Search results for: normalised weighting approach
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14146

Search results for: normalised weighting approach

7906 Analysis of Criteria for Determining the Location of Hilal Observation in the Tropical Regions: Study of Hilal Observation Location in Bengkulu City

Authors: Badrun Taman

Abstract:

This study aims to review the use of the Bengkulu Provincial Government Mess as the location of rukyatul hilal because its determination has not been carried out scientifically. There are three things that will be analyzed, namely geographical-astronomical conditions, the suitability of the location with ideal criteria, and the determination of the location of rukyatul hilal in accordance with regional conditions based on the results of the study. The research method used is qualitative with an astronomical geographical approach. The results showed that the factor that strengthened the disturbance from the weather aspect was the western sky horizon in the form of the Indian Ocean sea level. The potential for geographical disturbances on this horizon is high sea waves, relatively high sea breezes, and more seawater vapor due to sea surface temperatures and high air humidity. This study found new criteria for determining the location of the observation crescent. The criteria is the western horizon is not sea level (especially the Indian Ocean).

Keywords: criteria, location, Rukyatul Hilal, tropics, Indian ocean

Procedia PDF Downloads 117
7905 Neural Networks and Genetic Algorithms Approach for Word Correction and Prediction

Authors: Rodrigo S. Fonseca, Antônio C. P. Veiga

Abstract:

Aiming at helping people with some movement limitation that makes typing and communication difficult, there is a need to customize an assistive tool with a learning environment that helps the user in order to optimize text input, identifying the error and providing the correction and possibilities of choice in the Portuguese language. The work presents an Orthographic and Grammatical System that can be incorporated into writing environments, improving and facilitating the use of an alphanumeric keyboard, using a prototype built using a genetic algorithm in addition to carrying out the prediction, which can occur based on the quantity and position of the inserted letters and even placement in the sentence, ensuring the sequence of ideas using a Long Short Term Memory (LSTM) neural network. The prototype optimizes data entry, being a component of assistive technology for the textual formulation, detecting errors, seeking solutions and informing the user of accurate predictions quickly and effectively through machine learning.

Keywords: genetic algorithm, neural networks, word prediction, machine learning

Procedia PDF Downloads 200
7904 What Smart Can Learn about Art

Authors: Faten Hatem

Abstract:

This paper explores the associated understanding of the role and meaning of art and whether it is perceived to be separate from smart city construction. The paper emphasises the significance of fulfilling the inherent need for discovery and interaction, driving people to explore new places and think of works of art. This is done by exploring the ways of thinking and types of art in Milton Keynes by illustrating a general pattern of misunderstanding that relies on the separation between smart, art, and architecture, promoting a better and deeper understanding of the interconnections between neuroscience, art, and architecture. A reflective approach is used to clarify the potential and impact of using art-based research, methodology, and ways of knowing when approaching global phenomena and knowledge production while examining the process of making and developing smart cities, in particular, asserting that factors can severely impact it in the process of conducting the study itself. It follows a case study as a research strategy. The qualitative methods included data collection and analysis that involved interviews and observations that depended on visuals.

Keywords: smart cities, art and smart, smart cities design, smart cities making, sustainability, city brain and smart cities metrics, smart cities standards, smart cities applications, governance, planning and policy

Procedia PDF Downloads 125
7903 Application of Artificial Neural Network for Prediction of High Tensile Steel Strands in Post-Tensioned Slabs

Authors: Gaurav Sancheti

Abstract:

This study presents an impacting approach of Artificial Neural Networks (ANNs) in determining the quantity of High Tensile Steel (HTS) strands required in post-tensioned (PT) slabs. Various PT slab configurations were generated by varying the span and depth of the slab. For each of these slab configurations, quantity of required HTS strands were recorded. ANNs with backpropagation algorithm and varying architectures were developed and their performance was evaluated in terms of Mean Square Error (MSE). The recorded data for the quantity of HTS strands was used as a feeder database for training the developed ANNs. The networks were validated using various validation techniques. The results show that the proposed ANNs have a great potential with good prediction and generalization capability.

Keywords: artificial neural networks, back propagation, conceptual design, high tensile steel strands, post tensioned slabs, validation techniques

Procedia PDF Downloads 227
7902 Passive Non-Prehensile Manipulation on Helix Path Based on Mechanical Intelligence

Authors: Abdullah Bajelan, Adel Akbarimajd

Abstract:

Object manipulation techniques in robotics can be categorized in two major groups including manipulation with grasp and manipulation without grasp. The original aim of this paper is to develop an object manipulation method where in addition to being grasp-less, the manipulation task is done in a passive approach. In this method, linear and angular positions of the object are changed and its manipulation path is controlled. The manipulation path is a helix track with constant radius and incline. The method presented in this paper proposes a system which has not the actuator and the active controller. So this system requires a passive mechanical intelligence to convey the object from the status of the source along the specified path to the goal state. This intelligent is created based on utilizing the geometry of the system components. A general set up for the components of the system is considered to satisfy the required conditions. Then after kinematical analysis, detailed dimensions and geometry of the mechanism is obtained. The kinematical results are verified by simulation in ADAMS.

Keywords: mechanical intelligence, object manipulation, passive mechanism, passive non-prehensile manipulation

Procedia PDF Downloads 486
7901 Stochastic Programming and C-Somga: Animal Ration Formulation

Authors: Pratiksha Saxena, Dipti Singh, Neha Khanna

Abstract:

A self-organizing migrating genetic algorithm(C-SOMGA) is developed for animal diet formulation. This paper presents animal diet formulation using stochastic and genetic algorithm. Tri-objective models for cost minimization and shelf life maximization are developed. These objectives are achieved by combination of stochastic programming and C-SOMGA. Stochastic programming is used to introduce nutrient variability for animal diet. Self-organizing migrating genetic algorithm provides exact and quick solution and presents an innovative approach towards successful application of soft computing technique in the area of animal diet formulation.

Keywords: animal feed ration, feed formulation, linear programming, stochastic programming, self-migrating genetic algorithm, C-SOMGA technique, shelf life maximization, cost minimization, nutrient maximization

Procedia PDF Downloads 448
7900 Relay Mining: Verifiable Multi-Tenant Distributed Rate Limiting

Authors: Daniel Olshansky, Ramiro Rodrıguez Colmeiro

Abstract:

Relay Mining presents a scalable solution employing probabilistic mechanisms and crypto-economic incentives to estimate RPC volume usage, facilitating decentralized multitenant rate limiting. Network traffic from individual applications can be concurrently serviced by multiple RPC service providers, with costs, rewards, and rate limiting governed by a native cryptocurrency on a distributed ledger. Building upon established research in token bucket algorithms and distributed rate-limiting penalty models, our approach harnesses a feedback loop control mechanism to adjust the difficulty of mining relay rewards, dynamically scaling with network usage growth. By leveraging crypto-economic incentives, we reduce coordination overhead costs and introduce a mechanism for providing RPC services that are both geopolitically and geographically distributed.

Keywords: remote procedure call, crypto-economic, commit-reveal, decentralization, scalability, blockchain, rate limiting, token bucket

Procedia PDF Downloads 58
7899 The Relationship between Anatomical Components of Mosques and Place Attachment with Respect to Islamic Wisdom and Art

Authors: Alitajer Saeed, Negintaji Farshad

Abstract:

This study has been examined the relationship between anatomical components of mosques and place attachment of people to anatomies of mosques with the approach of attending to Islamic wisdom. To this end, this article by reviewing the theoretical and empirical literature of mosques' anatomy and the role of anatomy on the architectural design of Iranian mosques by examining the quantitative and qualitative indicators and in order to understand and identify the anatomy of mosques, components such as: entrance, portico, minarets, domes, bedchamber and pool have been investigated. For this purpose, SPSS software has been used. Research is related to field and is of descriptive, analytical and inferential type and quantitative and qualitative indicators have been examined. Statistical analysis obtained from the questionnaire indicates that there is a significant relationship between the anatomical components of architecture and place attachment of the participants. By understanding and identifying the anatomy of mosques and appropriate planning to use the anatomy in Islamic architecture and considering it as an eminent indicators of designing, it can present great Iranian architecture.

Keywords: Islamic wisdom, Islamic architecture, mosque anatomy place attachment, Islamic art

Procedia PDF Downloads 517
7898 Design of an Automated Deep Learning Recurrent Neural Networks System Integrated with IoT for Anomaly Detection in Residential Electric Vehicle Charging in Smart Cities

Authors: Wanchalerm Patanacharoenwong, Panaya Sudta, Prachya Bumrungkun

Abstract:

The paper focuses on the development of a system that combines Internet of Things (IoT) technologies and deep learning algorithms for anomaly detection in residential Electric Vehicle (EV) charging in smart cities. With the increasing number of EVs, ensuring efficient and reliable charging systems has become crucial. The aim of this research is to develop an integrated IoT and deep learning system for detecting anomalies in residential EV charging and enhancing EV load profiling and event detection in smart cities. This approach utilizes IoT devices equipped with infrared cameras to collect thermal images and household EV charging profiles from the database of Thailand utility, subsequently transmitting this data to a cloud database for comprehensive analysis. The methodology includes the use of advanced deep learning techniques such as Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) algorithms. IoT devices equipped with infrared cameras are used to collect thermal images and EV charging profiles. The data is transmitted to a cloud database for comprehensive analysis. The researchers also utilize feature-based Gaussian mixture models for EV load profiling and event detection. Moreover, the research findings demonstrate the effectiveness of the developed system in detecting anomalies and critical profiles in EV charging behavior. The system provides timely alarms to users regarding potential issues and categorizes the severity of detected problems based on a health index for each charging device. The system also outperforms existing models in event detection accuracy. This research contributes to the field by showcasing the potential of integrating IoT and deep learning techniques in managing residential EV charging in smart cities. The system ensures operational safety and efficiency while also promoting sustainable energy management. The data is collected using IoT devices equipped with infrared cameras and is stored in a cloud database for analysis. The collected data is then analyzed using RNN, LSTM, and feature-based Gaussian mixture models. The approach includes both EV load profiling and event detection, utilizing a feature-based Gaussian mixture model. This comprehensive method aids in identifying unique power consumption patterns among EV owners and outperforms existing models in event detection accuracy. In summary, the research concludes that integrating IoT and deep learning techniques can effectively detect anomalies in residential EV charging and enhance EV load profiling and event detection accuracy. The developed system ensures operational safety and efficiency, contributing to sustainable energy management in smart cities.

Keywords: cloud computing framework, recurrent neural networks, long short-term memory, Iot, EV charging, smart grids

Procedia PDF Downloads 74
7897 Using Machine Learning to Predict Answers to Big-Five Personality Questions

Authors: Aadityaa Singla

Abstract:

The big five personality traits are as follows: openness, conscientiousness, extraversion, agreeableness, and neuroticism. In order to get an insight into their personality, many flocks to these categories, which each have different meanings/characteristics. This information is important not only to individuals but also to career professionals and psychologists who can use this information for candidate assessment or job recruitment. The links between AI and psychology have been well studied in cognitive science, but it is still a rather novel development. It is possible for various AI classification models to accurately predict a personality question via ten input questions. This would contrast with the hundred questions that normal humans have to answer to gain a complete picture of their five personality traits. In order to approach this problem, various AI classification models were used on a dataset to predict what a user may answer. From there, the model's prediction was compared to its actual response. Normally, there are five answer choices (a 20% chance of correct guess), and the models exceed that value to different degrees, proving their significance. By utilizing an MLP classifier, decision tree, linear model, and K-nearest neighbors, they were able to obtain a test accuracy of 86.643, 54.625, 47.875, and 52.125, respectively. These approaches display that there is potential in the future for more nuanced predictions to be made regarding personality.

Keywords: machine learning, personally, big five personality traits, cognitive science

Procedia PDF Downloads 149
7896 Decentralized Data Marketplace Framework Using Blockchain-Based Smart Contract

Authors: Meshari Aljohani, Stephan Olariu, Ravi Mukkamala

Abstract:

Data is essential for enhancing the quality of life. Its value creates chances for users to profit from data sales and purchases. Users in data marketplaces, however, must share and trade data in a secure and trusted environment while maintaining their privacy. The first main contribution of this paper is to identify enabling technologies and challenges facing the development of decentralized data marketplaces. The second main contribution is to propose a decentralized data marketplace framework based on blockchain technology. The proposed framework enables sellers and buyers to transact with more confidence. Using a security deposit, the system implements a unique approach for enforcing honesty in data exchange among anonymous individuals. Before the transaction is considered complete, the system has a time frame. As a result, users can submit disputes to the arbitrators which will review them and respond with their decision. Use cases are presented to demonstrate how these technologies help data marketplaces handle issues and challenges.

Keywords: blockchain, data, data marketplace, smart contract, reputation system

Procedia PDF Downloads 161
7895 Availability Analysis of Milling System in a Rice Milling Plant

Authors: P. C. Tewari, Parveen Kumar

Abstract:

The paper describes the availability analysis of milling system of a rice milling plant using probabilistic approach. The subsystems under study are special purpose machines. The availability analysis of the system is carried out to determine the effect of failure and repair rates of each subsystem on overall performance (i.e. steady state availability) of system concerned. Further, on the basis of effect of repair rates on the system availability, maintenance repair priorities have been suggested. The problem is formulated using Markov Birth-Death process taking exponential distribution for probable failures and repair rates. The first order differential equations associated with transition diagram are developed by using mnemonic rule. These equations are solved using normalizing conditions and recursive method to drive out the steady state availability expression of the system. The findings of the paper are presented and discussed with the plant personnel to adopt a suitable maintenance policy to increase the productivity of the rice milling plant.

Keywords: availability modeling, Markov process, milling system, rice milling plant

Procedia PDF Downloads 238
7894 A Mixed Approach to Assess Information System Risk, Operational Risk, and Congolese Microfinance Institutions Performance

Authors: Alfred Kamate Siviri, Angelus Mafikiri Tsongo, Jean Robert Kala Kamdjoug

Abstract:

Digitalization and information systems well organized have been selected as relevant measures to mitigate operational risks within organizations. Unfortunately, information system comes with new threats that can cause severe damage and quick organization lockout. This study aims to measure perceived information system risks and their effects on operational risks within the microfinance institution in D.R. Congo. Also, the factors influencing the operational risk are identified, and the link between operational risk with other risks and performance is to be assessed. The study proposes a research model drawn on the combination of Resources-Based-View, dynamic capabilities, the agency theory, the Information System Security Model, and social theories of risk. Therefore, we suggest adopting a mixed methods research with the sole aim of increasing the literature that already exists on perceived operational risk assessment and its link with other risk and performance, a focus on IT risk.

Keywords: Democratic Republic Congo, information system risk, microfinance performance, operational risk

Procedia PDF Downloads 232
7893 To Examine Perceptions and Associations of Shock Food Labelling and to Assess the Impact on Consumer Behaviour: A Quasi-Experimental Approach

Authors: Amy Heaps, Amy Burns, Una McMahon-Beattie

Abstract:

Shock and fear tactics have been used to encourage consumer behaviour change within the UK regarding lifestyle choices such as smoking and alcohol abuse, yet such measures have not been applied to food labels to encourage healthier purchasing decisions. Obesity levels are continuing to rise within the UK, despite efforts made by government and charitable bodies to encourage consumer behavioural changes, which will have a positive influence on their fat, salt, and sugar intake. We know that taking extreme measures to shock consumers into behavioural changes has worked previously; for example, the anti-smoking television adverts and new standardised cigarette and tobacco packaging have reduced the numbers of the UK adult population who smoke or encouraged those who are currently trying to quit. The USA has also introduced new front-of-pack labelling, which is clear, easy to read, and includes concise health warnings on products high in fat, salt, or sugar. This model has been successful, with consumers reducing purchases of products with these warning labels present. Therefore, investigating if shock labels would have an impact on UK consumer behaviour and purchasing decisions would help to fill the gap within this research field. This study aims to develop an understanding of consumer’s initial responses to shock advertising with an interest in the perceived impact of long-term effect shock advertising on consumer food purchasing decisions, behaviour, and attitudes and will achieve this through a mixed methodological approach taken with a sample size of 25 participants ages ranging from 22 and 60. Within this research, shock mock labels were developed, including a graphic image, health warning, and get-help information. These labels were made for products (available within the UK) with large market shares which were high in either fat, salt, or sugar. The use of online focus groups and mouse-tracking experiments results helped to develop an understanding of consumer’s initial responses to shock advertising with interest in the perceived impact of long-term effect shock advertising on consumer food purchasing decisions, behaviour, and attitudes. Preliminary results have shown that consumers believe that the use of graphic images, combined with a health warning, would encourage consumer behaviour change and influence their purchasing decisions regarding those products which are high in fat, salt and sugar. Preliminary main findings show that graphic mock shock labels may have an impact on consumer behaviour and purchasing decisions, which will, in turn, encourage healthier lifestyles. Focus group results show that 72% of participants indicated that these shock labels would have an impact on their purchasing decisions. During the mouse tracking trials, this increased to 80% of participants, showing that more exposure to shock labels may have a bigger impact on potential consumer behaviour and purchasing decision change. In conclusion, preliminary results indicate that graphic shock labels will impact consumer purchasing decisions. Findings allow for a deeper understanding of initial emotional responses to these graphic labels. However, more research is needed to test the longevity of these labels on consumer purchasing decisions, but this research exercise is demonstrably the foundation for future detailed work.

Keywords: consumer behavior, decision making, labelling legislation, purchasing decisions, shock advertising, shock labelling

Procedia PDF Downloads 71
7892 Effectiveness of Participatory Ergonomic Education on Pain Due to Work Related Musculoskeletal Disorders in Food Processing Industrial Workers

Authors: Salima Bijapuri, Shweta Bhatbolan, Sejalben Patel

Abstract:

Ergonomics concerns the fitting of the environment and the equipment to the worker. Ergonomic principles can be employed in different dimensions of the industrial sector. Participation of all the stakeholders is the key to the formulation of a multifaceted and comprehensive approach to lessen the burden of occupational hazards. Taking responsibility for one’s own work activities by acquiring sufficient knowledge and potential to influence the practices and outcomes is the basis of participatory ergonomics and even hastens the process to identify workplace hazards. The study was aimed to check how participatory ergonomics can be effective in the management of work-related musculoskeletal disorders. Method: A mega kitchen was identified in a twin city of Karnataka, India. Consent was taken, and the screening of workers was done using observation methods. Kitchen work was structured to include different tasks, which included preparation, cooking, distributing, and serving food, packing food to be delivered to schools, dishwashing, cleaning and maintenance of kitchen and equipment, and receiving and storing raw material. Total 100 workers attended the education session on participatory ergonomics and its role in implementing the correct ergonomic practices, thus preventing WRMSDs. Demographic details and baseline data on related musculoskeletal pain and discomfort were collected using the Nordic pain questionnaire and VAS score pre- and post-study. Monthly visits were made, and the education sessions were reiterated on each visit, thus reminding, correcting, and problem-solving of each worker. After 9 months with a total of 4 such education session, the post education data was collected. The software SPSS 20 was used to analyse the collected data. Results: The majority of them (78%), depending on the availability and feasibility, participated in the intervention workshops were arranged four times. The average age of the participants was 39 years. The percentage of female participants was 79.49%, and 20.51% of participants comprised of males. The Nordic Musculoskeletal Questionnaire (NMQ) showed that knee pain was the most commonly reported complaint (62%) from the last 12 months with a mean VAS of 6.27, followed by low back pain. Post intervention, the mean VAS Score was reduced significantly to 2.38. The comparison of pre-post scores was made using Wilcoxon matched pairs test. Upon enquiring, it was found that, the participants learned the importance of applying ergonomics at their workplace which inturn was beneficial for them to handle any problems arising at their workplace on their own with self confidence. Conclusion: The participatory ergonomics proved effective with workers of mega kitchen, and it is a feasible and practical approach. The advantage of the given study area was that it had a sophisticated and ergonomically designed workstation; thus it was the lack of education and practical knowledge to use these stations was of utmost need. There was a significant reduction in VAS scores with the implementation of changes in the working style, and the knowledge of ergonomics helped to decrease physical load and improve musculoskeletal health.

Keywords: ergonomic awareness session, mega kitchen, participatory ergonomics, work related musculoskeletal disorders

Procedia PDF Downloads 143
7891 Adoption of Big Data by Global Chemical Industries

Authors: Ashiff Khan, A. Seetharaman, Abhijit Dasgupta

Abstract:

The new era of big data (BD) is influencing chemical industries tremendously, providing several opportunities to reshape the way they operate and help them shift towards intelligent manufacturing. Given the availability of free software and the large amount of real-time data generated and stored in process plants, chemical industries are still in the early stages of big data adoption. The industry is just starting to realize the importance of the large amount of data it owns to make the right decisions and support its strategies. This article explores the importance of professional competencies and data science that influence BD in chemical industries to help it move towards intelligent manufacturing fast and reliable. This article utilizes a literature review and identifies potential applications in the chemical industry to move from conventional methods to a data-driven approach. The scope of this document is limited to the adoption of BD in chemical industries and the variables identified in this article. To achieve this objective, government, academia, and industry must work together to overcome all present and future challenges.

Keywords: chemical engineering, big data analytics, industrial revolution, professional competence, data science

Procedia PDF Downloads 89
7890 Study on Discontinuity Properties of Phased-Array Ultrasound Transducer Affecting to Sound Pressure Fields Pattern

Authors: Tran Trong Thang, Nguyen Phan Kien, Trinh Quang Duc

Abstract:

The phased-array ultrasound transducer types are utilities for medical ultrasonography as well as optical imaging. However, their discontinuity characteristic limits the applications due to the artifacts contaminated into the reconstructed images. Because of the effects of the ultrasound pressure field pattern to the echo ultrasonic waves as well as the optical modulated signal, the side lobes of the focused ultrasound beam induced by discontinuity of the phased-array ultrasound transducer might the reason of the artifacts. In this paper, a simple method in approach of numerical simulation was used to investigate the limitation of discontinuity of the elements in phased-array ultrasound transducer and their effects to the ultrasound pressure field. Take into account the change of ultrasound pressure field patterns in the conditions of variation of the pitches between elements of the phased-array ultrasound transducer, the appropriated parameters for phased-array ultrasound transducer design were asserted quantitatively.

Keywords: phased-array ultrasound transducer, sound pressure pattern, discontinuous sound field, numerical visualization

Procedia PDF Downloads 510
7889 Predicting Global Solar Radiation Using Recurrent Neural Networks and Climatological Parameters

Authors: Rami El-Hajj Mohamad, Mahmoud Skafi, Ali Massoud Haidar

Abstract:

Several meteorological parameters were used for the prediction of monthly average daily global solar radiation on horizontal using recurrent neural networks (RNNs). Climatological data and measures, mainly air temperature, humidity, sunshine duration, and wind speed between 1995 and 2007 were used to design and validate a feed forward and recurrent neural network based prediction systems. In this paper we present our reference system based on a feed-forward multilayer perceptron (MLP) as well as the proposed approach based on an RNN model. The obtained results were promising and comparable to those obtained by other existing empirical and neural models. The experimental results showed the advantage of RNNs over simple MLPs when we deal with time series solar radiation predictions based on daily climatological data.

Keywords: recurrent neural networks, global solar radiation, multi-layer perceptron, gradient, root mean square error

Procedia PDF Downloads 450
7888 A Review on Water Models of Surface Water Environment

Authors: Shahbaz G. Hassan

Abstract:

Water quality models are very important to predict the changes in surface water quality for environmental management. The aim of this paper is to give an overview of the water qualities, and to provide directions for selecting models in specific situation. Water quality models include one kind of model based on a mechanistic approach, while other models simulate water quality without considering a mechanism. Mechanistic models can be widely applied and have capabilities for long-time simulation, with highly complexity. Therefore, more spaces are provided to explain the principle and application experience of mechanistic models. Mechanism models have certain assumptions on rivers, lakes and estuaries, which limits the application range of the model, this paper introduces the principles and applications of water quality model based on the above three scenarios. On the other hand, mechanistic models are more easily to compute, and with no limit to the geographical conditions, but they cannot be used with confidence to simulate long term changes. This paper divides the empirical models into two broad categories according to the difference of mathematical algorithm, models based on artificial intelligence and models based on statistical methods.

Keywords: empirical models, mathematical, statistical, water quality

Procedia PDF Downloads 267
7887 Industrial Ecology Perspectives of Food Supply Chains: A Framework of Analysis

Authors: Luciano Batista, Sylvia Saes, Nuno Fouto, Liam Fassam

Abstract:

This paper introduces the theoretical and methodological basis of an analytical framework conceived with the purpose of bringing industrial ecology perspectives into the core of the underlying disciplines supporting analyses in studies concerned with environmental sustainability aspects beyond the product cycle in a supply chain. Given the pressing challenges faced by the food sector, the framework focuses upon waste minimization through industrial linkages in food supply chains. The combination of industrial ecology practice with basic LCA elements, the waste hierarchy model, and the spatial scale of industrial symbiosis allows the standardization of qualitative analyses and associated outcomes. Such standardization enables comparative analysis not only between different stages of a supply chain, but also between different supply chains. The analytical approach proposed contributes more coherently to the wider circular economy aspiration of optimizing the flow of goods to get the most out of raw materials and cuts wastes to a minimum.

Keywords: by-product synergy, food supply chain, industrial ecology, industrial symbiosis

Procedia PDF Downloads 424
7886 Determination of Water Pollution and Water Quality with Decision Trees

Authors: Çiğdem Bakır, Mecit Yüzkat

Abstract:

With the increasing emphasis on water quality worldwide, the search for and expanding the market for new and intelligent monitoring systems has increased. The current method is the laboratory process, where samples are taken from bodies of water, and tests are carried out in laboratories. This method is time-consuming, a waste of manpower, and uneconomical. To solve this problem, we used machine learning methods to detect water pollution in our study. We created decision trees with the Orange3 software we used in our study and tried to determine all the factors that cause water pollution. An automatic prediction model based on water quality was developed by taking many model inputs such as water temperature, pH, transparency, conductivity, dissolved oxygen, and ammonia nitrogen with machine learning methods. The proposed approach consists of three stages: preprocessing of the data used, feature detection, and classification. We tried to determine the success of our study with different accuracy metrics and the results. We presented it comparatively. In addition, we achieved approximately 98% success with the decision tree.

Keywords: decision tree, water quality, water pollution, machine learning

Procedia PDF Downloads 87
7885 On the Bootstrap P-Value Method in Identifying out of Control Signals in Multivariate Control Chart

Authors: O. Ikpotokin

Abstract:

In any production process, every product is aimed to attain a certain standard, but the presence of assignable cause of variability affects our process, thereby leading to low quality of product. The ability to identify and remove this type of variability reduces its overall effect, thereby improving the quality of the product. In case of a univariate control chart signal, it is easy to detect the problem and give a solution since it is related to a single quality characteristic. However, the problems involved in the use of multivariate control chart are the violation of multivariate normal assumption and the difficulty in identifying the quality characteristic(s) that resulted in the out of control signals. The purpose of this paper is to examine the use of non-parametric control chart (the bootstrap approach) for obtaining control limit to overcome the problem of multivariate distributional assumption and the p-value method for detecting out of control signals. Results from a performance study show that the proposed bootstrap method enables the setting of control limit that can enhance the detection of out of control signals when compared, while the p-value method also enhanced in identifying out of control variables.

Keywords: bootstrap control limit, p-value method, out-of-control signals, p-value, quality characteristics

Procedia PDF Downloads 352
7884 Estimation of the Upper Tail Dependence Coefficient for Insurance Loss Data Using an Empirical Copula-Based Approach

Authors: Adrian O'Hagan, Robert McLoughlin

Abstract:

Considerable focus in the world of insurance risk quantification is placed on modeling loss values from lines of business (LOBs) that possess upper tail dependence. Copulas such as the Joe, Gumbel and Student-t copula may be used for this purpose. The copula structure imparts a desired level of tail dependence on the joint distribution of claims from the different LOBs. Alternatively, practitioners may possess historical or simulated data that already exhibit upper tail dependence, through the impact of catastrophe events such as hurricanes or earthquakes. In these circumstances, it is not desirable to induce additional upper tail dependence when modeling the joint distribution of the loss values from the individual LOBs. Instead, it is of interest to accurately assess the degree of tail dependence already present in the data. The empirical copula and its associated upper tail dependence coefficient are presented in this paper as robust, efficient means of achieving this goal.

Keywords: empirical copula, extreme events, insurance loss reserving, upper tail dependence coefficient

Procedia PDF Downloads 286
7883 Modeling Electrical Properties of Hetero-Junction-Graphene/Pentacene and Gold/Pentacene

Authors: V. K. Lamba, Abhinandan Bharti

Abstract:

We investigate the electronic transport properties across the graphene/ pentacene and gold/pentacene interface. Further, we studied the effect of ripples/bends in pentacene using NEGF-DFT approach. Current transport across the pentacene/graphene interface is found to be remarkably different from transport across pentacene/Gold interfaces. We found that current across these interfaces could be accurately modeled by a combination of thermionic and Poole–Frenkel emission. Further, the degree of bend or degrees of the curve formed during ripple formation strongly change the optimized geometric structures, charge distributions, energy bands, and DOS. The misorientation and hybridization of carbon orbitals are associated with a variation in bond lengths and carrier densities, and are the causes of the dramatic changes in the electronic structure during ripple formation. The electrical conductivity decreases with increase in curvature during ripple formation or due to bending of pentacene molecule and a decrease in conductivity is directly proportional to the increase in curvature angle and given by quadratic relation.

Keywords: hetero-junction, grapheme, NEGF-DFT, pentacene, gold/pentacene

Procedia PDF Downloads 233
7882 The Role of the Internal Audit Unit in Detecting and Preventing Fraud at Public Universities in West Java, Indonesia

Authors: Fury Khristianty Fitriyah

Abstract:

This study aims to identify the extent of the role of the Satuan Pengawas Intern (Internal Audit Unit) in detecting and preventing fraud in public universities in West Java under the Ministry of Research, Technology and Higher Education. The research method applied was a qualitative case study approach, while the unit of analysis for this study is the Internal Audit Unit at each public university. Results of this study indicate that the Internal Audit Unit is able to detect and prevent fraud within a public university environment by means of red flags to mark accounting anomalies. These stem from inaccurate budget planning that prompts inappropriate use of funds, exacerbated by late disbursements of funds, which potentially lead to fictitious transactions, and discrepancies in recording state-owned assets into a state property management system (SIMAK BMN), which, if not conducted properly, potentially causes loss to the state.

Keywords: governance, internal control, fraud, public university

Procedia PDF Downloads 292
7881 Numerical Model for Investigation of Recombination Mechanisms in Graphene-Bonded Perovskite Solar Cells

Authors: Amir Sharifi Miavaghi

Abstract:

It is believed recombination mechnisms in graphene-bonded perovskite solar cells based on numerical model in which doped-graphene structures are employed as anode/cathode bonding semiconductor. Moreover, th‌‌‌‌e da‌‌‌‌‌rk-li‌‌‌‌‌ght c‌‌‌‌urrent d‌‌‌‌ens‌‌‌‌ity-vo‌‌‌‌‌‌‌ltage density-voltage cu‌‌‌‌‌‌‌‌‌‌‌rves are investigated by regression analysis. L‌‌‌oss m‌‌‌‌echa‌‌‌‌nisms suc‌‌‌h a‌‌‌‌‌‌s ba‌‌‌‌ck c‌‌‌ontact b‌‌‌‌‌arrier, d‌‌‌‌eep surface defect i‌‌‌‌n t‌‌‌‌‌‌‌he adsorbent la‌‌‌yer is det‌‌‌‌‌ermined b‌‌‌y adapting th‌‌‌e sim‌‌‌‌‌ulated ce‌‌‌‌‌ll perfor‌‌‌‌‌mance to t‌‌‌‌he measure‌‌‌‌ments us‌‌‌‌ing the diffe‌‌‌‌‌‌rential evolu‌‌‌‌‌tion of th‌‌‌‌e global optimization algorithm. T‌‌‌‌he performance of t‌‌‌he c‌‌‌‌ell i‌‌‌‌n the connection proc‌‌‌‌‌ess incl‌‌‌‌‌‌udes J-V cur‌‌‌‌‌‌ves that are examined at di‌‌‌‌‌fferent tempe‌‌‌‌‌‌‌ratures an‌‌‌d op‌‌‌‌en cir‌‌‌‌cuit vol‌‌‌‌tage (V) und‌‌‌‌er differ‌‌‌‌‌ent light intensities as a function of temperature. Ba‌‌‌‌sed o‌‌‌n t‌‌‌he prop‌‌‌‌osed nu‌‌‌‌‌merical mod‌‌‌‌el a‌‌‌‌nd the acquired lo‌‌‌‌ss mecha‌‌‌‌‌‌nisms, our approach can be used to improve the efficiency of the solar cell further. Due to the high demand for alternative energy sources, solar cells are good alternatives for energy storage using the photovoltaic phenomenon.

Keywords: numerical model, recombination mechanism, graphen, perovskite solarcell

Procedia PDF Downloads 74
7880 An Overview of College English Writing Teaching Studies in China Between 2002 and 2022: Visualization Analysis Based on CiteSpace

Authors: Yang Yiting

Abstract:

This paper employs CiteSpace to conduct a visualiazation analysis of literature on college English writing teaching researches published in core journals from the CNKI database and CSSCI journals between 2002 and 2022. It aims to explore the characteristics of researches and future directions on college English writing teaching. The present study yielded the following major findings: the field primarily focuses on innovative writing teaching models and methods, the integration of traditional classroom teaching and information technology, and instructional strategies to enhance students' writing skills. The future research is anticipated to involve a hybrid writing teaching approach combining online and offline teaching methods, leveraging the "Internet+" digital platform, aiming to elevate students' writing proficiency. This paper also presents a prospective outlook for college English writing teaching research in China.

Keywords: citespace, college English, writing teaching, visualization analysis

Procedia PDF Downloads 76
7879 Comparative study of the technical efficiency of the cotton farms in the towns of Banikoara and Savalou

Authors: Boukari Abdou Wakilou

Abstract:

Benin is one of West Africa's major cotton-producing countries. Cotton is the country's main source of foreign currency and employment. But it is also one of the sources of soil degradation. The search for good agricultural practices is therefore, a constant preoccupation. The aim of this study is to measure the technical efficiency of cotton growers by comparing those who constantly grow cotton on the same land with those who practice crop rotation. The one-step estimation approach of the stochastic production frontier, including determinants of technical inefficiency, was applied to a stratified random sample of 261 cotton producers. Overall, the growers had a high average technical efficiency level of 90%. However, there was no significant difference in the level of technical efficiency between the two groups of growers studied. All the factors linked to compliance with the technical production itinerary had a positive influence on the growers' level of efficiency. It is, therefore, important to continue raising awareness of the importance of respecting the technical production itinerary and of integrated soil fertility management techniques.

Keywords: technical efficiency, soil fertility, cotton, crop rotation, benin

Procedia PDF Downloads 76
7878 Synthesis of Silver Nanoparticle: An Analytical Method Based Approach for the Quantitative Assessment of Drug

Authors: Zeid A. Alothman

Abstract:

Silver nanoparticle (AgNP) has been synthesized using adrenaline. Adrenaline readily undergoes an autoxidation reaction in an alkaline medium with the dissolved oxygen to form adrenochrome, thus behaving as a mild reducing agent for the dissolved oxygen. This reducing behavior of adrenaline when employed to reduce Ag(+) ions yielded a large enhancement in the intensity of absorbance in the visible region. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) studies have been performed to confirm the surface morphology of AgNPs. Further, the metallic nanoparticles with size greater than 2 nm caused a strong and broad absorption band in the UV-visible spectrum called surface plasmon band or Mie resonance. The formation of AgNPs caused the large enhancement in the absorbance values with λmax at 436 nm through the excitation of the surface plasmon band. The formation of AgNPs was adapted to for the quantitative assessment of adrenaline using spectrophotometry with lower detection limit and higher precision values.

Keywords: silver nanoparticle, adrenaline, XRD, TEM, analysis

Procedia PDF Downloads 216
7877 Micro-Study of Dissimilar Welded Materials

Authors: Ezzeddin Anawa, Abdol-Ghane Olabi

Abstract:

The dissimilar joint between aluminum /titanium alloys (Al 6082 and Ti G2) alloys were successfully achieved by CO2 laser welding with a single pass and without filler material using the overlap joint design. Laser welding parameters ranges combinations were experimentally determined using Taguchi approach with the objective of producing welded joint with acceptable welding profile and high quality of mechanical properties. In this study a joining of dissimilar Al 6082 / Ti G2 was result in three distinct regions fusion area (FA), heat-affected zone (HAZ), and the unaffected base metal (BM) in the weldment. These regions are studied in terms of its microstructural characteristics and microhardness which are directly affecting the welding quality. The weld metal was mainly composed of martensite alpha prime. In two different metals in the two different sides of joint HAZ, grain growth was detected. The microhardness of the joint distribution also has shown microhardness increasing in the HAZ of two base metals and a varying microhardness in fusion zone.

Keywords: microharness , microstructure, laser welding and dissimilar jointed materials.

Procedia PDF Downloads 379