rain gauge bucket tip times N(t) is viewed as a DSPP whose rate of occurrence varies according to an unobserved finite state irreducible Markov process X(t). Since the likelihood function of this process can be obtained, by conditioning on the underlying Markov process X(t), the models were fitted with maximum likelihood methods. The proposed models were applied directly to the raw data collected by tipping-bucket rain gauges, thus avoiding the need to convert tip-times to rainfall depths prior to fitting the models. One advantage of this approach was that the use of maximum likelihood methods enables a more straightforward estimation of parameter uncertainty and comparison of sub-models of interest. Another strand of this approach employed the DSPP model for the arrivals of rain cells and attached a pulse or a cluster of pulses to each rain cell. Different mechanisms for the pattern of the pulse process were used to construct variants of this model. We present the results of these models when they were fitted to hourly and sub-hourly rainfall data. The results of our analysis suggest that the proposed class of stochastic models is capable of reproducing the fine-scale structure of the rainfall process, and hence provides a useful tool in hydrological modelling.

Keywords: fine-scale rainfall, maximum likelihood, point process, stochastic model

Procedia PDF Downloads 275
29609 Air Handling Units Power Consumption Using Generalized Additive Model for Anomaly Detection: A Case Study in a Singapore Campus

Authors: Ju Peng Poh, Jun Yu Charles Lee, Jonathan Chew Hoe Khoo

Abstract:

The emergence of digital twin technology, a digital replica of physical world, has improved the real-time access to data from sensors about the performance of buildings. This digital transformation has opened up many opportunities to improve the management of the building by using the data collected to help monitor consumption patterns and energy leakages. One example is the integration of predictive models for anomaly detection. In this paper, we use the GAM (Generalised Additive Model) for the anomaly detection of Air Handling Units (AHU) power consumption pattern. There is ample research work on the use of GAM for the prediction of power consumption at the office building and nation-wide level. However, there is limited illustration of its anomaly detection capabilities, prescriptive analytics case study, and its integration with the latest development of digital twin technology. In this paper, we applied the general GAM modelling framework on the historical data of the AHU power consumption and cooling load of the building between Jan 2018 to Aug 2019 from an education campus in Singapore to train prediction models that, in turn, yield predicted values and ranges. The historical data are seamlessly extracted from the digital twin for modelling purposes. We enhanced the utility of the GAM model by using it to power a real-time anomaly detection system based on the forward predicted ranges. The magnitude of deviation from the upper and lower bounds of the uncertainty intervals is used to inform and identify anomalous data points, all based on historical data, without explicit intervention from domain experts. Notwithstanding, the domain expert fits in through an optional feedback loop through which iterative data cleansing is performed. After an anomalously high or low level of power consumption detected, a set of rule-based conditions are evaluated in real-time to help determine the next course of action for the facilities manager. The performance of GAM is then compared with other approaches to evaluate its effectiveness. Lastly, we discuss the successfully deployment of this approach for the detection of anomalous power consumption pattern and illustrated with real-world use cases.

Keywords: anomaly detection, digital twin, generalised additive model, GAM, power consumption, supervised learning

Procedia PDF Downloads 152
29608 Distinguishing between Bacterial and Viral Infections Based on Peripheral Human Blood Tests Using Infrared Microscopy and Multivariate Analysis

Authors: H. Agbaria, A. Salman, M. Huleihel, G. Beck, D. H. Rich, S. Mordechai, J. Kapelushnik

Abstract:

Viral and bacterial infections are responsible for variety of diseases. These infections have similar symptoms like fever, sneezing, inflammation, vomiting, diarrhea and fatigue. Thus, physicians may encounter difficulties in distinguishing between viral and bacterial infections based on these symptoms. Bacterial infections differ from viral infections in many other important respects regarding the response to various medications and the structure of the organisms. In many cases, it is difficult to know the origin of the infection. The physician orders a blood, urine test, or 'culture test' of tissue to diagnose the infection type when it is necessary. Using these methods, the time that elapses between the receipt of patient material and the presentation of the test results to the clinician is typically too long ( > 24 hours). This time is crucial in many cases for saving the life of the patient and for planning the right medical treatment. Thus, rapid identification of bacterial and viral infections in the lab is of great importance for effective treatment especially in cases of emergency. Blood was collected from 50 patients with confirmed viral infection and 50 with confirmed bacterial infection. White blood cells (WBCs) and plasma were isolated and deposited on a zinc selenide slide, dried and measured under a Fourier transform infrared (FTIR) microscope to obtain their infrared absorption spectra. The acquired spectra of WBCs and plasma were analyzed in order to differentiate between the two types of infections. In this study, the potential of FTIR microscopy in tandem with multivariate analysis was evaluated for the identification of the agent that causes the human infection. The method was used to identify the infectious agent type as either bacterial or viral, based on an analysis of the blood components [i.e., white blood cells (WBC) and plasma] using their infrared vibrational spectra. The time required for the analysis and evaluation after obtaining the blood sample was less than one hour. In the analysis, minute spectral differences in several bands of the FTIR spectra of WBCs were observed between groups of samples with viral and bacterial infections. By employing the techniques of feature extraction with linear discriminant analysis (LDA), a sensitivity of ~92 % and a specificity of ~86 % for an infection type diagnosis was achieved. The present preliminary study suggests that FTIR spectroscopy of WBCs is a potentially feasible and efficient tool for the diagnosis of the infection type.

Keywords: viral infection, bacterial infection, linear discriminant analysis, plasma, white blood cells, infrared spectroscopy

Procedia PDF Downloads 223
29607 Evaluation in Vitro and in Silico of Pleurotus ostreatus Capacity to Decrease the Amount of Low-Density Polyethylene Microplastics Present in Water Sample from the Middle Basin of the Magdalena River, Colombia

Authors: Loren S. Bernal., Catalina Castillo, Carel E. Carvajal, José F. Ibla

Abstract:

Plastic pollution, specifically microplastics, has become a significant issue in aquatic ecosystems worldwide. The large amount of plastic waste carried by water tributaries has resulted in the accumulation of microplastics in water bodies. The polymer aging process caused by environmental influences such as photodegradation and chemical degradation of additives leads to polymer embrittlement and properties change that require degradation or reduction procedures in rivers. However, there is a lack of such procedures for freshwater entities that develop over extended periods. The aim of this study is evaluate the potential of Pleurotus ostreatus a fungus, in reducing lowdensity polyethylene microplastics present in freshwater samples collected from the middle basin of the Magdalena River in Colombia. The study aims to evaluate this process both in vitro and in silico by identifying the growth capacity of Pleurotus ostreatus in the presence of microplastics and identifying the most likely interactions of Pleurotus ostreatus enzymes and their affinity energies. The study follows an engineering development methodology applied on an experimental basis. The in vitro evaluation protocol applied in this study focused on the growth capacity of Pleurotus ostreatus on microplastics using enzymatic inducers. In terms of in silico evaluation, molecular simulations were conducted using the Autodock 1.5.7 program to calculate interaction energies. The molecular dynamics were evaluated by using the myPresto Portal and GROMACS program to calculate radius of gyration and Energies.The results of the study showed that Pleurotus ostreatus has the potential to degrade low-density polyethylene microplastics. The in vitro evaluation revealed the adherence of Pleurotus ostreatus to LDPE using scanning electron microscopy. The best results were obtained with enzymatic inducers as a MnSO4 generating the activation of laccase or manganese peroxidase enzymes in the degradation process. The in silico modelling demonstrated that Pleurotus ostreatus was able to interact with the microplastics present in LDPE, showing affinity energies in molecular docking and molecular dynamics shown a minimum energy and the representative radius of gyration between each enzyme and its substract. The study contributes to the development of bioremediation processes for the removal of microplastics from freshwater sources using the fungus Pleurotus ostreatus. The in silico study provides insights into the affinity energies of Pleurotus ostreatus microplastic degrading enzymes and their interaction with low-density polyethylene. The study demonstrated that Pleurotus ostreatus can interact with LDPE microplastics, making it a good agent for the development of bioremediation processes that aid in the recovery of freshwater sources. The results of the study suggested that bioremediation could be a promising approach to reduce microplastics in freshwater systems.

Keywords: bioremediation, in silico modelling, microplastics, Pleurotus ostreatus

Procedia PDF Downloads 113
29606 Development of Market Penetration for High Energy Efficiency Technologies in Alberta’s Residential Sector

Authors: Saeidreza Radpour, Md. Alam Mondal, Amit Kumar

Abstract:

Market penetration of high energy efficiency technologies has key impacts on energy consumption and GHG mitigation. Also, it will be useful to manage the policies formulated by public or private organizations to achieve energy or environmental targets. Energy intensity in residential sector of Alberta was 148.8 GJ per household in 2012 which is 39% more than the average of Canada 106.6 GJ, it was the highest amount among the provinces on per household energy consumption. Energy intensity by appliances of Alberta was 15.3 GJ per household in 2012 which is 14% higher than average value of other provinces and territories in energy demand intensity by appliances in Canada. In this research, a framework has been developed to analyze the market penetration and market share of high energy efficiency technologies in residential sector. The overall methodology was based on development of data-intensive models’ estimation of the market penetration of the appliances in the residential sector over a time period. The developed models were a function of a number of macroeconomic and technical parameters. Developed mathematical equations were developed based on twenty-two years of historical data (1990-2011). The models were analyzed through a series of statistical tests. The market shares of high efficiency appliances were estimated based on the related variables such as capital and operating costs, discount rate, appliance’s life time, annual interest rate, incentives and maximum achievable efficiency in the period of 2015 to 2050. Results show that the market penetration of refrigerators is higher than that of other appliances. The stocks of refrigerators per household are anticipated to increase from 1.28 in 2012 to 1.314 and 1.328 in 2030 and 2050, respectively. Modelling results show that the market penetration rate of stand-alone freezers will decrease between 2012 and 2050. Freezer stock per household will decline from 0.634 in 2012 to 0.556 and 0.515 in 2030 and 2050, respectively. The stock of dishwashers per household is expected to increase from 0.761 in 2012 to 0.865 and 0.960 in 2030 and 2050, respectively. The increase in the market penetration rate of clothes washers and clothes dryers is nearly parallel. The stock of clothes washers and clothes dryers per household is expected to rise from 0.893 and 0.979 in 2012 to 0.960 and 1.0 in 2050, respectively. This proposed presentation will include detailed discussion on the modelling methodology and results.

Keywords: appliances efficiency improvement, energy star, market penetration, residential sector

Procedia PDF Downloads 285
29605 An Investigation of Raw Material Effects on Nano SiC Based Foam Glass Production

Authors: Aylin Sahin, Yasemin Kilic, Abdulkadir Sari, Burcu Duymaz, Mustafa Kara

Abstract:

Foam glass is an innovative material which composed of glass and carbon/carbonate based minerals; and has incomparable properties like light weight, high thermal insulation and cellular structure with sufficient rigidity. In the present study, the effects of the glass type and mineral addition on the foam glass properties were investigated. Nano sized SiC was fixed as foaming agent at the whole of the samples, mixed glass waste and sheet glass were selectively used as glass sources; finally Al₂O₃ was optionally used as mineral additive. These raw material powders were mixed homogenously, pressed at same pressure and sintered at same schedule. Finally, obtained samples were characterized based on the required properties of foam glass material, and optimum results were determined. At the end of the study, 0.049 W/mK thermal conductivity, 72 % porosity, and 0.21 kg/cm² apparent density with 2.41 MPa compressive strength values were achieved with using nano sized SiC, sheet glass and Al₂O₃ mineral additive. It can be said that the foam glass materials can be preferred as an alternative insulation material rather than polymeric based conventional insulation materials because of supplying high thermal insulation properties without containing unhealthy chemicals and burn risks.

Keywords: foam glass, foaming, silicon carbide, waste glass

Procedia PDF Downloads 363
29604 Behavior of Helical Piles as Foundation of Photovoltaic Panels in Tropical Soils

Authors: Andrea J. Alarcón, Maxime Daulat, Raydel Lorenzo, Renato P. Da Cunha, Pierre Breul

Abstract:

Brazil has increased the use of renewable energy during the last years. Due to its sunshine and large surface area, photovoltaic panels founded in helical piles have been used to produce solar energy. Since Brazilian territory is mainly cover by highly porous structured tropical soils, when the helical piles are installed this structure is broken and its soil properties are modified. Considering the special characteristics of these soils, helical foundations behavior must be extensively studied. The first objective of this work is to determine the most suitable method to estimate the tensile capacity of helical piles in tropical soils. The second objective is to simulate the behavior of these piles in tropical soil. To obtain the rupture to assess load-displacement curves and the ultimate load, also a numerical modelling using Plaxis software was conducted. Lastly, the ultimate load and the load-displacements curves are compared with experimental values to validate the implemented model.

Keywords: finite element, helical piles, modelling, tropical soil, uplift capacity

Procedia PDF Downloads 171
29603 A Case for Introducing Thermal-Design Optimisation Using Excel Spreadsheet

Authors: M. M. El-Awad

Abstract:

This paper deals with the introduction of thermal-design optimisation to engineering students by using Microsoft's Excel as a modelling platform. Thermal-design optimisation is an iterative process which involves the evaluation of many thermo-physical properties that vary with temperature and/or pressure. Therefore, suitable modelling software, such as Engineering Equation Solver (EES) or Interactive Thermodynamics (IT), is usually used for this purpose. However, such proprietary applications may not be available to many educational institutions in developing countries. This paper presents a simple thermal-design case that demonstrates how the principles of thermo-fluids and economics can be jointly applied so as to find an optimum solution to a thermal-design problem. The paper describes the solution steps and provides all the equations needed to solve the case with Microsoft Excel. The paper also highlights the advantage of using VBA (Visual Basic for Applications) for developing user-defined functions when repetitive or complex calculations are met. VBA makes Excel a powerful, yet affordable, the computational platform for introducing various engineering principles.

Keywords: engineering education, thermal design, Excel, VBA, user-defined functions

Procedia PDF Downloads 374
29602 Pitfalls and Drawbacks in Visual Modelling of Learning Knowledge by Students

Authors: Tatyana Gavrilova, Vadim Onufriev

Abstract:

Knowledge-based systems’ design requires the developer’s owning the advanced analytical skills. The efficient development of that skills within university courses needs a deep understanding of main pitfalls and drawbacks, which students usually make during their analytical work in form of visual modeling. Thus, it was necessary to hold an analysis of 5-th year students’ learning exercises within courses of 'Intelligent systems' and 'Knowledge engineering' in Saint-Petersburg Polytechnic University. The analysis shows that both lack of system thinking skills and methodological mistakes in course design cause the errors that are discussed in the paper. The conclusion contains an exploration of the issues and topics necessary and sufficient for the implementation of the improved practices in educational design for future curricula of teaching programs.

Keywords: knowledge based systems, knowledge engineering, students’ errors, visual modeling

Procedia PDF Downloads 309
29601 Empirical Investigation of Antecedents of Perceived Recovery Service Quality: Evidence from Retail Banking in United Arab Emirates

Authors: Vimi Jham

Abstract:

The banking sector has undergone tremendous change in all forms of service it provides to its customers. The efforts of the banks is to avoid customer defection and lead to customer satisfaction. The purpose of the study was to examine the linkages among the constructs such as customer perceived service quality, perceived service recovery quality and customer satisfaction in the banking industry. The moderating effect of negative brand perception due to service failure on recovery satisfaction were investigated. Random sampling methods are used to draw the sample from the population. Data was collected from 262 banking customers and were analyzed with the help of structural equation modelling approach using Smart PLS to understand the relationship among variables being studied. The results of the study contribute to the research by proving that customer service recovery satisfaction is dependent on customer perceived service quality and the moderating effect of negative brand perception due to service failure was insignificant.

Keywords: service recovery satisfaction, perceived service recovery quality, perceived service quality, structural equation modelling

Procedia PDF Downloads 282
29600 Case-Based Reasoning for Modelling Random Variables in the Reliability Assessment of Existing Structures

Authors: Francesca Marsili

Abstract:

The reliability assessment of existing structures with probabilistic methods is becoming an increasingly important and frequent engineering task. However probabilistic reliability methods are based on an exhaustive knowledge of the stochastic modeling of the variables involved in the assessment; at the moment standards for the modeling of variables are absent, representing an obstacle to the dissemination of probabilistic methods. The framework according to probability distribution functions (PDFs) are established is represented by the Bayesian statistics, which uses Bayes Theorem: a prior PDF for the considered parameter is established based on information derived from the design stage and qualitative judgments based on the engineer past experience; then, the prior model is updated with the results of investigation carried out on the considered structure, such as material testing, determination of action and structural properties. The application of Bayesian statistics arises two different kind of problems: 1. The results of the updating depend on the engineer previous experience; 2. The updating of the prior PDF can be performed only if the structure has been tested, and quantitative data that can be statistically manipulated have been collected; performing tests is always an expensive and time consuming operation; furthermore, if the considered structure is an ancient building, destructive tests could compromise its cultural value and therefore should be avoided. In order to solve those problems, an interesting research path is represented by investigating Artificial Intelligence (AI) techniques that can be useful for the automation of the modeling of variables and for the updating of material parameters without performing destructive tests. Among the others, one that raises particular attention in relation to the object of this study is constituted by Case-Based Reasoning (CBR). In this application, cases will be represented by existing buildings where material tests have already been carried out and an updated PDFs for the material mechanical parameters has been computed through a Bayesian analysis. Then each case will be composed by a qualitative description of the material under assessment and the posterior PDFs that describe its material properties. The problem that will be solved is the definition of PDFs for material parameters involved in the reliability assessment of the considered structure. A CBR system represent a good candi¬date in automating the modelling of variables because: 1. Engineers already draw an estimation of the material properties based on the experience collected during the assessment of similar structures, or based on similar cases collected in literature or in data-bases; 2. Material tests carried out on structure can be easily collected from laboratory database or from literature; 3. The system will provide the user of a reliable probabilistic description of the variables involved in the assessment that will also serve as a tool in support of the engineer’s qualitative judgments. Automated modeling of variables can help in spreading probabilistic reliability assessment of existing buildings in the common engineering practice, and target at the best intervention and further tests on the structure; CBR represents a technique which may help to achieve this.

Keywords: reliability assessment of existing buildings, Bayesian analysis, case-based reasoning, historical structures

Procedia PDF Downloads 336
29599 Analysis of Pangasinan State University: Bayambang Students’ Concerns Through Social Media Analytics and Latent Dirichlet Allocation Topic Modelling Approach

Authors: Matthew John F. Sino Cruz, Sarah Jane M. Ferrer, Janice C. Francisco

Abstract:

COVID-19 pandemic has affected more than 114 countries all over the world since it was considered a global health concern in 2020. Different sectors, including education, have shifted to remote/distant setups to follow the guidelines set to prevent the spread of the disease. One of the higher education institutes which shifted to remote setup is the Pangasinan State University (PSU). In order to continue providing quality instructions to the students, PSU designed Flexible Learning Model to still provide services to its stakeholders amidst the pandemic. The model covers the redesigning of delivering instructions in remote setup and the technology needed to support these adjustments. The primary goal of this study is to determine the insights of the PSU – Bayambang students towards the remote setup implemented during the pandemic and how they perceived the initiatives employed in relation to their experiences in flexible learning. In this study, the topic modelling approach was implemented using Latent Dirichlet Allocation. The dataset used in the study. The results show that the most common concern of the students includes time and resource management, poor internet connection issues, and difficulty coping with the flexible learning modality. Furthermore, the findings of the study can be used as one of the bases for the administration to review and improve the policies and initiatives implemented during the pandemic in relation to remote service delivery. In addition, further studies can be conducted to determine the overall sentiment of the other stakeholders in the policies implemented at the University.

Keywords: COVID-19, topic modelling, students’ sentiment, flexible learning, Latent Dirichlet allocation

Procedia PDF Downloads 121