Search results for: lighting efficiency
623 Automated Transformation of 3D Point Cloud to BIM Model: Leveraging Algorithmic Modeling for Efficient Reconstruction
Authors: Radul Shishkov, Orlin Davchev
Abstract:
The digital era has revolutionized architectural practices, with building information modeling (BIM) emerging as a pivotal tool for architects, engineers, and construction professionals. However, the transition from traditional methods to BIM-centric approaches poses significant challenges, particularly in the context of existing structures. This research introduces a technical approach to bridge this gap through the development of algorithms that facilitate the automated transformation of 3D point cloud data into detailed BIM models. The core of this research lies in the application of algorithmic modeling and computational design methods to interpret and reconstruct point cloud data -a collection of data points in space, typically produced by 3D scanners- into comprehensive BIM models. This process involves complex stages of data cleaning, feature extraction, and geometric reconstruction, which are traditionally time-consuming and prone to human error. By automating these stages, our approach significantly enhances the efficiency and accuracy of creating BIM models for existing buildings. The proposed algorithms are designed to identify key architectural elements within point clouds, such as walls, windows, doors, and other structural components, and to translate these elements into their corresponding BIM representations. This includes the integration of parametric modeling techniques to ensure that the generated BIM models are not only geometrically accurate but also embedded with essential architectural and structural information. Our methodology has been tested on several real-world case studies, demonstrating its capability to handle diverse architectural styles and complexities. The results showcase a substantial reduction in time and resources required for BIM model generation while maintaining high levels of accuracy and detail. This research contributes significantly to the field of architectural technology by providing a scalable and efficient solution for the integration of existing structures into the BIM framework. It paves the way for more seamless and integrated workflows in renovation and heritage conservation projects, where the accuracy of existing conditions plays a critical role. The implications of this study extend beyond architectural practices, offering potential benefits in urban planning, facility management, and historic preservation.Keywords: BIM, 3D point cloud, algorithmic modeling, computational design, architectural reconstruction
Procedia PDF Downloads 61622 Effects of Evening vs. Morning Training on Motor Skill Consolidation in Morning-Oriented Elderly
Authors: Maria Korman, Carmit Gal, Ella Gabitov, Avi Karni
Abstract:
The main question addressed in this study was whether the time-of-day wherein training is afforded is a significant factor for motor skill ('how-to', procedural knowledge) acquisition and consolidation into long term memory in the healthy elderly population. Twenty-nine older adults (60-75 years) practiced an explicitly instructed 5-element key-press sequence by repeatedly generating the sequence ‘as fast and accurately as possible’. Contribution of three parameters to acquisition, 24h post-training consolidation, and 1-week retention gains in motor sequence speed was assessed: (a) time of training (morning vs. evening group) (b) sleep quality (actigraphy) and (c) chronotype. All study participants were moderately morning type, according to the Morningness-Eveningness Questionnaire score. All participants had sleep patterns typical of age, with average sleep efficiency of ~ 82%, and approximately 6 hours of sleep. Speed of motor sequence performance in both groups improved to a similar extent during training session. Nevertheless, evening group expressed small but significant overnight consolidation phase gains, while morning group showed only maintenance of performance level attained at the end of training. By 1-week retention test, both groups showed similar performance levels with no significant gains or losses with respect to 24h test. Changes in the tapping patterns at 24h and 1-week post-training were assessed based on normalized Pearson correlation coefficients using the Fisher’s z-transformation in reference to the tapping pattern attained at the end of the training. Significant differences between the groups were found: the evening group showed larger changes in tapping patterns across the consolidation and retention windows. Our results show that morning-oriented older adults effectively acquired, consolidated, and maintained a new sequence of finger movements, following both morning and evening practice sessions. However, time-of-training affected the time-course of skill evolution in terms of performance speed, as well as the re-organization of tapping patterns during the consolidation period. These results are in line with the notion that motor training preceding a sleep interval may be beneficial for the long-term memory in the elderly. Evening training should be considered an appropriate time window for motor skill learning in older adults, even in individuals with morning chronotype.Keywords: time-of-day, elderly, motor learning, memory consolidation, chronotype
Procedia PDF Downloads 134621 Revealing the Sustainable Development Mechanism of Guilin Tourism Based on Driving Force/Pressure/State/Impact/Response Framework
Authors: Xiujing Chen, Thammananya Sakcharoen, Wilailuk Niyommaneerat
Abstract:
China's tourism industry is in a state of shock and recovery, although COVID-19 has brought great impact and challenges to the tourism industry. The theory of sustainable development originates from the contradiction of increasing awareness of environmental protection and the pursuit of economic interests. The sustainable development of tourism should consider social, economic, and environmental factors and develop tourism in a planned and targeted way from the overall situation. Guilin is one of the popular tourist cities in China. However, there exist several problems in Guilin tourism, such as low quality of scenic spot construction and low efficiency of tourism resource development. Due to its unwell-managed, Guilin's tourism industry is facing problems such as supply and demand crowding pressure for tourists. According to the data from 2009 to 2019, there is a change in the degree of sustainable development of Guilin tourism. This research aimed to evaluate the sustainable development state of Guilin tourism using the DPSIR (driving force/pressure/state/impact/response) framework and to provide suggestions and recommendations for sustainable development in Guilin. An improved TOPSIS (technology for order preference by similarity to an ideal solution) model based on the entropy weights relationship is applied to the quantitative analysis and to analyze the mechanisms of sustainable development of tourism in Guilin. The DPSIR framework organizes indicators into sub-five categories: of which twenty-eight indicators related to sustainable aspects of Guilin tourism are classified. The study analyzed and summarized the economic, social, and ecological effects generated by tourism development in Guilin from 2009-2019. The results show that the conversion rate of tourism development in Guilin into regional economic benefits is more efficient than that into social benefits. Thus, tourism development is an important driving force of Guilin's economic growth. In addition, the study also analyzed the static weights of 28 relevant indicators of sustainable development of tourism in Guilin and ranked them from largest to smallest. Then it was found that the economic and social factors related to tourism revenue occupy the highest weight, which means that the economic and social development of Guilin can influence the sustainable development of Guilin tourism to a greater extent. Therefore, there is a two-way causal relationship between tourism development and economic growth in Guilin. At the same time, ecological development-related indicators also have relatively large weights, so ecological and environmental resources also have a great influence on the sustainable development of Guilin tourism.Keywords: DPSIR framework, entropy weights analysis, sustainable development of tourism, TOPSIS analysis
Procedia PDF Downloads 98620 Data-Driven Strategies for Enhancing Food Security in Vulnerable Regions: A Multi-Dimensional Analysis of Crop Yield Predictions, Supply Chain Optimization, and Food Distribution Networks
Authors: Sulemana Ibrahim
Abstract:
Food security remains a paramount global challenge, with vulnerable regions grappling with issues of hunger and malnutrition. This study embarks on a comprehensive exploration of data-driven strategies aimed at ameliorating food security in such regions. Our research employs a multifaceted approach, integrating data analytics to predict crop yields, optimizing supply chains, and enhancing food distribution networks. The study unfolds as a multi-dimensional analysis, commencing with the development of robust machine learning models harnessing remote sensing data, historical crop yield records, and meteorological data to foresee crop yields. These predictive models, underpinned by convolutional and recurrent neural networks, furnish critical insights into anticipated harvests, empowering proactive measures to confront food insecurity. Subsequently, the research scrutinizes supply chain optimization to address food security challenges, capitalizing on linear programming and network optimization techniques. These strategies intend to mitigate loss and wastage while streamlining the distribution of agricultural produce from field to fork. In conjunction, the study investigates food distribution networks with a particular focus on network efficiency, accessibility, and equitable food resource allocation. Network analysis tools, complemented by data-driven simulation methodologies, unveil opportunities for augmenting the efficacy of these critical lifelines. This study also considers the ethical implications and privacy concerns associated with the extensive use of data in the realm of food security. The proposed methodology outlines guidelines for responsible data acquisition, storage, and usage. The ultimate aspiration of this research is to forge a nexus between data science and food security policy, bestowing actionable insights to mitigate the ordeal of food insecurity. The holistic approach converging data-driven crop yield forecasts, optimized supply chains, and improved distribution networks aspire to revitalize food security in the most vulnerable regions, elevating the quality of life for millions worldwide.Keywords: data-driven strategies, crop yield prediction, supply chain optimization, food distribution networks
Procedia PDF Downloads 62619 Soils Properties of Alfisols in the Nicoya Peninsula, Guanacaste, Costa Rica
Authors: Elena Listo, Miguel Marchamalo
Abstract:
This research studies the soil properties located in the watershed of Jabillo River in the Guanacaste province, Costa Rica. The soils are classified as Alfisols (T. Haplustalfs), in the flatter parts with grazing as Fluventic Haplustalfs or as a consequence of bad drainage as F. Epiaqualfs. The objective of this project is to define the status of the soil, to use remote sensing as a tool for analyzing the evolution of land use and determining the water balance of the watershed in order to improve the efficiency of the water collecting systems. Soil samples were analyzed from trial pits taken from secondary forests, degraded pastures, mature teak plantation, and regrowth -Tectona grandis L. F.- species developed favorably in the area. Furthermore, to complete the study, infiltration measurements were taken with an artificial rainfall simulator, as well as studies of soil compaction with a penetrometer, in points strategically selected from the different land uses. Regarding remote sensing, nearly 40 data samples were collected per plot of land. The source of radiation is reflected sunlight from the beam and the underside of leaves, bare soil, streams, roads and logs, and soil samples. Infiltration reached high levels. The majority of data came from the secondary forest and mature planting due to a high proportion of organic matter, relatively low bulk density, and high hydraulic conductivity. Teak regrowth had a low rate of infiltration because the studies made regarding the soil compaction showed a partial compaction over 50 cm. The secondary forest presented a compaction layer from 15 cm to 30 cm deep, and the degraded pasture, as a result of grazing, in the first 15 cm. In this area, the alfisols soils have high content of iron oxides, a fact that causes a higher reflectivity close to the infrared region of the electromagnetic spectrum (around 700mm), as a result of clay texture. Specifically in the teak plantation where the reflectivity reaches values of 90 %, this is due to the high content of clay in relation to others. In conclusion, the protective function of secondary forests is reaffirmed with regards to erosion and high rate of infiltration. In humid climates and permeable soils, the decrease of runoff is less, however, the percolation increases. The remote sensing indicates that being clay soils, they retain moisture in a better way and it means a low reflectivity despite being fine texture.Keywords: alfisols, Costa Rica, infiltration, remote sensing
Procedia PDF Downloads 694618 Effects of Lime and N100 on the Growth and Phytoextraction Capability of a Willow Variety (S. Viminalis × S. Schwerinii × S. Dasyclados) Grown in Contaminated Soils
Authors: Mir Md. Abdus Salam, Muhammad Mohsin, Pertti Pulkkinen, Paavo Pelkonen, Ari Pappinen
Abstract:
Soil and water pollution caused by extensive mining practices can adversely affect environmental components, such as humans, animals, and plants. Despite a generally positive contribution to society, mining practices have become a serious threat to biological systems. As metals do not degrade completely, they require immobilization, toxicity reduction, or removal. A greenhouse experiment was conducted to evaluate the effects of lime and N100 (11-amino-1-hydroxyundecylidene) chelate amendment on the growth and phytoextraction potential of the willow variety Klara (S. viminalis × S. schwerinii × S. dasyclados) grown in soils heavily contaminated with copper (Cu). The plants were irrigated with tap or processed water (mine wastewater). The sequential extraction technique and inductively coupled plasma-mass spectrometry (ICP-MS) tool were used to determine the extractable metals and evaluate the fraction of metals in the soil that could be potentially available for plant uptake. The results suggest that the combined effects of the contaminated soil and processed water inhibited growth parameter values. In contrast, the accumulation of Cu in the plant tissues was increased compared to the control. When the soil was supplemented with lime and N100; growth parameter and resistance capacity were significantly higher compared to unamended soil treatments, especially in the contaminated soil treatments. The combined lime- and N100-amended soil treatment produced higher growth rate of biomass, resistance capacity and phytoextraction efficiency levels relative to either the lime-amended or the N100-amended soil treatments. This study provides practical evidence of the efficient chelate-assisted phytoextraction capability of Klara and highlights its potential as a viable and inexpensive novel approach for in-situ remediation of Cu-contaminated soils and mine wastewaters. Abandoned agricultural, industrial and mining sites can also be utilized by a Salix afforestation program without conflict with the production of food crops. This kind of program may create opportunities for bioenergy production and economic development, but contamination levels should be examined before bioenergy products are used.Keywords: copper, Klara, lime, N100, phytoextraction
Procedia PDF Downloads 145617 Unleashing the Potential of Green Finance in Architecture: A Promising Path for Balkan Countries
Authors: Luan Vardari, Dena Arapi Vardari
Abstract:
The Balkan countries, known for their diverse landscapes and cultural heritage, face the dual challenge of promoting economic growth while addressing pressing environmental concerns. In recent years, the concept of green finance has emerged as a powerful tool to achieve sustainable development and mitigate the environmental impact of various sectors, including architecture. This extended abstract explores the untapped potential of green finance in architecture within the Balkan region and highlights its role in driving sustainable construction practices and fostering a greener future. The abstract begins by defining green finance and emphasizing its relevance in the context of the architectural sector in Balkan countries. It underlines the benefits of green finance, such as economic growth, environmental conservation, and social well-being. Integrating green finance into architectural projects is important as a means to achieve sustainable development goals while promoting financial viability. Also, delves into the current state of green building practices in the Balkan countries and identifies the need for financial support to further drive adoption. It explores the existing regulatory frameworks and policies that promote sustainable architecture and discusses how green finance can complement these initiatives. Unique challenges faced by Balkan countries are highlighted, along with the potential opportunities that green finance presents in overcoming these challenges. We highlight successful sustainable architectural projects in the region to showcase the practical application of green finance in the Balkans. These projects exemplify the effective utilization of green finance mechanisms, resulting in tangible economic and environmental impacts, including job creation, energy efficiency, and reduced carbon emissions. The abstract concludes by identifying replicable models and lessons learned from these projects that can serve as a blueprint for future sustainable architecture initiatives in the Balkans. The importance of collaboration and knowledge sharing among stakeholders is emphasized. Engaging architects, financial institutions, governments, and local communities is crucial to promoting green finance in architecture. The abstract suggests the establishment of knowledge exchange platforms and regional/international networks to foster collaboration and facilitate the sharing of expertise among Balkan countries.Keywords: sustainable finance, renewable energy, Balkan region, investment opportunities, green infrastructure, ESG criteria, architecture
Procedia PDF Downloads 68616 OBD-Biofertilizer Impact on Crop Yield and Soil Quality in Lowland Rice Production, Badeggi, Niger State, Nigeria
Authors: Ayodele A. Otaiku
Abstract:
Purpose: Nigeria has become the largest importer of rice in Africa and second in the world, 2015. Investigate interactions of organic rice farming on soil quality and health from bio-waste converted to biofertilizer and its environmental impact on rice crop. Methodology: Bio-wastes, poultry waste, organic agriculture wastes, wood ash mixed with microbial inoculant organisms called OBD-Plus microbes (broad spectrum) composted in anaerobic digester to OBD-biofertilizer (2010 - 2012) uses microbes to build humus and other stable carbons. Two field experiments were carried out at Badeggi, Niger state in 2011 and 2012 to evaluate the response of lowland rice production using biofertilizer. The experimental field was laid out in a strip-plot design with five treatments and three replications and at twenty-one day old seedlings of FARO 44 and FARO 52 rice varieties were transplanted. Plots without fertiliser application served as control. Findings: The highest rice grain yield increase of 4.4 t/ha over the control in 2012 against the Nigeria average of lowland rice grain yields of 1.5 t/ha. The utilization of OBD-Biofertilizer can decrease the use of chemical nitrogen fertilizer, prevent the depletion of soil organic matter and reduce environmental pollution. Increasing the floodwater productivity and optimizing the recycling of nutrients cum grazer populations and disease by biocontrols microbes present in the OBD-Biofertilizer. Organic matter in the soil improves by 58% and C/N 15 (2011) and 13.35 (2012). Implications: OBD- Biofertilizer produce plant growth hormones such as indole acetic acid (IAA), glomalin related soil protein and extracellular enzymes as phosphatases that promote soil health and quality. Conclusion: Microorganisms can enhance nutrients use efficiency by increasing root surface area e.g., mycorrhizal, fungi, promoting other beneficial symbioses of the host plant and microbial interactions resulting to increase in soil organic matter. By 2030, climate change is projected to depress cereal production in Africa by 2 to 3 percent. Improved seeds and increased fertilizer use should more than compensate, but this factor will still weigh heavily on efforts to make progress.Keywords: OBD-plus microbial consortia, OBD-biofertilizer, rice production, soil quality, sustainable agriculture
Procedia PDF Downloads 268615 Vibrational Spectra and Nonlinear Optical Investigations of a Chalcone Derivative (2e)-3-[4-(Methylsulfanyl) Phenyl]-1-(3-Bromophenyl) Prop-2-En-1-One
Authors: Amit Kumar, Archana Gupta, Poonam Tandon, E. D. D’Silva
Abstract:
Nonlinear optical (NLO) materials are the key materials for the fast processing of information and optical data storage applications. In the last decade, materials showing nonlinear optical properties have been the object of increasing attention by both experimental and computational points of view. Chalcones are one of the most important classes of cross conjugated NLO chromophores that are reported to exhibit good SHG efficiency, ultra fast optical nonlinearities and are easily crystallizable. The basic structure of chalcones is based on the π-conjugated system in which two aromatic rings are connected by a three-carbon α, β-unsaturated carbonyl system. Due to the overlap of π orbitals, delocalization of electronic charge distribution leads to a high mobility of the electron density. On a molecular scale, the extent of charge transfer across the NLO chromophore determines the level of SHG output. Hence, the functionalization of both ends of the π-bond system with appropriate electron donor and acceptor groups can enhance the asymmetric electronic distribution in either or both ground and excited states, leading to an increased optical nonlinearity. In this research, the experimental and theoretical study on the structure and vibrations of (2E)-3-[4-(methylsulfanyl) phenyl]-1-(3-bromophenyl) prop-2-en-1-one (3Br4MSP) is presented. The FT-IR and FT-Raman spectra of the NLO material in the solid phase have been recorded. Density functional theory (DFT) calculations at B3LYP with 6-311++G(d,p) basis set were carried out to study the equilibrium geometry, vibrational wavenumbers, infrared absorbance and Raman scattering activities. The interpretation of vibrational features (normal mode assignments, for instance) has an invaluable aid from DFT calculations that provide a quantum-mechanical description of the electronic energies and forces involved. Perturbation theory allows one to obtain the vibrational normal modes by estimating the derivatives of the Kohn−Sham energy with respect to atomic displacements. The molecular hyperpolarizability β plays a chief role in the NLO properties, and a systematical study on β has been carried out. Furthermore, the first order hyperpolarizability (β) and the related properties such as dipole moment (μ) and polarizability (α) of the title molecule are evaluated by Finite Field (FF) approach. The electronic α and β of the studied molecule are 41.907×10-24 and 79.035×10-24 e.s.u. respectively, indicating that 3Br4MSP can be used as a good nonlinear optical material.Keywords: DFT, MEP, NLO, vibrational spectra
Procedia PDF Downloads 221614 Men's Intimate Violence: Theory and Practice Relationship
Authors: Omer Zvi Shaked
Abstract:
Intimate Partner Violence (IPV) is a widespread social problem. Since the 1970's, and due to political changes resulting from the feminist movement, western society has been changing its attitude towards the phenomenon and has been taking an active approach to reduce its magnitude. Enterprises in the form of legislation, awareness and prevention campaigns, women's shelters, and community intervention programs became more prevalent as years progressed. Although many initiatives were found to be productive, the effectiveness of one, however, remained questionable throughout the years: intervention programs for men's intimate violence. Surveys outline two main intervention models for men's intimate violence. The first is the Duluth model, which argued that men are socialized to be dominant - while women are socialized to be subordinate - and men are therefore required by social imperative to enforce, physically if necessary, their dominance. The Duluth model became the chief authorized intervention program, and some states in the US even regulated it as the standard criminal justice program for men's intimate violence. However, meta-analysis findings demonstrated that based on a partner's reports, Duluth treatment completers have 44% recidivism rate, and between 40% and 85% dropout range. The second model is the Cognitive-Behavioral Model (CBT), which is a highly accepted intervention worldwide. The model argues that cognitive misrepresentations of intimate situations precede violent behaviors frequently when anger predisposition exists. Since anger dysregulation mediates between one's cognitive schemes and violent response, anger regulation became the chief purpose of the intervention. Yet, a meta-analysis found only a 56% risk reduction for CBT interventions. It is, therefore, crucial to understand the background behind the domination of both the Duluth model and CBT interventions. This presentation will discuss the ways in which theoretical conceptualizations of men's intimate violence, as well as ideologies, had contributed to the above-mentioned interventions' wide acceptance, despite known lack of scientific and evidential support. First, the presentation will review the prominent interventions for male intimate violence, the Duluth model, and CBT. Second, the presentation will review the prominent theoretical models explaining men's intimate violence: The Patriarchal model, the Abusive Personality model, and the Post-Traumatic Stress model. Third, the presentation will discuss the interrelation between theory and practice, and the nature of affinity between research and practice regarding men's intimate violence. Finally, the presentation will set new directions for further research, aiming to improve intervention's efficiency with men's intimate violence and advance social work practice in the field.Keywords: intimate partner violence, theory and practice relationship, Duluth, CBT, abusive personality, post-traumatic stress
Procedia PDF Downloads 125613 Considering Uncertainties of Input Parameters on Energy, Environmental Impacts and Life Cycle Costing by Monte Carlo Simulation in the Decision Making Process
Authors: Johannes Gantner, Michael Held, Matthias Fischer
Abstract:
The refurbishment of the building stock in terms of energy supply and efficiency is one of the major challenges of the German turnaround in energy policy. As the building sector accounts for 40% of Germany’s total energy demand, additional insulation is key for energy efficient refurbished buildings. Nevertheless the energetic benefits often the environmental and economic performances of insulation materials are questioned. The methods Life Cycle Assessment (LCA) as well as Life Cycle Costing (LCC) can form the standardized basis for answering this doubts and more and more become important for material producers due efforts such as Product Environmental Footprint (PEF) or Environmental Product Declarations (EPD). Due to increasing use of LCA and LCC information for decision support the robustness and resilience of the results become crucial especially for support of decision and policy makers. LCA and LCC results are based on respective models which depend on technical parameters like efficiencies, material and energy demand, product output, etc.. Nevertheless, the influence of parameter uncertainties on lifecycle results are usually not considered or just studied superficially. Anyhow the effect of parameter uncertainties cannot be neglected. Based on the example of an exterior wall the overall lifecycle results are varying by a magnitude of more than three. As a result simple best case worst case analyses used in practice are not sufficient. These analyses allow for a first rude view on the results but are not taking effects into account such as error propagation. Thereby LCA practitioners cannot provide further guidance for decision makers. Probabilistic analyses enable LCA practitioners to gain deeper understanding of the LCA and LCC results and provide a better decision support. Within this study, the environmental and economic impacts of an exterior wall system over its whole lifecycle are illustrated, and the effect of different uncertainty analysis on the interpretation in terms of resilience and robustness are shown. Hereby the approaches of error propagation and Monte Carlo Simulations are applied and combined with statistical methods in order to allow for a deeper understanding and interpretation. All in all this study emphasis the need for a deeper and more detailed probabilistic evaluation based on statistical methods. Just by this, misleading interpretations can be avoided, and the results can be used for resilient and robust decisions.Keywords: uncertainty, life cycle assessment, life cycle costing, Monte Carlo simulation
Procedia PDF Downloads 285612 The Outcome of Using Machine Learning in Medical Imaging
Authors: Adel Edwar Waheeb Louka
Abstract:
Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.Keywords: artificial intelligence, convolutional neural networks, deeplearning, image processing, machine learningSarapin, intraarticular, chronic knee pain, osteoarthritisFNS, trauma, hip, neck femur fracture, minimally invasive surgery
Procedia PDF Downloads 72611 Synthetic Classicism: A Machine Learning Approach to the Recognition and Design of Circular Pavilions
Authors: Federico Garrido, Mostafa El Hayani, Ahmed Shams
Abstract:
The exploration of the potential of artificial intelligence (AI) in architecture is still embryonic, however, its latent capacity to change design disciplines is significant. 'Synthetic Classism' is a research project that questions the underlying aspects of classically organized architecture not just in aesthetic terms but also from a geometrical and morphological point of view, intending to generate new architectural information using historical examples as source material. The main aim of this paper is to explore the uses of artificial intelligence and machine learning algorithms in architectural design while creating a coherent narrative to be contained within a design process. The purpose is twofold: on one hand, to develop and train machine learning algorithms to produce architectural information of small pavilions and on the other, to synthesize new information from previous architectural drawings. These algorithms intend to 'interpret' graphical information from each pavilion and then generate new information from it. The procedure, once these algorithms are trained, is the following: parting from a line profile, a synthetic 'front view' of a pavilion is generated, then using it as a source material, an isometric view is created from it, and finally, a top view is produced. Thanks to GAN algorithms, it is also possible to generate Front and Isometric views without any graphical input as well. The final intention of the research is to produce isometric views out of historical information, such as the pavilions from Sebastiano Serlio, James Gibbs, or John Soane. The idea is to create and interpret new information not just in terms of historical reconstruction but also to explore AI as a novel tool in the narrative of a creative design process. This research also challenges the idea of the role of algorithmic design associated with efficiency or fitness while embracing the possibility of a creative collaboration between artificial intelligence and a human designer. Hence the double feature of this research, both analytical and creative, first by synthesizing images based on a given dataset and then by generating new architectural information from historical references. We find that the possibility of creatively understand and manipulate historic (and synthetic) information will be a key feature in future innovative design processes. Finally, the main question that we propose is whether an AI could be used not just to create an original and innovative group of simple buildings but also to explore the possibility of fostering a novel architectural sensibility grounded on the specificities on the architectural dataset, either historic, human-made or synthetic.Keywords: architecture, central pavilions, classicism, machine learning
Procedia PDF Downloads 138610 Suture Biomaterials Development from Natural Fibers: Muga Silk (Antheraea assama) and Ramie (Boehmeria nivea)
Authors: Raghuram Kandimalla, Sanjeeb Kalita, Bhaswati Choudhury, Jibon Kotoky
Abstract:
The quest for developing an ideal suture material prompted our interest to develop a novel suture with advantageous characteristics to market available ones. We developed novel suture biomaterial from muga silk (Antheraea assama) and ramie (Boehmeria nivea) plant fiber. Field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), attenuated total reflection fourier transform infrared spectroscopy (ATR-FTIR) and thermo gravimetric analysis (TGA) results revealed the physicochemical properties of the fibers which supports the suitability of fibers for suture fabrication. Tensile properties of the prepared sutures were comparable with market available sutures and it found to be biocompatible towards human erythrocytes and nontoxic to mammalian cells. The prepared sutures completely healed the superficial deep wound incisions within seven days in adult male wister rats leaving no rash and scar. Histopathology studies supports the wound healing ability of sutures, as rapid synthesis of collagen, connective tissue and other skin adnexal structures were observed within seven days of surgery. Further muga suture surface modified by exposing the suture to oxygen plasma which resulted in formation of nanotopography on suture surface. Broad spectrum antibiotic amoxicillin was functionalized on the suture surface to prepare an advanced antimicrobial muga suture. Surface hydrophilicity induced by oxygen plasma results in an increase in drug-impregnation efficiency of modified muga suture by 16.7%. In vitro drug release profiles showed continuous and prolonged release of amoxicillin from suture up to 336 hours. The advanced muga suture proves to be effective against growth inhibition of Staphylococcus aureus and Escherichia coli, whereas normal muga suture offers no antibacterial activity against both types of bacteria. In vivo histopathology studies and colony-forming unit count data revealed accelerated wound healing activity of advanced suture over normal one through rapid synthesis and proliferation of collagen, hair follicle and connective tissues.Keywords: sutures, biomaterials, silk, Ramie
Procedia PDF Downloads 316609 Demographic Shrinkage and Reshaping Regional Policy of Lithuania in Economic Geographic Context
Authors: Eduardas Spiriajevas
Abstract:
Since the end of the 20th century, when Lithuania regained its independence, a process of demographic shrinkage started. Recently, it affects the efficiency of implementation of actions related to regional development policy and geographic scopes of created value added in the regions. The demographic structures of human resources reflect onto the regions and their economic geographic environment. Due to reshaping economies and state reforms on restructuration of economic branches such as agriculture and industry, it affects the economic significance of services’ sector. These processes influence the competitiveness of labor market and its demographic characteristics. Such vivid consequences are appropriate for the structures of human migrations, which affected the processes of demographic ageing of human resources in the regions, especially in peripheral ones. These phenomena of modern times induce the demographic shrinkage of society and its economic geographic characteristics in the actions of regional development and in regional policy. The internal and external migrations of population captured numerous regional economic disparities, and influenced on territorial density and concentration of population of the country and created the economies of spatial unevenness in such small geographically compact country as Lithuania. The processes of territorial reshaping of distribution of population create new regions and their economic environment, which is not corresponding to the main principles of regional policy and its power to create the well-being and to promote the attractiveness for economic development. These are the new challenges of national regional policy and it should be researched in a systematic way of taking into consideration the analytical approaches of regional economy in the context of economic geographic research methods. A comparative territorial analysis according to administrative division of Lithuania in relation to retrospective approach and introduction of method of location quotients, both give the results of economic geographic character with cartographic representations using the tools of spatial analysis provided by technologies of Geographic Information Systems. A set of these research methods provide the new spatially evidenced based results, which must be taken into consideration in reshaping of national regional policy in economic geographic context. Due to demographic shrinkage and increasing differentiation of economic developments within the regions, an input of economic geographic dimension is inevitable. In order to sustain territorial balanced economic development, there is a need to strengthen the roles of regional centers (towns) and to empower them with new economic functionalities for revitalization of peripheral regions, and to increase their economic competitiveness and social capacities on national scale.Keywords: demographic shrinkage, economic geography, Lithuania, regions
Procedia PDF Downloads 159608 Global Climate Change and Insect Pollinators
Authors: Asim Abbasi, Muhammad Sufyan, Iqra, Muhammad Ibrahim Shahid, Muhammad Ashfaq
Abstract:
The foundation of human life on earth relies on many ecosystem services provided by insects of which pollination owes a vital role. The pollination service offered by insects has annual worth of approximately €153 billion. The majority of the flowering plants depends on entomophiles pollination for their reproduction and formation of seeds and fruits. The quantity and quality of insect pollination have multiple implications for stable ecosystem, diverse species level, food security and climate change resilience. The rapidly mounting human population, depletion of natural resources and the global climate change forced us to enter an era of pollination crisis. Climate change not only alters the phenology, population abundance and geographic ranges of different pollinators but also hinders their pollination activities. The successful pollination process relies heavily on the synchronization of biological events of pollinators with the phenological stages of the flowering plants. However, there are possibilities that impending climatic changes may result in asynchrony between plant-pollinators interactions and also mitigate the extent of pollination. The trophic mismatch mostly occurs when pollinators and plants inhabiting the same environment use different environmental cues to regulate their biological events, as these cues are not equally affected by climate change. Synchrony has also been disrupted when one of the interacting species has migratory nature and depend on cues for migration. Moreover, irregular rainfalls and up-surging temperature also disrupts the foraging behaviour of pollinators resulting in reduced flowers visits by insect. Climate change has a direct impact on the behavior and physiology of honey bees, the best known pollinators owing to their extreme floral fidelity. Rising temperature not only alleviates the quantity and quality of floral environment but also alters the bee’s colony harvesting and development ability. Furthermore, a possible earlier decline of flowers is expected in a growing season due to this rising temperature. This may also lead to disrupt the efficiency bumblebee queen that require a constant and adequate nectar and pollen supply throughout the entire growing season for healthy colony production. Considering the role of insect pollination in our ecosystem, their associated risks regarding climate change should be addressed properly for devising a well-focused research needed for their conservation.Keywords: climate change, phenological, pollination, synchronization
Procedia PDF Downloads 216607 Enhanced Photocatalytic Activities of TiO2/Ag2O Heterojunction Nanotubes Arrays Obtained by Electrochemical Method
Authors: Magdalena Diaka, Paweł Mazierski, Joanna Żebrowska, Michał Winiarski, Tomasz Klimczuk, Adriana Zaleska-Medynska
Abstract:
During the last years, TiO2 nanotubes have been widely studied due to their unique highly ordered array structure, unidirectional charge transfer and higher specific surface area compared to conventional TiO2 powder. These photoactive materials, in the form of thin layer, can be activated by low powered and low cost irradiation sources (such as LEDs) to remove VOCs, microorganism and to deodorize air streams. This is possible due to their directly growth on a support material and high surface area, which guarantee enhanced photon absorption together with an extensive adsorption of reactant molecules on the photocatalyst surface. TiO2 nanotubes exhibit also lots of other attractive properties, such as potential enhancement of electron percolation pathways, light conversion, and ion diffusion at the semiconductor-electrolyte interface. Pure TiO2 nanotubes were previously used to remove organic compounds from the gas phase as well as in water splitting reaction. The major factors limiting the use of TiO2 nanotubes, which have not been fully overcome, are their relatively large band gap (3-3,2 eV) and high recombination rate of photogenerated electron–hole pairs. Many different strategies were proposed to solve this problem, however titania nanostructures containing incorporated metal oxides like Ag2O shows very promising, new optical and photocatalytic properties. Unfortunately, there is still very limited number of reports regarding application of TiO2/MxOy nanostructures. In the present work, we prepared TiO2/Ag2O nanotubes obtained by anodization of Ti-Ag alloys containing 5, 10 and 15 wt. % Ag. Photocatalysts prepared in this way were characterized by X-ray diffraction spectroscopy (XRD), scanning electron microscopy (SEM), luminescence spectroscopy and UV-Vis spectroscopy. The activities of new TiO2/Ag2O were examined by photocatalytic degradation of toluene in gas phase reaction and phenol in aqueous phase using 1000 W Xenon lamp (Oriel) and light emitting diodes (LED) as a irradiation sources. Additionally efficiency of bacteria (Pseudomonas aeruginosa) removal from the gas phase was estimated. The number of surviving bacteria was determined by the serial twofold dilution microtiter plate method, in Tryptic Soy Broth medium (TSB, GibcoBRL).Keywords: photocatalysis, antibacterial properties, titania nanotubes, new TiO2/MxOy nanostructures
Procedia PDF Downloads 291606 Environmental Resilience in Sustainability Outcomes of Spatial-Economic Model Structure on the Topology of Construction Ecology
Authors: Moustafa Osman Mohammed
Abstract:
The resilient and sustainable of construction ecology is essential to world’s socio-economic development. Environmental resilience is crucial in relating construction ecology to topology of spatial-economic model. Sustainability of spatial-economic model gives attention to green business to comply with Earth’s System for naturally exchange patterns of ecosystems. The systems ecology has consistent and periodic cycles to preserve energy and materials flow in Earth’s System. When model structure is influencing communication of internal and external features in system networks, it postulated the valence of the first-level spatial outcomes (i.e., project compatibility success). These instrumentalities are dependent on second-level outcomes (i.e., participant security satisfaction). These outcomes of model are based on measuring database efficiency, from 2015 to 2025. The model topology has state-of-the-art in value-orientation impact and correspond complexity of sustainability issues (e.g., build a consistent database necessary to approach spatial structure; construct the spatial-economic model; develop a set of sustainability indicators associated with model; allow quantification of social, economic and environmental impact; use the value-orientation as a set of important sustainability policy measures), and demonstrate environmental resilience. The model is managing and developing schemes from perspective of multiple sources pollutants through the input–output criteria. These criteria are evaluated the external insertions effects to conduct Monte Carlo simulations and analysis for using matrices in a unique spatial structure. The balance “equilibrium patterns” such as collective biosphere features, has a composite index of the distributed feedback flows. These feedback flows have a dynamic structure with physical and chemical properties for gradual prolong of incremental patterns. While these structures argue from system ecology, static loads are not decisive from an artistic/architectural perspective. The popularity of system resilience, in the systems structure related to ecology has not been achieved without the generation of confusion and vagueness. However, this topic is relevant to forecast future scenarios where industrial regions will need to keep on dealing with the impact of relative environmental deviations. The model attempts to unify analytic and analogical structure of urban environments using database software to integrate sustainability outcomes where the process based on systems topology of construction ecology.Keywords: system ecology, construction ecology, industrial ecology, spatial-economic model, systems topology
Procedia PDF Downloads 17605 A Review of Atomization Mechanisms Used for Spray Flash Evaporation: Their Effectiveness and Proposal of Rotary Bell Atomizer for Flashing Application
Authors: Murad A. Channa, Mehdi Khiadani. Yasir Al-Abdeli
Abstract:
Considering the severity of water scarcity around the world and its widening at an alarming rate, practical improvements in desalination techniques need to be engineered at the earliest. Atomization is the major aspect of flashing phenomena, yet it has been paid less attention to until now. There is a need to test efficient ways of atomization for the flashing process. Flash evaporation together with reverse osmosis is also a commercially matured desalination technique commonly famous as Multi-stage Flash (MSF). Even though reverse osmosis is massively practical, it is not economical or sustainable compared to flash evaporation. However, flashing evaporation has its drawbacks as well such as lower efficiency of water production per higher consumption of power and time. Flash evaporation is simply the instant boiling of a subcooled liquid which is introduced as droplets in a well-maintained negative environment. This negative pressure inside the vacuum increases the temperature of the liquid droplets far above their boiling point, which results in the release of latent heat, and the liquid droplets turn into vapor which is collected to be condensed back into an impurity-free liquid in a condenser. Atomization is the main difference between pool and spray flash evaporation. Atomization is the heart of the flash evaporation process as it increases the evaporating surface area per drop atomized. Atomization can be categorized into many levels depending on its drop size, which again becomes crucial for increasing the droplet density (drop count) per given flow rate. This review comprehensively summarizes the selective results relating to the methods of atomization and their effectiveness on the evaporation rate from earlier works to date. In addition, the reviewers propose using centrifugal atomization for the flashing application, which brings several advantages viz ultra-fine droplets, uniform droplet density, and the swirling geometry of the spray with kinetically more energetic sprays during their flight. Finally, several challenges of using rotary bell atomizer (RBA) and RBA Sprays inside the chamber have been identified which will be explored in detail. A schematic of rotary bell atomizer (RBA) integration with the chamber has been designed. This powerful centrifugal atomization has the potential to increase potable water production in commercial multi-stage flash evaporators, where it would be preferably advantageous.Keywords: atomization, desalination, flash evaporation, rotary bell atomizer
Procedia PDF Downloads 83604 Investigating the Antibacterial Properties and Omega-3 Levels of Evening Primrose Plant Against Multi-Drug Resistant Bacteria
Authors: A. H. Taghdisi, M. Mirmohammadi, S. Kamali
Abstract:
Evening primrose (Oenothera biennis L.) is a biennial and herbaceous and one of the most important species of medicinal plants in the world. due to the production of unsaturated fatty acids such as linoleic acid, alpha-linolenic acid, etc. in its seeds and roots, and compounds such as kaempferol in its leaves, Evening primrose has important medicinal efficiency such as reducing premenstrual problems, acceleration of wound healing, inhibiting platelet aggregation, sedation of cardiovascular diseases, and treatment of viral infections. The sap of the plant is used to treat warts, and the plant itself is used as a charm against mental and spiritual diseases and poisonous animals. Its leaves have significant antibacterial activity against yellow staphylococci. It is also used in the treatment of poisoning, especially the toxication caused by the consumption of alcoholic beverages, in the treatment of arteriosclerosis and diseases caused by liver cell insufficiency. Low germination and production speed are the problems of evening primrose growth and propagation. In the present study, extracts were obtained from four components (flowers, stems, seeds, leaves) of the evening primrose plant using the Soxhlet apparatus. To measure the antibacterial properties against MDR bacteria, microbial methods, including dilution, cultivation on a plate containing nutrient agar culture medium, and disc diffusion in agar, were performed using Staphylococcus aureus and Escherichia coli bacteria on all four extracts. The maximum antibacterial activity related to the dilution method was obtained in all extracts. In the plate culture method, antibacterial activity was obtained for all extracts in the nutrient agar medium. The maximum diameter of the non-growth halo was obtained in the disc diffusion method in agar in the leaf extract. The statistical analysis of the microbial part was done by one-way ANOVA test (SPSS). By comparing the amount of omega-3 in extracts of Iranian and foreign oils available in the market and the extracts extracted from evening primrose plant samples with gas chromatography, it is shown that the stem extract had the most omega-3 (oleic acid) and compared to the extract of the mentioned oils, it had the highest amount of omega-3 overall. Also, the amount of omega-3 in the extract of Iranian oils was much higher than in the extract of foreign oils. It should be noted that the extract of foreign oils had a more complete composition of omega-3 than the extract of Iranian oils.Keywords: antibacterial activity, MDR bacteria, evening primrose, omega-3
Procedia PDF Downloads 103603 Giant Cancer Cell Formation: A Link between Cell Survival and Morphological Changes in Cancer Cells
Authors: Rostyslav Horbay, Nick Korolis, Vahid Anvari, Rostyslav Stoika
Abstract:
Introduction: Giant cancer cells (GCC) are common in all types of cancer, especially after poor therapy. Some specific features of such cells include ~10-fold enlargement, drug resistance, and the ability to propagate similar daughter cells. We used murine NK/Ly lymphoma, an aggressive and fast growing lymphoma model that has already shown drastic changes in GCC comparing to parental cells (chromatin condensation, nuclear fragmentation, tighter OXPHOS/cellular respiration coupling, multidrug resistance). Materials and methods: In this study, we compared morpho-functional changes of GCC that predominantly show either a cytostatic or a cytotoxic effect after treatment with drugs. We studied the effect of a combined cytostatic/cytotoxic drug treatment to determine the correlation of drug efficiency and GCC formation. Doses of G1/S-specific drug paclitaxel/PTX (G2/M-specific, 50 mg/mouse), vinblastine/VBL (50 mg/mouse), and DNA-targeting agents doxorubicin/DOX (125 ng/mouse) and cisplatin/CP (225 ng/mouse) on C57 black mice. Several tests were chosen to estimate morphological and physiological state (propidium iodide, Rhodamine-123, DAPI, JC-1, Janus Green, Giemsa staining and other), which included cell integrity, nuclear fragmentation and chromatin condensation, mitochondrial activity, and others. A single and double factor ANOVA analysis were performed to determine correlation between the criteria of applied drugs and cytomorphological changes. Results: In all cases of treatment, several morphological changes were observed (intracellular vacuolization, membrane blebbing, and interconnected mitochondrial network). A lower gain in ascites (49.97% comparing to control group) and longest lifespan (22+9 days) after tumor injection was obtained with single VBL and single DOX injections. Such ascites contained the highest number of GCC (83.7%+9.2%), lowest cell count number (72.7+31.0 mln/ml), and a strong correlation coefficient between increased mitochondrial activity and percentage of giant NK/Ly cells. A high number of viable GCC (82.1+9.2%) was observed compared to the parental forms (15.4+11.9%) indicating that GCC are more drug resistant than the parental cells. All this indicates that the giant cell formation and its ability to obtain drug resistance is an expanding field in cancer research.Keywords: ANOVA, cisplatin, doxorubicin, drug resistance, giant cancer cells, NK/Ly lymphoma, paclitaxel, vinblastine
Procedia PDF Downloads 216602 Functional Neurocognitive Imaging (fNCI): A Diagnostic Tool for Assessing Concussion Neuromarker Abnormalities and Treating Post-Concussion Syndrome in Mild Traumatic Brain Injury Patients
Authors: Parker Murray, Marci Johnson, Tyson S. Burnham, Alina K. Fong, Mark D. Allen, Bruce McIff
Abstract:
Purpose: Pathological dysregulation of Neurovascular Coupling (NVC) caused by mild traumatic brain injury (mTBI) is the predominant source of chronic post-concussion syndrome (PCS) symptomology. fNCI has the ability to localize dysregulation in NVC by measuring blood-oxygen-level-dependent (BOLD) signaling during the performance of fMRI-adapted neuropsychological evaluations. With fNCI, 57 brain areas consistently affected by concussion were identified as PCS neural markers, which were validated on large samples of concussion patients and healthy controls. These neuromarkers provide the basis for a computation of PCS severity which is referred to as the Severity Index Score (SIS). The SIS has proven valuable in making pre-treatment decisions, monitoring treatment efficiency, and assessing long-term stability of outcomes. Methods and Materials: After being scanned while performing various cognitive tasks, 476 concussed patients received an SIS score based on the neural dysregulation of the 57 previously identified brain regions. These scans provide an objective measurement of attentional, subcortical, visual processing, language processing, and executive functioning abilities, which were used as biomarkers for post-concussive neural dysregulation. Initial SIS scores were used to develop individualized therapy incorporating cognitive, occupational, and neuromuscular modalities. These scores were also used to establish pre-treatment benchmarks and measure post-treatment improvement. Results: Changes in SIS were calculated in percent change from pre- to post-treatment. Patients showed a mean improvement of 76.5 percent (σ= 23.3), and 75.7 percent of patients showed at least 60 percent improvement. Longitudinal reassessment of 24 of the patients, measured an average of 7.6 months post-treatment, shows that SIS improvement is maintained and improved, with an average of 90.6 percent improvement from their original scan. Conclusions: fNCI provides a reliable measurement of NVC allowing for identification of concussion pathology. Additionally, fNCI derived SIS scores direct tailored therapy to restore NVC, subsequently resolving chronic PCS resulting from mTBI.Keywords: concussion, functional magnetic resonance imaging (fMRI), neurovascular coupling (NVC), post-concussion syndrome (PCS)
Procedia PDF Downloads 353601 Optimization Based Design of Decelerating Duct for Pumpjets
Authors: Mustafa Sengul, Enes Sahin, Sertac Arslan
Abstract:
Pumpjets are one of the marine propulsion systems frequently used in underwater vehicles nowadays. The reasons for frequent use of pumpjet as a propulsion system are that it has higher relative efficiency at high speeds, better cavitation, and acoustic performance than its rivals. Pumpjets are composed of rotor, stator, and duct, and there are two different types of pumpjet configurations depending on the desired hydrodynamic characteristic, which are with accelerating and decelerating duct. Pumpjet with an accelerating channel is used at cargo ships where it works at low speeds and high loading conditions. The working principle of this type of pumpjet is to maximize the thrust by reducing the pressure of the fluid through the channel and throwing the fluid out from the channel with high momentum. On the other hand, for decelerating ducted pumpjets, the main consideration is to prevent the occurrence of the cavitation phenomenon by increasing the pressure of the fluid about the rotor region. By postponing the cavitation, acoustic noise naturally falls down, so decelerating ducted systems are used at noise-sensitive vehicle systems where acoustic performance is vital. Therefore, duct design becomes a crucial step during pumpjet design. This study, it is aimed to optimize the duct geometry of a decelerating ducted pumpjet for a highly speed underwater vehicle by using proper optimization tools. The target output of this optimization process is to obtain a duct design that maximizes fluid pressure around the rotor region to prevent from cavitation and minimizes drag force. There are two main optimization techniques that could be utilized for this process which are parameter-based optimization and gradient-based optimization. While parameter-based algorithm offers more major changes in interested geometry, which makes user to get close desired geometry, gradient-based algorithm deals with minor local changes in geometry. In parameter-based optimization, the geometry should be parameterized first. Then, by defining upper and lower limits for these parameters, design space is created. Finally, by proper optimization code and analysis, optimum geometry is obtained from this design space. For this duct optimization study, a commercial codedparameter-based optimization algorithm is used. To parameterize the geometry, duct is represented with b-spline curves and control points. These control points have x and y coordinates limits. By regarding these limits, design space is generated.Keywords: pumpjet, decelerating duct design, optimization, underwater vehicles, cavitation, drag minimization
Procedia PDF Downloads 207600 Enhancing Photocatalytic Hydrogen Production: Modification of TiO₂ by Coupling with Semiconductor Nanoparticles
Authors: Saud Hamdan Alshammari
Abstract:
Photocatalytic water splitting to produce hydrogen (H₂) has obtained significant attention as an environmentally friendly technology. This process, which produces hydrogen from water and sunlight, represents a renewable energy source. Titanium dioxide (TiO₂) plays a critical role in photocatalytic hydrogen production due to its chemical stability, availability, and low cost. Nevertheless, TiO₂'s wide band gap (3.2 eV) limits its visible light absorption and might affect the effectiveness of the photocatalytic. Coupling TiO₂ with other semiconductors is a strategy that can enhance TiO₂ by narrowing its band gap and improving visible light absorption. This paper studies the modification of TiO₂ by coupling it with another semiconductor such as CdS nanoparticles using a reflux reactor and autoclave reactor that helps form a core-shell structure. Characterization techniques, including TEM and UV-Vis spectroscopy, confirmed successful coating of TiO₂ on CdS core, reduction of the band gap from 3.28 eV to 3.1 eV, and enhanced light absorption in the visible region. These modifications are attributed to the heterojunction structure between TiO₂ and CdS.The essential goal of this study is to improve TiO₂ for use in photocatalytic water splitting to enhance hydrogen production. The core-shell TiO₂@CdS nanoparticles exhibited promising results, due to band gap narrowing and improved light absorption. Future work will involve adding Pt as a co-catalyst, which is known to increase surface reaction activity by enhancing proton adsorption. Evaluation of the TiO₂@CdS@Pt catalyst will include performance assessments and hydrogen productivity tests, considering factors such as effective shapes and material ratios. Moreover, the study could be enhanced by studying further modifications to the catalyst and displaying additional performance evaluations. For instance, doping TiO₂ with metals such as nickel (Ni), iron (Fe), and cobalt (Co) and non-metals such as nitrogen (N), carbon (C), and sulfur (S) could positively influence the catalyst by reducing the band gap, enhancing the separation of photogenerated electron-hole pairs, and increasing the surface area, respectively. Additionally, to further improve catalytic performance, examining different catalyst morphologies, such as nanorods, nanowires, and nanosheets, in hydrogen production could be highly beneficial. Optimizing photoreactor design for efficient photon delivery and illumination will further enhance the photocatalytic process. These strategies collectively aim to overcome current challenges and improve the efficiency of hydrogen production via photocatalysis.Keywords: hydrogen production, photocatalytic, water spliiting, semiconductor, nanoparticles
Procedia PDF Downloads 19599 New Suspension Mechanism for a Formula Car using Camber Thrust
Authors: Shinji Kajiwara
Abstract:
The basic ability of a vehicle is the ability to “run”, “turn” and “stop”. The safeness and comfort during a drive on various road surfaces and speed depends on the performance of these basic abilities of the vehicle. Stability and maneuverability of a vehicle is vital in automotive engineering. Stability of a vehicle is the ability of the vehicle to revert back to a stable state during a drive when faced with crosswind and irregular road conditions. Maneuverability of a vehicle is the ability of the vehicle to change direction during a drive swiftly based on the steering of the driver. The stability and maneuverability of a vehicle can also be defined as the driving stability of the vehicle. Since fossil fueled vehicle is the main type of transportation today, the environmental factor in automotive engineering is also vital. By improving the fuel efficiency of the vehicle, the overall carbon emission will be reduced thus reducing the effect of global warming and greenhouse gas on the Earth. Another main focus of the automotive engineering is the safety performance of the vehicle especially with the worrying increase of vehicle collision every day. With better safety performance on a vehicle, every driver will be more confidence driving every day. Next, let us focus on the “turn” ability of a vehicle. By improving this particular ability of the vehicle, the cornering limit of the vehicle can be improved thus increasing the stability and maneuverability factor. In order to improve the cornering limit of the vehicle, a study to find the balance between the steering systems, the stability of the vehicle, higher lateral acceleration and the cornering limit detection must be conducted. The aim of this research is to study and develop a new suspension system that that will boost the lateral acceleration of the vehicle and ultimately improving the cornering limit of the vehicle. This research will also study environmental factor and the stability factor of the new suspension system. The double wishbone suspension system is widely used in four-wheel vehicle especially for high cornering performance sports car and racing car. The double wishbone designs allow the engineer to carefully control the motion of the wheel by controlling such parameters as camber angle, caster angle, toe pattern, roll center height, scrub radius, scuff and more. The development of the new suspension system will focus on the ability of the new suspension system to optimize the camber control and to improve the camber limit during a cornering motion. The research will be carried out using the CAE analysis tool. Using this analysis tool we will develop a JSAE Formula Machine equipped with the double wishbone system and also the new suspension system and conduct simulation and conduct studies on performance of both suspension systems.Keywords: automobile, camber thrust, cornering force, suspension
Procedia PDF Downloads 321598 Creep Analysis and Rupture Evaluation of High Temperature Materials
Authors: Yuexi Xiong, Jingwu He
Abstract:
The structural components in an energy facility such as steam turbine machines are operated under high stress and elevated temperature in an endured time period and thus the creep deformation and creep rupture failure are important issues that need to be addressed in the design of such components. There are numerous creep models being used for creep analysis that have both advantages and disadvantages in terms of accuracy and efficiency. The Isochronous Creep Analysis is one of the simplified approaches in which a full-time dependent creep analysis is avoided and instead an elastic-plastic analysis is conducted at each time point. This approach has been established based on the rupture dependent creep equations using the well-known Larson-Miller parameter. In this paper, some fundamental aspects of creep deformation and the rupture dependent creep models are reviewed and the analysis procedures using isochronous creep curves are discussed. Four rupture failure criteria are examined from creep fundamental perspectives including criteria of Stress Damage, Strain Damage, Strain Rate Damage, and Strain Capability. The accuracy of these criteria in predicting creep life is discussed and applications of the creep analysis procedures and failure predictions of simple models will be presented. In addition, a new failure criterion is proposed to improve the accuracy and effectiveness of the existing criteria. Comparisons are made between the existing criteria and the new one using several examples materials. Both strain increase and stress relaxation form a full picture of the creep behaviour of a material under high temperature in an endured time period. It is important to bear this in mind when dealing with creep problems. Accordingly there are two sets of rupture dependent creep equations. While the rupture strength vs LMP equation shows how the rupture time depends on the stress level under load controlled condition, the strain rate vs rupture time equation reflects how the rupture time behaves under strain-controlled condition. Among the four existing failure criteria for rupture life predictions, the Stress Damage and Strain Damage Criteria provide the most conservative and non-conservative predictions, respectively. The Strain Rate and Strain Capability Criteria provide predictions in between that are believed to be more accurate because the strain rate and strain capability are more determined quantities than stress to reflect the creep rupture behaviour. A modified Strain Capability Criterion is proposed making use of the two sets of creep equations and therefore is considered to be more accurate than the original Strain Capability Criterion.Keywords: creep analysis, high temperature mateials, rapture evalution, steam turbine machines
Procedia PDF Downloads 287597 The Good Form of a Sustainable Creative Learning City Based on “The Theory of a Good City Form“ by Kevin Lynch
Authors: Fatemeh Moosavi, Tumelo Franck Nkoshwane
Abstract:
Peter Drucker the renowned management guru once said, “The best way to predict the future is to create it.” Mr. Drucker is also the man who placed human capital as the most vital resource of any institution. As such any institution bent on creating a better future, requires a competent human capital, one that is able to execute with efficiency and effectiveness the objective a society aspires to. Technology today is accelerating the rate at which many societies transition to knowledge based societies. In this accelerated paradigm, it is imperative that those in leadership establish a platform capable of sustaining the planned future; intellectual capital. The capitalist economy going into the future will not just be sustained by dollars and cents, but by individuals who possess the creativity to enterprise, innovate and create wealth from ideas. This calls for cities of the future, to have this premise at the heart of their future plan, if the objective of designing sustainable and liveable future cities will be realised. The knowledge economy, now transitioning to the creative economy, requires cities of the future to be ‘gardens’ of inspiration, to be places where knowledge, creativity, and innovation can thrive as these instruments are becoming critical assets for creating wealth in the new economic system. Developing nations must accept that learning is a lifelong process that requires keeping abreast with change and should invest in teaching people how to keep learning. The need to continuously update one’s knowledge, turn these cities into vibrant societies, where new ideas create knowledge and in turn enriches the quality of life of the residents. Cities of the future must have as one of their objectives, the ability to motivate their citizens to learn, share knowledge, evaluate the knowledge and use it to create wealth for a just society. The five functional factors suggested by Kevin Lynch;-vitality, meaning/sense, adaptability, access, control, and monitoring should form the basis on which policy makers and urban designers base their plans for future cities. The authors of this paper believe that developing nations “creative economy clusters”, cities where creative industries drive the need for constant new knowledge creating sustainable learning creative cities. Obviously the form, shape and size of these districts should be cognisant of the environmental, cultural and economic characteristics of each locale. Gaborone city in the republic of Botswana is presented as the case study for this paper.Keywords: learning city, sustainable creative city, creative industry, good city form
Procedia PDF Downloads 308596 Xylanase Impact beyond Performance: A Prebiotic Approach in Laying Hens
Authors: Veerle Van Hoeck, Ingrid Somers, Dany Morisset
Abstract:
Anti-nutritional factors such as non-starch polysaccharides (NSP) are present in viscous cereals used to feed poultry. Therefore, exogenous carbohydrases are commonly added to monogastric feed to degrade these NSP. Our hypothesis is that xylanase not only improves laying hen performance and digestibility but also induces a significant shift in microbial composition within the intestinal tract and, thereby, can cause a prebiotic effect. In this context, a better understanding of whether and how the chicken gut flora can be modulated by xylanase is needed. To do so, in the herein laying hen study, the effects of dietary supplementation of xylanase on performance, digestibility, and cecal microbiome were evaluated. A total of 96 HiSex laying hens was used in this experiment (3 diets and 16 replicates of 2 hens). Xylanase was added to the diets at concentrations of 0, 45,000 (15 g/t XygestTM HT) and 90,000 U/kg (30 g/t Xygest HT). The diets were based on wheat (~55 %), soybean, and sunflower meal. The lowest dosage, 45,000 U/kg, significantly increased average egg weight and improved feed efficiency compared to the control treatment (p < 0.05). Egg quality parameters were significantly improved in the experiment in response to the xylanase addition. For example, during the last 28 days of the trial, the 45,000 U/kg and the 90,000 U/kg treatments exhibited an increase in Haugh units and albumin heights (p < 0.05). Compared with the control, organic matter digestibility and N retention were drastically improved in the 45,000 U/kg treatment group, which implies better nutrient digestibility at this lowest recommended dosage compared to the control (p < 0.05). Furthermore, gross energy and crude fat digestibility were improved significantly for birds fed 90,000 U/kg group compared to the control. Importantly, 16S rRNA gene analysis revealed that xylanase at 45,000 U/kg dosages can exert a prebiotic effect. This conclusion was drawn based on studying the sequence variation in the 16S rRNA gene in order to characterize diverse microbial communities of the cecal content. A significant increase in beneficial bacteria (Lactobacilli spp and Enterococcus casseliflavus) was documented when adding 45,000 U/kg xylanase to the diet of laying hens. In conclusion, dietary supplementation of xylanase, even at the lowest dose of (45,000 U/kg), significantly improved laying hen performance and digestibility. Furthermore, it is generally accepted that a proper bacterial balance between the number of beneficial bacteria and pathogenic bacteria in the intestine is vital for the host. It seems that the xylanase enzyme is able to modulate the laying hen microbiome beneficially and thus exerts a prebiotic effect. This microbiome plasticity in response to the xylanase provides an attractive target for stimulating intestinal health.Keywords: laying hen, prebiotic, XygestTM HT, xylanase
Procedia PDF Downloads 127595 A Comparative Study between Japan and the European Union on Software Vulnerability Public Policies
Authors: Stefano Fantin
Abstract:
The present analysis outcomes from the research undertaken in the course of the European-funded project EUNITY, which targets the gaps in research and development on cybersecurity and privacy between Europe and Japan. Under these auspices, the research presents a study on the policy approach of Japan, the EU and a number of Member States of the Union with regard to the handling and discovery of software vulnerabilities, with the aim of identifying methodological differences and similarities. This research builds upon a functional comparative analysis of both public policies and legal instruments from the identified jurisdictions. The result of this analysis is based on semi-structured interviews with EUNITY partners, as well as by the participation of the researcher to a recent report from the Center for EU Policy Study on software vulnerability. The European Union presents a rather fragmented legal framework on software vulnerabilities. The presence of a number of different legislations at the EU level (including Network and Information Security Directive, Critical Infrastructure Directive, Directive on the Attacks at Information Systems and the Proposal for a Cybersecurity Act) with no clear focus on such a subject makes it difficult for both national governments and end-users (software owners, researchers and private citizens) to gain a clear understanding of the Union’s approach. Additionally, the current data protection reform package (general data protection regulation), seems to create legal uncertainty around security research. To date, at the member states level, a few efforts towards transparent practices have been made, namely by the Netherlands, France, and Latvia. This research will explain what policy approach such countries have taken. Japan has started implementing a coordinated vulnerability disclosure policy in 2004. To date, two amendments can be registered on the framework (2014 and 2017). The framework is furthermore complemented by a series of instruments allowing researchers to disclose responsibly any new discovery. However, the policy has started to lose its efficiency due to a significant increase in reports made to the authority in charge. To conclude, the research conducted reveals two asymmetric policy approaches, time-wise and content-wise. The analysis therein will, therefore, conclude with a series of policy recommendations based on the lessons learned from both regions, towards a common approach to the security of European and Japanese markets, industries and citizens.Keywords: cybersecurity, vulnerability, European Union, Japan
Procedia PDF Downloads 156594 Ensuring Sustainable Urban Mobility in Indian Cities: Need for Creating People Friendly Roadside Public Spaces
Authors: Pushplata Garg
Abstract:
Mobility, is an integral part of living and sustainability of urban mobility, is essential not only for, but also for addressing global warming and climate change. However, very little is understood about the obstacles/hurdles and likely challenges in the success of plans for sustainable urban mobility in Indian cities from the public perspective. Whereas some of the problems and issues are common to all cities, others vary considerably with financial status, function, the size of cities and culture of a place. Problems and issues similar in all cities relate to availability, efficiency and safety of public transport, last mile connectivity, universal accessibility, and essential planning and design requirements of pedestrians and cyclists are same. However, certain aspects like the type of means of public transportation, priority for cycling and walking, type of roadside activities, are influenced by the size of the town, average educational and income level of public, financial status of the local authorities, and culture of a place. The extent of public awareness, civic sense, maintenance of public spaces and law enforcement vary significantly from large metropolitan cities to small and medium towns in countries like India. Besides, design requirements for shading, location of public open spaces and sitting areas, street furniture, landscaping also vary depending on the climate of the place. Last mile connectivity plays a major role in success/ effectiveness of public transport system in a city. In addition to the provision of pedestrian footpaths connecting important destinations, sitting spaces and necessary amenities/facilities along footpaths; pedestrian movement to public transit stations is encouraged by the presence of quality roadside public spaces. It is not only the visual attractiveness of streetscape or landscape or the public open spaces along pedestrian movement channels but the activities along that make a street vibrant and attractive. These along with adequate spaces to rest and relax encourage people to walk as is observed in cities with successful public transportation systems. The paper discusses problems and issues of pedestrians for last mile connectivity in the context of Delhi, Chandigarh, Gurgaon, and Roorkee- four Indian cities representing varying urban contexts, that is, of metropolitan, large and small cities.Keywords: pedestrianisation, roadside public spaces, last mile connectivity, sustainable urban mobility
Procedia PDF Downloads 251