Search results for: waste materials
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8671

Search results for: waste materials

2431 Proposing a New Design Method for Added Viscoelastic Damper’s Application in Steel Moment-Frame

Authors: Saeed Javaherzadeh, Babak Dindar Safa

Abstract:

Structure, given its ductility, can depreciate significant amount of seismic energy in the form of hysteresis behavior; the amount of energy depreciation depends on the structure ductility rate. So in seismic guidelines such as ASCE7-10 code, to reduce the number of design forces and using the seismic energy dissipation capacity of structure, when entering non-linear behavior range of the materials, the response modification factor is used. Various parameters such as ductility modification factor, overstrength factor and reliability factor, are effective in determining the value of this factor. Also, gradually, energy dissipation systems, especially added dampers, have become an inseparable part of the seismic design. In this paper, in addition to reviewing of previous studies, using the response modification factor caused by using more added viscoelastic dampers, a new design method has introduced for steel moment-frame with added dampers installed. To do this, in addition to using bilinear behavior models and quick ways such as using the equivalent lateral force method and capacity spectrum method for the proposed design methodology, the results has been controlled with non-linear time history analysis for a number of structural. The analysis is done by Opensees Software.

Keywords: added viscoelastic damper, design base shear, response modification factor, non-linear time history

Procedia PDF Downloads 425
2430 Association Nephropathy and Hypertension in Diabetic Patients

Authors: Bahlous Afef, Bouzid Kahena, Bardkis Ahlem, Mrad Mehdi, Kalai Eya, Sonia Bahri, Abdelmoula Jaouida

Abstract:

Diabetic nephropathy is the first cause of chronic renal failure and hemodialysis use in several countries including Tunisia. The role of hypertension (HT) as major risk factor for nephropathy is undeniable. The aim of our study was to determine the relationship between blood pressure and nephropathy in a population of diabetic type 2 recently discovered. Materials and methods: We conducted a prospective study focused on 60 patients with type 2 diabetes recently discovered (<5 years). Each patient have benefited from: -a full clinical examination with measurement of blood pressure - exploring a blood-glucose control and renal function -urinary exploration with the determination of proteinuria microalbuminumie of 24 hours with a immunoturbidimetric method using Architect (ABBOTT CI 8200). Results and discussion: Hypertension was present in 46.7% of cases. Twenty patients, 35% of the study population showed nephropathy. Four of these patients (6.66% of cases) had proteinuria, while 16 (26.6% of patients) had microalbuminuria (> 30mg/24 hours). Systolic blood pressure was significantly (p < 0.05) associated with the presence of nephropathy (139 +19.44) vs. for the group with normal renal function (128.65 +15.12 mmHg). Conclusion: The etiology of diabetic nephropathy is multifactorial. However, systolic blood pressure and glycemic control remains the major risk factors. Better glycemic control and treatment of hypertension allowed preventing and slowing the progression of diabetic nephropathy.

Keywords: hypertension, nephropathy, hemodialysis, diabetes

Procedia PDF Downloads 304
2429 An Electrode Material for Ultracapacitors: Hydrothermal Synthesis of Neodymium Oxide/Manganese Oxide/Nitrogen Doped Reduced Graphene Oxide Ternary Nanocomposites

Authors: K. Saravanan, K. A.Rameshkumar, P. Maadeswaran

Abstract:

The depletion of fossil resources and the rise in global temperatures are two of the most important concerns we confront today. There are numerous renewable energy sources like solar power, tidal power, wind energy, radiant energy, hydroelectricity, geothermal energy, and biomass available to generate the needed energy demand. Engineers and scientists around the world are facing a massive barrier in the development of storage technologies for the energy developed from renewable energy sources. The development of electrochemical capacitors as a future energy storage technology is at the forefront of current research and development. This is due to the fact that the electrochemical capacitors have a significantly higher energy density, a faster charging-discharging rate, and a longer life span than capacitors, and they also have a higher power density than batteries, making them superior to both. In this research, electrochemical capacitors using the Nd2O3/Mn3O4/ N-rGO electrode material is chosen since the of hexagonal and tetragonal crystal structures of Nd2O3 and Mn3O4 and also has cycling stability of 68% over a long time at 50mVs-1 and a high coulombic efficiency of 99.64% at 5 Ag-1. This approach may also be used to create novel electrode materials with improved electrochemical and cyclic stability for high-performance supercapacitors.

Keywords: Nd2O3/Mn3O4/N-rGO, nanocomposites, hydrothermal method, electrode material, specific capacitance, use of supercapacitors

Procedia PDF Downloads 84
2428 Investigation the Photocatalytic Properties of Fe3O4-ZnO Nanocomposites Prepared by Sonochemical Method

Authors: Atena Naeimi, Mehri-Sadat Ekrami-Kakhki

Abstract:

Fe3O4 is one of the important magnetic oxides with spinel structure; it has exhibited unique electric and magnetic properties based on the electron transfer between Fe2+ and Fe3+ in the octahedral sites. Fe3O4 have received considerable attention in various areas such as cancer therapy, drug targeting, enzyme immobilization catalysis, magnetic cell separation, magnetic refrigeration systems and super-paramagnetic materials. Fe3O4–ZnO nanostructures were synthesized via a surfactant-free ultrasonic reaction at room temperatures. The effect of various parameters such as temperature, time, and power on the size and morphology of the product was investigated. Alternating gradient force magnetometer shows that Fe3O4 nanoparticles exhibit super-paramagnetic behaviour at room temperature. For preparation of nanocomposite 1 g of Fe3O4 nanostructures were dispersed in 100 mL of distilled water. 0.25 g of Zn (NO3)2 and 20 mL of NH3 solution 1 M were then slowly added to the solution under ultrasonic irradiation. The product was centrifuged, washed with distilled water and dried in the air. The photocatalytic behaviour of Fe3O4–ZnO nanoparticles was evaluated using the degradation of a methyl orange aqueous solution under ultraviolet light irradiation. As time increased, more and more methyl orange was adsorbed on the nanoparticles catalyst, until the absorption peak vanish. The methyl orange concentration decreased rapidly with increasing UV-irradiation time.

Keywords: nanocomposite, ultrasonic, paramagnetic, photocatalytic

Procedia PDF Downloads 290
2427 A Critical Study of the Performance of Self Compacting Concrete (SCC) Using Locally Supplied Materials in Bahrain

Authors: A. Umar, A. Tamimi

Abstract:

Development of new types of concrete with improved performance is a very important issue for the whole building industry. The development is based on the optimization of the concrete mix design, with an emphasis not only on the workability and mechanical properties but also to the durability and the reliability of the concrete structure in general. Self-compacting concrete (SCC) is a high-performance material designed to flow into formwork under its own weight and without the aid of mechanical vibration. At the same time it is cohesive enough to fill spaces of almost any size and shape without segregation or bleeding. Construction time is shorter and production of SCC is environmentally friendly (no noise, no vibration). Furthermore, SCC produces a good surface finish. Despite these advantages, SCC has not gained much local acceptance though it has been promoted in the Middle East for the last ten to twelve years. The reluctance in utilizing the advantages of SCC, in Bahrain, may be due to lack of research or published data pertaining to locally produced SCC. Therefore, there is a need to conduct studies on SCC using locally available material supplies. From the literature, it has been observed that the use of viscosity modifying admixtures (VMA), micro silica and glass fibers have proved to be very effective in stabilizing the rheological properties and the strength of fresh and hardened properties of self-compacting concrete (SCC). Therefore, in the present study, it is proposed to carry out investigations of SCC with combinations of various dosages of VMAs with and without micro silica and glass fibers and to study their influence on the properties of fresh and hardened concrete.

Keywords: self-compacting concrete, viscosity modifying admixture, micro silica, glass fibers

Procedia PDF Downloads 639
2426 Integrating Microcontroller-Based Projects in a Human-Computer Interaction Course

Authors: Miguel Angel Garcia-Ruiz, Pedro Cesar Santana-Mancilla, Laura Sanely Gaytan-Lugo

Abstract:

This paper describes the design and application of a short in-class project conducted in Algoma University’s Human-Computer Interaction (HCI) course taught at the Bachelor of Computer Science. The project was based on the Maker Movement (people using and reusing electronic components and everyday materials to tinker with technology and make interactive applications), where students applied low-cost and easy-to-use electronic components, the Arduino Uno microcontroller board, software tools, and everyday objects. Students collaborated in small teams by completing hands-on activities with them, making an interactive walking cane for blind people. At the end of the course, students filled out a Technology Acceptance Model version 2 (TAM2) questionnaire where they evaluated microcontroller boards’ applications in HCI classes. We also asked them about applying the Maker Movement in HCI classes. Results showed overall students’ positive opinions and response about using microcontroller boards in HCI classes. We strongly suggest that every HCI course should include practical activities related to tinkering with technology such as applying microcontroller boards, where students actively and constructively participate in teams for achieving learning objectives.

Keywords: maker movement, microcontrollers, learning, projects, course, technology acceptance

Procedia PDF Downloads 159
2425 Magnetization Studies and Vortex Phase Diagram of Oxygenated YBa₂Cu₃₋ₓAlₓO₆₊δ Single Crystal

Authors: Ashna Babu, Deepshikha Jaiswal Nagar

Abstract:

Cuprate high-temperature superconductors (HTSCs) have been immensely studied during the past few decades because of their structure which is described as a superlattice of superconducting CuO₂ layers. In particular, YBa₂Cu₃O₆₊δ (YBCO), with its critical temperature of 93 K, has received the most attention due to its well-defined metal stoichiometry and variable oxygen content that determines the carrier doping level. Substitution of metal ions at the Cu site is known to increase the critical current density without destroying superconductivity in YBCO. The construction of vortex phase diagrams is very important for such doped YBCO materials both from a fundamental perspective as well as from a technological perspective. By measuring field-dependent magnetization on annealed single crystals of Al-doped YBCO, YBa₂Cu₃₋ₓAlₓO₆₊δ (Al-YBCO), we were able to observe a second magnetization peak anomaly (SMP) in a very large part of the phase diagram. We were also able to observe the SMP anomaly in temperature-dependent magnetization measurements, the first observation to our knowledge. Critical current densities were calculated using Bean’s critical state model, flux jumps associated with symmetry reorientation of vortex lattice were studied, the oxygen cluster distribution was also analysed, and by incorporating all observations, we made a vortex phase diagram for oxygenated Al-YBCO single crystal.

Keywords: oxygen deficient clusters, second magnetization peak anomaly, flux jumps, vortex phase diagram

Procedia PDF Downloads 54
2424 Dissimilar Welding Of New High Oxidation Material – Thor™ 115 With Vm-12 Shc

Authors: Michal Urzynicok, Krzysztof Kwiecinski

Abstract:

The development of materials used in the power generation industry for the production of boilers and their parts is characterized by high steam parameters, which present new challenges. Implementation of new combinations of alloying elements that lead to the best possible mechanical properties, including creep resistance, greatly affects new steels' weldability. All new grades have to undergo many different examinations, in regards to bending and welding, in order to enable the development of fabrication technologies, ensuring failure-free production and assembly of boiler components. 12% Cr martensitic steels like THOR™ 115 or VM-12 SHC are characterized by high oxidation resistance in high-temperature environments. At the moment, VM-12 SHC can be found in many boilers where both headers and superheater coils were produced. As this material is very difficult to obtain, a search for a proper replacement has begun. A new creep strength-enhanced ferritic steel for service in supercritical and ultra-supercritical boiler applications was developed by Tenaris in Italy and it is designated as Thor™115 (Tenaris High Oxidation Resistance). As high demand in power plants occurred to replace some parts of existing installations fabricated from VM12-SHC with other alternatives, a new development of welding procedures has begun to prepare fabricators for the challenges of joining old components with new THOR™ 115 material. This paper covers the first research of welding of dissimilar joints made out of VM12-SHC and THOR™ 115.

Keywords: thor, vm12, dissimilar welding, weldability

Procedia PDF Downloads 139
2423 Mangroves in the Douala Area, Cameroon: The Challenges of Open Access Resources for Forest Governance

Authors: Bissonnette Jean-François, Dossa Fabrice

Abstract:

The project focuses on analyzing the spatial and temporal evolution of mangrove forest ecosystems near the city of Douala, Cameroon, in response to increasing human and environmental pressures. The selected study area, located in the Wouri River estuary, has a unique combination of economic importance, and ecological prominence. The study included valuable insights by conducting semi-structured interviews with resource operators and local officials. The thorough analysis of socio-economic data, farmer surveys, and satellite-derived information was carried out utilizing quantitative approaches in Excel and SPSS. Simultaneously, qualitative data was subjected to rigorous classification and correlation with other sources. The use of ArcGIS and CorelDraw facilitated the visual representation of the gradual changes seen in various land cover classifications. The research reveals complex processes that characterize mangrove ecosystems on Manoka and Cape Cameroon Islands. The lack of regulations in urbanization and the continuous growth of infrastructure have led to a significant increase in land conversion, causing negative impacts on natural landscapes and forests. The repeated instances of flooding and coastal erosion have further shaped landscape alterations, fostering the proliferation of water and mudflat areas. The unregulated use of mangrove resources is a significant factor in the degradation of these ecosystems. Activities including the use of wood for smoking and fishing, together with the coastal pollution resulting from the absence of waste collection, have had a significant influence. In addition, forest operators contribute to the degradation of vegetation, hence exacerbating the harmful impact of invasive species on the ecosystem. Strategic interventions are necessary to guarantee the sustainable management of these ecosystems. The proposals include advocating for sustainable wood exploitation techniques, using appropriate techniques, along with regeneration, and enforcing rules to prevent wood overexploitation. By implementing these measures, the ecological balance can be preserved, safeguarding the long-term viability of these precious ecosystems. On a conceptual level, this paper uses the framework developed by Elinor Ostrom and her colleagues to investigate the consequences of open access resources, where local actors have not been able to enforce measures to prevent overexploitation of mangrove wood resources. Governmental authorities have demonstrated limited capacity to enforce sustainable management of wood resources and have not been able to establish effective relationships with local fishing communities and with communities involved in the purchase of wood. As a result, wood resources in the mangrove areas remain largely accessible, while authorities do not monitor wood volumes extracted nor methods of exploitation. There have only been limited and punctual attempts at forest restoration with no significant consequence on mangrove forests dynamics.

Keywords: Mangroves, forest management, governance, open access resources, Cameroon

Procedia PDF Downloads 40
2422 Amino Acid Based Biodegradable Poly (Ester-Amide)s and Their Potential Biomedical Applications as Drug Delivery Containers and Antibacterial

Authors: Nino Kupatadze, Tamar Memanishvili, Natia Ochkhikidze, David Tugushi, Zaal Kokaia, Ramaz Katsarava

Abstract:

Amino acid-based Biodegradable poly(ester-amide)s (PEAs) have gained considerable interest as a promising materials for numerous biomedical applications. These polymers reveal a high biocompatibility and easily form small particles suitable for delivery various biological, as well as elastic bio-erodible films serving as matrices for constructing antibacterial coatings. In the present work we have demonstrated a potential of the PEAs for two applications: 1. cell therapy for stroke as vehicles for delivery and sustained release of growth factors, 2. bactericidal coating as prevention biofilm and applicable in infected wound management. Stroke remains the main cause of adult disability with limited treatment options. Although stem cell therapy is a promising strategy, it still requires improvement of cell survival, differentiation and tissue modulation. .Recently, microspheres (MPs) made of biodegradable polymers have gained significant attention for providing necessary support of transplanted cells. To investigate this strategy in the cell therapy of stroke, MPs loaded with transcription factors Wnt3A/BMP4 were prepared. These proteins have been shown to mediate the maturation of the cortical neurons. We have suggested that implantation of these materials could create a suitable microenvironment for implanted cells. Particles with spherical shape, porous surface, and 5-40 m in size (monitored by scanning electron microscopy) were made on the basis of the original PEA composed of adipic acid, L-phenylalanine and 1,4-butanediol. After 4 months transplantation of MPs in rodent brain, no inflammation was observed. Additionally, factors were successfully released from MPs and affected neuronal cell differentiation in in vitro. The in vivo study using loaded MPs is in progress. Another severe problem in biomedicine is prevention of surgical devices from biofilm formation. Antimicrobial polymeric coatings are most effective “shields” to protect surfaces/devices from biofilm formation. Among matrices for constructing the coatings preference should be given to bio-erodible polymers. Such types of coatings will play a role of “unstable seating” that will not allow bacteria to occupy the surface. In other words, bio-erodible coatings would be discomfort shelter for bacteria that along with releasing “killers of bacteria” should prevent the formation of biofilm. For this purpose, we selected an original biodegradable PEA composed of L-leucine, 1,6-hexanediol and sebacic acid as a bio-erodible matrix, and nanosilver (AgNPs) as a bactericidal agent (“killer of bacteria”). Such nanocomposite material is also promising in treatment of superficial wound and ulcer. The solubility of the PEA in ethanol allows to reduce AgNO3 to NPs directly in the solution, where the solvent served as a reductive agent, and the PEA served as NPs stabilizer. The photochemical reduction was selected as a basic method to form NPs. The obtained AgNPs were characterized by UV-spectroscopy, transmission electron microscope (TEM), and dynamic light scattering (DLS). According to the UV-data and TEM data the photochemical reduction resulted in spherical AgNPs with wide particle size distribution with a high contribution of the particles below 10 nm that are known as responsible for bactericidal activity of AgNPs. DLS study showed that average size of nanoparticles formed after photo-reduction in ethanol solution ranged within ca. 50 nm.

Keywords: biodegradable polymers, microparticles, nanocomposites, stem cell therapy, stroke

Procedia PDF Downloads 382
2421 Militating Factors Against Building Information Modeling Adoption in Quantity Surveying Practice in South Africa

Authors: Kenneth O. Otasowie, Matthew Ikuabe, Clinton Aigbavboa, Ayodeji Oke

Abstract:

The quantity surveying (QS) profession is one of the professions in the construction industry, and it is saddled with the responsibility of measuring the number of materials as well as the workmanship required to get work done in the industry. This responsibility is vital to the success of a construction project as it determines if a project will be completed on time, within budget, and up to the required standard. However, the practice has been criticised severally for failure to accurately execute her responsibility. The need to reduce errors, inaccuracies and omissions has made the adoption of modern technologies such as building information modeling (BIM) inevitable in its practice. Nevertheless, there are barriers to the adoption of BIM in QS practice in South Africa (SA). Thus, this study aims to investigate these barriers. A survey design was adopted. A total number of one hundred and fifteen (115) questionnaires were administered to quantity surveyors in Guateng Province, SA, and ninety (90) were returned and found suitable for analysis. Collected data were analysed using percentage, mean item score, standard deviation, one-sample t-test, and Kruskal-Wallis. The findings show that lack of BIM expertise, lack of government enforcement, resistance to change, and no client demand for BIM are the most significant barriers to the adoption of BIM in QS practice. As a result, this study recommends that trainings on BIM technology be prioritised, and government must take the lead in BIM adoption in the country, particularly in public projects.

Keywords: barriers, BIM, quantity surveying practice, South Africa

Procedia PDF Downloads 85
2420 A Prospective Study of a Modified Pin-In-Plaster Technique for Treatment of Distal Radius Fractures

Authors: S. alireza Mirghasemi, Shervin Rashidinia, Mohammadsaleh Sadeghi, Mohsen Talebizadeh, Narges Rahimi Gabaran, S. Shahin Eftekhari, Sara Shahmoradi

Abstract:

Purpose: There are various pin-in-plaster methods for treating distal radius fractures. This study is meant to introduce a modified technique of pin-in-plaster. Materials and methods: Fifty-four patients with distal radius fractures were followed up for one year. Patients were excluded if they had type B fractures according to AO classification, multiple injuries or pathological fractures, and were treated more than 7 days after injury. Range of motion and functional results were evaluated. Radiographic parameters including radial inclination, tilt, and height, were measured preoperatively and postoperatively. Results: The average radial tilt was 10.6° and radial height was 10.2 mm at the sixth month postoperatively. Three cases of pin tract infection were recorded, who were treated totally with oral antibiotics. There was no case of pin loosening. Of total 73 patients underwent surgery, three cases of radial nerve irritation were recorded at the time of cast removal. All of them resolved at the 6th month follow up. No median nerve compression and carpal tunnel syndrome have found. We also had no case of tendon injury. Conclusion: Our modified technique is effective to restore anatomic congruity and maintain reduction.

Keywords: distal radius fracture, percutaneous pinning, pin-in-plaster, modified method of pin-in-plaster, operative treatment

Procedia PDF Downloads 488
2419 Technologic Information about Photovoltaic Applied in Urban Residences

Authors: Stephanie Fabris Russo, Daiane Costa Guimarães, Jonas Pedro Fabris, Maria Emilia Camargo, Suzana Leitão Russo, José Augusto Andrade Filho

Abstract:

Among renewable energy sources, solar energy is the one that has stood out. Solar radiation can be used as a thermal energy source and can also be converted into electricity by means of effects on certain materials, such as thermoelectric and photovoltaic panels. These panels are often used to generate energy in homes, buildings, arenas, etc., and have low pollution emissions. Thus, a technological prospecting was performed to find patents related to the use of photovoltaic plates in urban residences. The patent search was based on ESPACENET, associating the keywords photovoltaic and home, where we found 136 patent documents in the period of 1994-2015 in the fields title and abstract. Note that the years 2009, 2010, 2011, 2012, 2013 and 2014 had the highest number of applicants, with respectively, 11, 13, 23, 29, 15 and 21. Regarding the country that deposited about this technology, it is clear that China leads with 67 patent deposits, followed by Japan with 38 patents applications. It is important to note that most depositors, 50% are companies, 44% are individual inventors and only 6% are universities. On the International Patent classification (IPC) codes, we noted that the most present classification in results was H02J3/38, which represents provisions in parallel to feed a single network by two or more generators, converters or transformers. Among all categories, there is the H session, which means Electricity, with 70% of the patents.

Keywords: photovoltaic, urban residences, technology forecasting, prospecting

Procedia PDF Downloads 279
2418 Assessment of the Effect of Building Materials on Energy Demand of Buildings in Jos: An Experimental and Numerical Approach

Authors: Zwalnan Selfa Johnson, Caleb Nanchen Nimyel, Gideon Duvuna Ayuba

Abstract:

Air conditioning accounts for a significant share of the overall energy consumed in residential buildings. Solar thermal gains in buildings account for a significant component of the air conditioning load in buildings. This study compares the solar thermal gain and air conditioning load of a proposed building design with a typical conventional building in the climatic conditions of Jos, Nigeria, using a combined experimental and computational method using TRNSYS software. According to the findings of this study, the proposed design building's annual average solar thermal gains are lower compared to the reference building's average solar heat gains. The study case building's decreased solar heat gain is mostly attributable to the lower temperature of the building zones because of the greater building volume and lower fenestration ratio (ratio external opening area to the area of the external walls). This result shows that the proposed building design adjusts to the local climate better than the standard conventional construction in Jos to maintain a suitable temperature within the building. This finding means that the air-conditioning electrical energy consumption per volume of the proposed building design will be lower than that of a conventional building design.

Keywords: solar heat gain, building zone, cooling energy, air conditioning, zone temperature

Procedia PDF Downloads 76
2417 Semi-Analytic Method in Fast Evaluation of Thermal Management Solution in Energy Storage System

Authors: Ya Lv

Abstract:

This article presents the application of the semi-analytic method (SAM) in the thermal management solution (TMS) of the energy storage system (ESS). The TMS studied in this work is fluid cooling. In fluid cooling, both effective heat conduction and heat convection are indispensable due to the heat transfer from solid to fluid. Correspondingly, an efficient TMS requires a design investigation of the following parameters: fluid inlet temperature, ESS initial temperature, fluid flow rate, working c rate, continuous working time, and materials properties. Their variation induces a change of thermal performance in the battery module, which is usually evaluated by numerical simulation. Compared to complicated computation resources and long computation time in simulation, the SAM is developed in this article to predict the thermal influence within a few seconds. In SAM, a fast prediction model is reckoned by combining numerical simulation with theoretical/empirical equations. The SAM can explore the thermal effect of boundary parameters in both steady-state and transient heat transfer scenarios within a short time. Therefore, the SAM developed in this work can simplify the design cycle of TMS and inspire more possibilities in TMS design.

Keywords: semi-analytic method, fast prediction model, thermal influence of boundary parameters, energy storage system

Procedia PDF Downloads 134
2416 Defect Identification in Partial Discharge Patterns of Gas Insulated Switchgear and Straight Cable Joint

Authors: Chien-Kuo Chang, Yu-Hsiang Lin, Yi-Yun Tang, Min-Chiu Wu

Abstract:

With the trend of technological advancement, the harm caused by power outages is substantial, mostly due to problems in the power grid. This highlights the necessity for further improvement in the reliability of the power system. In the power system, gas-insulated switches (GIS) and power cables play a crucial role. Long-term operation under high voltage can cause insulation materials in the equipment to crack, potentially leading to partial discharges. If these partial discharges (PD) can be analyzed, preventative maintenance and replacement of equipment can be carried out, there by improving the reliability of the power grid. This research will diagnose defects by identifying three different defects in GIS and three different defects in straight cable joints, for a total of six types of defects. The partial discharge data measured will be converted through phase analysis diagrams and pulse sequence analysis. Discharge features will be extracted using convolutional image processing, and three different deep learning models, CNN, ResNet18, and MobileNet, will be used for training and evaluation. Class Activation Mapping will be utilized to interpret the black-box problem of deep learning models, with each model achieving an accuracy rate of over 95%. Lastly, the overall model performance will be enhanced through an ensemble learning voting method.

Keywords: partial discharge, gas-insulated switches, straight cable joint, defect identification, deep learning, ensemble learning

Procedia PDF Downloads 63
2415 Assessing the Risk of Condensation and Moisture Accumulation in Solid Walls: Comparing Different Internal Wall Insulation Options

Authors: David Glew, Felix Thomas, Matthew Brooke-Peat

Abstract:

Improving the thermal performance of homes is seen as an essential step in achieving climate change, fuel security, fuel poverty targets. One of the most effective thermal retrofits is to insulate solid walls. However, it has been observed that applying insulation to the internal face of solid walls reduces the surface temperature of the inner wall leaf, which may introduce condensation risk and may interrupt seasonal moisture accumulation and dissipation. This research quantifies the extent to which the risk of condensation and moisture accumulation in the wall increases (which can increase the risk of timber rot) following the installation of six different types of internal wall insulation. In so doing, it compares how risk is affected by both the thermal resistance, thickness, and breathability of the insulation. Thermal bridging, surface temperatures, condensation risk, and moisture accumulation are evaluated using hygrothermal simulation software before and after the thermal upgrades. The research finds that installing internal wall insulation will always introduce some risk of condensation and moisture. However, it identifies that risks were present prior to insulation and that breathable materials and insulation with lower resistance have lower risks than alternative insulation options. The implications of this may be that building standards that encourage the enhanced thermal performance of solid walls may be introducing moisture risks into homes.

Keywords: condensation risk, hygrothermal simulation, internal wall insulation, thermal bridging

Procedia PDF Downloads 145
2414 Graphene Reinforced Magnesium Metal Matrix Composites for Biomedical Applications

Authors: Khurram Munir, Cuie Wen, Yuncang Li

Abstract:

Magnesium (Mg) metal matrix composites (MMCs) reinforced with graphene nanoplatelets (GNPs) have been developed by powder metallurgy (PM). In this study, GNPs with different concentrations (0.1-0.3 wt.%) were dispersed into Mg powders by high-energy ball-milling processes. The microstructure and resultant mechanical properties of the fabricated nanocomposites were characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Raman spectroscopy (RS), compression and nano-wear tests. The corrosion resistance of the fabricated composites was evaluated by electrochemical tests and hydrogen evolution measurements. Finally, the biological response of Mg-GNPs composites was assessed using osteoblast-like SaOS2 cells. The results indicate that GNPs are excellent candidates as reinforcements in Mg matrices for the manufacture of biodegradable Mg-based composite implants. GNP addition improved the mechanical properties of Mg via synergetic strengthening modes. Moreover, retaining the structural integrity of GNPs during PM processing improved the ductility, compressive strength, and corrosion resistance of the Mg-GNP composites as compared to monolithic Mg. Cytotoxicity assessments did not reveal any significant toxicity with the addition of GNPs to Mg matrices. This study demonstrates that Mg-xGNPs with x < 0.3 wt.%, may constitute novel biodegradable implant materials for load-bearing applications.

Keywords: magnesium-graphene composites, strengthening mechanisms, In vitro cytotoxicity, biocorrosion

Procedia PDF Downloads 146
2413 Experiments with Saggar Application in Traditional Indian Pottery

Authors: Arman Ovla, Satyaki Roy, Shatrupa T. Roy

Abstract:

India is known for the richness of its tradition and cultural heritage. The practice of crafts like pottery and terracotta has a long-standing history. Some of the oldest specimens of fine pottery were excavated from the ancient sites of Indus-valley settlements dating back to 4000 years. There are so many techniques and styles which have developed through time. Pottery with red clay and low firing is one of the oldest branches of ceramic which is still being made in India in large quantities. This study is based on field research carried out in two large pottery clusters. The traditional potters of Pahari in Rajasthan and Nizamabad in Uttar Pradesh are baking pots with the help of saggar containers and creating products quite different from others. The potters of Prajapati community residing in both places have been engaged in the art of making pottery for ages. The knowledge of pottery and associated skills are passed on from one generation to the next. They use only the local material available in their vicinity and adapt the design and decorations to create an identity that is deeply rooted in their origins. For the purpose of this research, pure qualitative research methodology was followed with field visits and data collection from Pahari and Nizamabad. Observations and notes made from non-intrusive techniques and direct interview methods of existing potters residing in the region. This paper on Saggar pottery describes the tools and techniques, methods and materials, the firing process, and indigenous stylistic attributes.

Keywords: Saggar, smoke firing, black pottery, Nizamabad, Pahari

Procedia PDF Downloads 63
2412 The Relationship among Exercise Participation, Job Stress and Job Satisfaction: A Study on Food Service Employees in Taiwan

Authors: Jui-Hsiu Chang

Abstract:

As an increasing number of restaurants are growing, the demand for man force in the food service industry is dramatically increasing as well. However, food service workers often complete the heavy workload, infrequent breaks, long hours and shifts. With the overwhelming workload, many workers have experienced high injury rates. As a result, the restaurant industry reports a higher employee turnover rate compare to other service industries in Taiwan. Restaurant managers are seeing ways to retain good employees in order to provide good quality service for daily operation. The purpose of this study was to explore the relationship among exercise participation, job stress and job satisfaction on the food service employees. In addition, to examine how the job stress affected their job satisfaction. A survey using a self-reported questionnaire was conducted to collect data, and 269 questionnaires were collected for data analysis. The obtained materials were analyzed using descriptive statistic, independent t-test, one-way ANOVA, linear regression analysis. The results show that 1. Job stress had a significantly negative influence on employees’ job satisfaction. 2. Exercise participation had significantly positive influence on employees’ job satisfaction. 3. Job stress and job satisfaction varied among the groups of respondent with different level of exercise involvement. Furthermore, the practical implications were proposed for the food service company management when developing daily operational strategies.

Keywords: exercise participation, food service employees, job satisfaction, job stress

Procedia PDF Downloads 253
2411 Production of Date Juice Infused with Natural Antioxidants from Qatari Herbs

Authors: Tahra ElObeid, Noura Al-Wahiemed, Jawaher Al-shammari, Wedad Al-Asmar

Abstract:

The aim of this study is to utilize Qatari raw materials in the production of a date juice high in antioxidants. The antioxidants were extracted from five Qatari herbs: Caspian manna, Tetraena mongolica, Capparis spinosa, Ziziphus Vulgaris and Lycium shawii. The date juice was prepared in the lab and was infused with the polyphenolic extracts from the 5 different Qatari herbs. The date juice was then infused with the antioxidant containing the highest antioxidant activity and was within the acceptable range in sensory evaluation scale. The phenolic content for Lycium shawii, Alhagi maurorum, Ziziphus Vulgaris, Capparis spinosa and Tetraena mongolica was 4294 ppm, 3843 ppm, 804.59 ppm, 189.14 ppm and 226 ppm respectively, whereas their antioxidant capacity of was 6.21 %, 45.27 %, 69.81 %, 2.96 % and 8.63 % respectively. The highest antioxidant capacity was found in Ziziphus Vulgaris 69.8 % and the highest phenolic content was found in Lycium shawii 4294 ppm. Alhagi maurorum, Tetraena mongolica and Lycium shawii showed good results in terms of taste and aroma however Ziziphus Vulgaris exhibited bitter flavor. Alhagi maurorum antioxidant extract was used to be added to the date juice due to its high phenolic content, high antioxidant capacity, good taste and aroma.

Keywords: Qatar, dates, herbs, antioxidants

Procedia PDF Downloads 295
2410 Modeling and Simulation of Pad Surface Topography by Diamond Dressing in Chemical-Mechanical Polishing Process

Authors: A.Chen Chao-Chang, Phong Pham-Quoc

Abstract:

Chemical-mechanical polishing (CMP) process has been widely applied on fabricating integrated circuits (IC) with a soft polishing pad combined with slurry composed of micron or nano-scaled abrasives for generating chemical reaction to remove substrate or film materials from wafer. During CMP process, pad uniformity usually works as a datum surface of wafer planarization and pad asperities can dominate the microscopic pad-slurry-wafer interaction. However, pad topography can be changed by related mechanism factors of CMP and it needs to be re-conditioned or dressed by a diamond dresser of well-distributed diamond grits on a disc surface. It is still very complicated to analyze and understand kinematic of diamond dressing process under the effects of input variables including oscillatory of diamond dresser and rotation speed ratio between the pad and the diamond dresser. This paper has developed a generic geometric model to clarify the kinematic modeling of diamond dressing processes such as dresser/pad motion, pad cutting locus, the relative velocity of the diamond abrasive grits on pad surface, and overlap of cutting for prediction of pad surface topography. Simulation results focus on comparing and analysis kinematics of the diamond dressing on certain CMP tools. Results have shown the significant parameters for diamond dressing process and also discussed. Future study can apply on diamond dresser design and experimental verification of pad dressing process.

Keywords: kinematic modeling, diamond dresser, pad cutting locus, CMP

Procedia PDF Downloads 238
2409 Investigation into the Homoepitaxy of AlGaN/GaN Heterostructure via Molecular Beam Epitaxy

Authors: Jiajia Yao, Guanlin Wu, Fang Liu, Junshuai Xue, Yue Hao

Abstract:

As the production process of self-standing GaN substrates evolves, the commercialization of low dislocation density, large-scale, semi-insulating self-standing GaN substrates is gradually becoming a reality. This advancement has given rise to increased interest in GaN materials' homoepitaxial technology. However, at the homoepitaxial interface, there are considerable concentrations of impurity elements, including C, Si, and O, which generate parasitic leakage channels at the re-growth junction. This phenomenon results in leaked HEMTs that prove difficult to switch off, rendering them effectively non-functional. The emergence of leakage channels can also degrade the high-frequency properties and lower the power devices' breakdown voltage. In this study, the uniform epitaxy of AlGaN/GaN heterojunction with high electron mobility was accomplished through the surface treatment of the GaN substrates prior to growth and the design of the AlN isolation layer structure. By employing a procedure combining gallium atom in-situ cleaning and plasma nitridation, the C and O impurity concentrations at the homoepitaxial interface were diminished to the scale of 10¹⁷ cm-³. Additionally, the 1.5 nm nitrogen-rich AlN isolation layer successfully prevented the diffusion of Si impurities into the GaN channel layer. The result was an AlGaN/GaN heterojunction with an electron mobility of 1552 cm²/Vs and an electron density of 1.1 × 10¹³ cm-² at room temperature, obtained on a Fe-doped semi-insulating GaN substrate.

Keywords: MBE, AlGaN/GaN, homogenerous epitaxy, HEMT

Procedia PDF Downloads 46
2408 Numerical Determination of Transition of Cup Height between Hydroforming Processes

Authors: H. Selcuk Halkacı, Mevlüt Türköz, Ekrem Öztürk, Murat Dilmec

Abstract:

Various attempts concerning the low formability issue for lightweight materials like aluminium and magnesium alloys are being investigated in many studies. Advanced forming processes such as hydroforming is one of these attempts. In last decades sheet hydroforming process has an increasing interest, particularly in the automotive and aerospace industries. This process has many advantages such as enhanced formability, the capability to form complex parts, higher dimensional accuracy and surface quality, reduction of tool costs and reduced die wear compared to the conventional sheet metal forming processes. There are two types of sheet hydroforming. One of them is hydromechanical deep drawing (HDD) that is a special drawing process in which pressurized fluid medium is used instead of one of the die half compared to the conventional deep drawing (CDD) process. Another one is sheet hydroforming with die (SHF-D) in which blank is formed with the act of fluid pressure and it takes the shape of die half. In this study, transition of cup height according to cup diameter between the processes was determined by performing simulation of the processes in Finite Element Analysis. Firstly SHF-D process was simulated for 40 mm cup diameter at different cup heights chancing from 10 mm to 30 mm and the cup height to diameter ratio value in which it is not possible to obtain a successful forming was determined. Then the same ratio was checked for a different cup diameter of 60 mm. Then thickness distributions of the cups formed by SHF-D and HDD processes were compared for the cup heights. Consequently, it was found that the thickness distribution in HDD process in the analyses was more uniform.

Keywords: finite element analysis, HDD, hydroforming sheet metal forming, SHF-D

Procedia PDF Downloads 418
2407 Moderating Effects of Future Career Interest in Science and Gender on Students' Achievement in Basic Science in Oyo State, Nigeria

Authors: Segun Jacob Ogunkunle

Abstract:

The study examined the moderating effects of future career interest in science and gender on achievement in basic science of students taught in a simulated laboratory and enriched laboratory guide material environments. It adopted the pretest-posttest control group quasi experimental design with a 3x2x2 factorial matrix. A total of 277 (130 males, 147 females; ± 17 years) junior secondary three students randomly selected from six purposively selected secondary schools based on availability of functional computer and physics laboratories participated in the study. Data were collected using achievement test in basic science (r=0.87) and future career interest in science (r=0.99) while analysis of covariance and estimated marginal means were used to test three hypotheses at 0.05 level of significance. The findings of the study show that future career interest in science had significant effect on students’ achievement in basic science whereas gender did not. The interaction effect of future career interest in science and gender on students’ achievement in basic science was not significant. It is therefore recommended that prior knowledge of students’ future career interest in science could be used to improve participation in basic science practical in order to enhance achievement in biology, chemistry, and physics at the post-basic education level in Nigeria.

Keywords: future career interest in science, basic science, simulated laboratory, enriched laboratory guide materials, achievement in science

Procedia PDF Downloads 140
2406 Determination of Marbofloxacin in Pig Plasma Using LC-MS/MS and Its Application to the Pharmacokinetic Studies

Authors: Jeong Woo Kang, MiYoung Baek, Ki-Suk Kim, Kwang-Jick Lee, ByungJae So

Abstract:

Introduction: A fast, easy and sensitive detection method was developed and validated by liquid chromatography tandem mass spectrometry for the determination of marbofloxacin in pig plasma which was further applied to study the pharmacokinetics of marbofloxacin. Materials and Methods: The plasma sample (500 μL) was mixed with 1.5 ml of 0.1% formic acid in MeCN to precipitate plasma proteins. After shaking for 20 min, The mixture was centrifuged at 5,000 × g for 30 min. It was dried under a nitrogen flow at 50℃. 500 μL aliquot of the sample was injected into the LC-MS/MS system. Chromatographic analysis was carried out mobile phase gradient consisting 0.1% formic acid in D.W. (A) and 0.1% formic acid in MeCN (B) with C18 reverse phase column. Mass spectrometry was performed using the positive ion mode and the selected ion monitoring (MRM). Results and Conclusions: The method validation was performed in the sample matrix. Good linearities (R2>0.999) were observed and the quantified average recoveries of marbofloxacin were 87 - 92% at level of 10 ng g-1 -100 ng g-1. The percent of coefficient of variation (CV) for the described method was less than 10 % over the range of concentrations studied. The limits of detection (LOD) and quantification (LOQ) were 2 and 5 ng g-1, respectively. This method has also been applied successfully to pharmacokinetic analysis of marbofloxacin after intravenous (IV), intramuscular (IM) and oral administration (PO). The mean peak plasma concentration (Cmax) was 2,597 ng g-1at 0.25 h, 2,587 ng g-1at 0.44 h and 2,355 ng g-1at 1.58 h for IV, IM and PO, respectively. The area under the plasma concentration-time curve (AUC0–t) was 24.8, 29.0 and 25.2 h μg/mL for IV, IM and PO, respectively. The elimination half-life (T1/2) was 8.6, 13.1 and 9.5 for IV, IM and PO, respectively. Bioavailability (F) of the marbofloxacin in pig was 117 and 101 % for IM and PO, respectively. Based on these result, marbofloxacin does not have any obstacles as therapeutics to develop the oral formulations such as tablets and capsules.

Keywords: marbofloxacin, LC-MS/MS, pharmacokinetics, chromatographic

Procedia PDF Downloads 529
2405 Vibration Frequency Analysis of Sandwich Nano-Plate on Visco Pasternak Foundation by Using Modified Couple Stress Theory

Authors: Hamed Khani Arani, Mohammad Shariyat, Armaghan Mohammadian

Abstract:

In this research, the free vibration of a rectangular sandwich nano-plate (SNP) made of three smart layers in the visco Pasternak foundation is studied. The core of the sandwich is a piezo magnetic nano-plate integrated with two layers of piezoelectric materials. First-order shear deformation plate theory is utilized to derive the motion equations by using Hamilton’s principle, piezoelectricity, and modified couple stress theory. Elastic medium is modeled by visco Pasternak foundation, where the damping coefficient effect is investigated on the stability of sandwich nano-plate. These equations are solved by the differential quadrature method (DQM), considering different boundary conditions. Results indicate the effect of various parameters such as aspect ratio, thickness ratio, shear correction factor, damping coefficient, and boundary conditions on the dimensionless frequency of sandwich nano-plate. The results are also compared by those available in the literature, and these findings can be used for automotive industry, communications equipment, active noise, stability, and vibration cancellation systems and utilized for designing the magnetostrictive actuator, motor, transducer and sensors in nano and micro smart structures.

Keywords: free vibration, modified couple stress theory, sandwich nano-plate, visco Pasternak foundation

Procedia PDF Downloads 125
2404 Mechanical Characterization of Porcine Skin with the Finite Element Method Based Inverse Optimization Approach

Authors: Djamel Remache, Serge Dos Santos, Michael Cliez, Michel Gratton, Patrick Chabrand, Jean-Marie Rossi, Jean-Louis Milan

Abstract:

Skin tissue is an inhomogeneous and anisotropic material. Uniaxial tensile testing is one of the primary testing techniques for the mechanical characterization of skin at large scales. In order to predict the mechanical behavior of materials, the direct or inverse analytical approaches are often used. However, in case of an inhomogeneous and anisotropic material as skin tissue, analytical approaches are not able to provide solutions. The numerical simulation is thus necessary. In this work, the uniaxial tensile test and the FEM (finite element method) based inverse method were used to identify the anisotropic mechanical properties of porcine skin tissue. The uniaxial tensile experiments were performed using Instron 8800 tensile machine®. The uniaxial tensile test was simulated with FEM, and then the inverse optimization approach (or the inverse calibration) was used for the identification of mechanical properties of the samples. Experimentally results were compared to finite element solutions. The results showed that the finite element model predictions of the mechanical behavior of the tested skin samples were well correlated with experimental results.

Keywords: mechanical skin tissue behavior, uniaxial tensile test, finite element analysis, inverse optimization approach

Procedia PDF Downloads 392
2403 Discrete Element Modeling of the Effect of Particle Shape on Creep Behavior of Rockfills

Authors: Yunjia Wang, Zhihong Zhao, Erxiang Song

Abstract:

Rockfills are widely used in civil engineering, such as dams, railways, and airport foundations in mountain areas. A significant long-term post-construction settlement may affect the serviceability or even the safety of rockfill infrastructures. The creep behavior of rockfills is influenced by a number of factors, such as particle size, strength and shape, water condition and stress level. However, the effect of particle shape on rockfill creep still remains poorly understood, which deserves a careful investigation. Particle-based discrete element method (DEM) was used to simulate the creep behavior of rockfills under different boundary conditions. Both angular and rounded particles were considered in this numerical study, in order to investigate the influence of particle shape. The preliminary results showed that angular particles experience more breakages and larger creep strains under one-dimensional compression than rounded particles. On the contrary, larger creep strains were observed in he rounded specimens in the direct shear test. The mechanism responsible for this difference is that the possibility of the existence of key particle in rounded particles is higher than that in angular particles. The above simulations demonstrate that the influence of particle shape on the creep behavior of rockfills can be simulated by DEM properly. The method of DEM simulation may facilitate our understanding of deformation properties of rockfill materials.

Keywords: rockfills, creep behavior, particle crushing, discrete element method, boundary conditions

Procedia PDF Downloads 304
2402 A Collaborative Action Research on the Teaching of Music Learning Center in Taiwan's Preschool

Authors: Mei-Ying Liao, Lee-Ching Wei, Jung-Hsiang Tseng

Abstract:

The main purpose of this study was to explore the process of planning and execution of the music learning center in preschool. This study was conducted through a collaborative action research method. The research members included a university music professor, a teaching guide, a preschool director, and a preschool teacher, leading a class of 5-6-year-old children to participate in this study. Five teaching cycles were performed with a subject of bird. In the whole process that lasted three months, the research members would maintain the conversation, reflection, and revision repeatedly. A triangular validated method was used to collect data, including archives, interviews, seminars, observations, journals, and learning evaluations to improve research on the validity and reliability. It was found that a successful music learning center required comprehensive planning and execution. It is also important to develop good listening, singing, respect, and homing habits at the beginning of running the music learning center. By timely providing diverse musical instruments, learning materials, and activities according to the teaching goals, children’s desire to learning was highly stimulated. Besides, peer interactions improved their ensemble and problem-solving abilities. The collaborative action research enhanced the preschool teacher’s confidence and promoted professional growth of the research members.

Keywords: collaborative action research, case study, music learning center, music development

Procedia PDF Downloads 357