Search results for: line voltage stability indices (LVSI)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7841

Search results for: line voltage stability indices (LVSI)

1691 Collagen Silver Lipid Nanoparticles as Matrix and Fillers for Cosmeceuticals: An In-Vitro and In-Vivo Study

Authors: Kumari Kajal, Muthu Kumar Sampath, Hare Ram Singh

Abstract:

In this context, the formulation and characterization of collagen silver lipid nanoparticles (CSLNs) were studied for their capacity to serve as fillers/matrix materials used in cosmeceutical applications. The CSLNs were prepared following a series of studies, such as X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) coupled with energy-dispersive X-ray spectroscopy (EDS), Fourier-transform infrared spectroscopy FT-IR; thermogravimetric analysis (TGA); and differential scanning calorimetry (DSC). The studies confirmed the structural integrity of nanoparticles, their cargo and thermal stability. The biological functionality of CSLNs was studied by carrying out in vitro & in vivo studies. The antibacterial effect, hemocompatibility and anti-inflammatory characteristics of these fibers were systematically investigated. The toxicological assays included oral toxicity in mice and aquatic life tests with the fish Danio rerio model. The morphology of the nanoparticles was confirmed using high-resolution transmission electron microscopy (HR-TEM). The report found that CSLNs had strong antimicrobial effects, unmatched hemocompatibility, and low or absent inflammatory reactions, which makes them perfect candidates for cosmeceutical applications. The toxicological evaluations evinced a good safety record without any significant adverse effects in both murine and Danio rerio models. This research reveals the efficient way of CSLNs to the efficacy and safety of dermaceuticals.

Keywords: collagen silver lipid nanoparticles (CSLNs), cosmeceuticals, antimicrobial activity, hemocompatibility, in vitro assessment, in vivo assessment.

Procedia PDF Downloads 17
1690 Development of CaO-based Sorbents Applied to Sorption Enhanced Steam Reforming Processes

Authors: P. Comendador, I. Garcia, S. Orozco, L. Santamaria, M. Amutio, G. Lopez, M. Olazar

Abstract:

In situ CO₂ capture in steam reforming processes has been studied in the last years as an alternative for increasing H₂ yields and H₂ purity in the product stream. For capturing the CO₂ at the reforming conditions, CaO-based sorbents are usually employed due to their properties at high temperature, low cost and high availability. However, the challenge is to develop high-capacity (gCO₂/gsorbent) materials that retain their capacity over cycles of operation. Besides, since the objective is to capture the CO₂ generated in situ, another key aspect is the sorption dynamics, which means that, in order to efficiently use the sorbent, it has to capture the CO₂ at a rate equal to or higher than the generation rate. In this work, different CaO-based materials have been prepared to aim at meeting these criteria. First, and by using the wet mixing method, different inert materials (Mg, Ce and Al) were combined with CaO. Second, and with the inert material selected (Mg), the effect of its concentration in the final material was studied. Transversally, the calcination temperature was also evaluated. It was determined that the wet mixing method is a simple procedure suitable for the preparation of CaO sorbents mixed with inert materials. The materials prepared by mixing the CaO with Mg have shown satisfactory anti-sintering properties and adequate sorption kinetics for their application in steam reforming processes. Regarding the concentration of Mg in the solid, it was concluded that high values contribute to the stability but at the expense of losing sorption capacity. Finally, it was observed that high calcination temperatures negatively affected the sorption properties of the final materials due to the decrease in the pore volume and the specific surface area.

Keywords: calcination temperature effect, CO₂ capture, Mg-Ce-Al stabilizers, Mg varying concentration effect, Sorbent stabilization

Procedia PDF Downloads 81
1689 Climate Changes and Ecological Response on the Tibetan Plateau

Authors: Weishou Shen, Changxin Zou, Dong Liu

Abstract:

High-mountain environments are experiencing more rapid warming than lowlands. The Tibetan (Qinghai-Xizang, TP) Plateau, known as the “Third Pole” of the Earth and the “Water Tower of Asia,” is the highest plateau in the world, however, ecological response to climate change has been hardly documented in high altitude regions. In this paper, we investigated climate warming induced ecological changes on the Tibetan Plateau over the past 50 years through combining remote sensing data with a large amount of in situ field observation. The results showed that climate warming up to 0.41 °C/10 a has greatly improved the heat conditions on the TP. Lake and river areas exhibit increased trend whereas swamp area decreased in the recent 35 years. The expansion in the area of the lake is directly related to the increase of precipitation as well as the climate warming up that makes the glacier shrink, the ice and snow melting water increase and the underground frozen soil melting water increase. Climate warming induced heat condition growth and reduced annual range of temperature, which will have a positive influence on vegetation, agriculture production and decreased freeze–thaw erosion on the TP. Terrestrial net primary production and farmland area on the TP have increased by 0.002 Pg C a⁻¹ and 46,000 ha, respectively. We also found that seasonal frozen soil depth decreased as the consequence of climate warming. In the long term, accelerated snow melting and thinned seasonal frozen soil induced by climate warming possibly will have a negative effect on alpine ecosystem stability and soil preservation.

Keywords: global warming, alpine ecosystem, ecological response, remote sensing

Procedia PDF Downloads 280
1688 Finite Element Analysis of Hollow Structural Shape (HSS) Steel Brace with Infill Reinforcement under Cyclic Loading

Authors: Chui-Hsin Chen, Yu-Ting Chen

Abstract:

Special concentrically braced frames is one of the seismic load resisting systems, which dissipates seismic energy when bracing members within the frames undergo yielding and buckling while sustaining their axial tension and compression load capacities. Most of the inelastic deformation of a buckling bracing member concentrates in the mid-length region. While experiencing cyclic loading, the region dissipates most of the seismic energy being input into the frame. Such a concentration makes the braces vulnerable to failure modes associated with low-cycle fatigue. In this research, a strategy to improve the cyclic behavior of the conventional steel bracing member is proposed by filling the Hollow Structural Shape (HSS) member with reinforcement. It prevents the local section from concentrating large plastic deformation caused by cyclic loading. The infill helps spread over the plastic hinge region into a wider area hence postpone the initiation of local buckling or even the rupture of the braces. The finite element method is introduced to simulate the complicated bracing member behavior and member-versus-infill interaction under cyclic loading. Fifteen 3-D-element-based models are built by ABAQUS software. The verification of the FEM model is done with unreinforced (UR) HSS bracing members’ cyclic test data and aluminum honeycomb plates’ bending test data. Numerical models include UR and filled HSS bracing members with various compactness ratios based on the specification of AISC-2016 and AISC-1989. The primary variables to be investigated include the relative bending stiffness and the material of the filling reinforcement. The distributions of von Mises stress and equivalent plastic strain (PEEQ) are used as indices to tell the strengths and shortcomings of each model. The result indicates that the change of relative bending stiffness of the infill is much more influential than the change of material in use to increase the energy dissipation capacity. Strengthen the relative bending stiffness of the reinforcement results in additional energy dissipation capacity to the extent of 24% and 46% in model based on AISC-2016 (16-series) and AISC-1989 (89-series), respectively. HSS members with infill show growth in 𝜂Local Buckling, normalized energy cumulated until the happening of local buckling, comparing to UR bracing members. The 89-series infill-reinforced members have more energy dissipation capacity than unreinforced 16-series members by 117% to 166%. The flexural rigidity of infills should be less than 29% and 13% of the member section itself for 16-series and 89-series bracing members accordingly, thereby guaranteeing the spread over of the plastic hinge and the happening of it within the reinforced section. If the parameters are properly configured, the ductility, energy dissipation capacity, and fatigue-life of HSS SCBF bracing members can be improved prominently by the infill-reinforced method.

Keywords: special concentrically braced frames, HSS, cyclic loading, infill reinforcement, finite element analysis, PEEQ

Procedia PDF Downloads 93
1687 A Comparison of Sulfur Mustard Cytotoxic Effects on the Two Human Lung Origin Cell Lines

Authors: P. Jost, L. Muckova, M. Matula, J. Pejchal, D. Jun, R. Stetina

Abstract:

Sulfur mustard (bis(2-chlorethyl) sulfide) is highly toxic, chemical warfare agent that has been used in the past in several armed conflicts. Except for the skin, respiratory tract is one of the important routes of exposure. The elucidation and understanding of the mechanism of toxicity of SM have been effort intensive research. The multiple targets character of SM caused cellular damage resulted in activation of many different mechanisms which contribute to cellular response and participate in the final cytopathology effect. In our present work, we compared time-dependent changes in sulfur mustard exposed adult human lung fibroblasts NHLF and lung epithelial alveolar cell line A-549. Cell viability (MTT assay, Calcein-AM assay, and xCELLigence - real-time cell analysis), apoptosis (flow cytometry), mitochondrial membrane potential (Δψm, flow cytometry), reactive oxygen species induction (DC and cell cycle distribution (flow cytometry) were studied. We observed significantly decreased mitochondrial membrane potential and subsequent induction of apoptosis correlating with decreased cellular viability in the sulfur mustard exposed cells. In low concentrations, sulfur mustard-induced S-phase cell cycle arrest, on the other hand, high concentrations, cell cycle phase distribution of sulfur mustard exposed cells resembled cell cycle phase distribution of control group, which implies nonspecific cell cycle inhibition. Epithelial cells A-549 was found as more sensible to sulfur mustard toxicity. Acknowledgements: This work was supported by a long-term organization development plan Medical Aspects of Weapons of Mass Destruction of the Faculty of Military Health Sciences, University of Defence.

Keywords: apoptosis, cell cycle, cytotoxicity, sulfur mustard

Procedia PDF Downloads 194
1686 The Effect of Grading Characteristics on the Shear Strength and Mechanical Behavior of Granular Classes of Sands

Authors: Salah Brahim Belakhdar, Tari Mohammed Amin, Rafai Abderrahmen, Amalsi Bilal

Abstract:

Shear strength of sandy soils has been considered as the important parameter to study the stability of different civil engineering structures when subjected to monotonic, cyclic, and earthquake loading conditions. The proposed research investigated the effect of grading characteristics on the shear strength and mechanical behaviour of granular classes of sands mixed with salt in loose and dense states (Dr=15% and 90%). The laboratory investigation aimed at understanding the extent or degree at which shear strength of sand-silt mixture soil is affected by its gradation under static loading conditions. For the purpose of clarifying and evaluating the shear strength characteristics of sandy soils, a series of Casagrande shear box tests were carried out on different reconstituted samples of sand-silt mixtures with various gradations. The soil samples were tested under different normal stresses (100, 200, and 300 kPa). The results from this laboratory investigation were used to develop insight into the shear strength response of sand and sand-silt mixtures under monotonic loading conditions. The analysis of the obtained data revealed that the grading characteristics (D10, D50, Cu, ESR, and MGSR) have a significant influence on the shear strength response. It was found that shear strength can be correlated to the grading characteristics for the sand-silt mixture. The effective size ratio (ESR) and mean grain size ratio (MGSR) appear as pertinent parameters to predict the shear strength response of the sand-silt mixtures for soil gradation under study.

Keywords: mechanical behavior, silty sand, friction angle, cohesion, fines content

Procedia PDF Downloads 374
1685 Synergistic Cytotoxicity of Cisplatin and Taxol in Overcoming Taxol Resistance through the Inhibition of LDHA in Oral Squamous Cell Carcinoma

Authors: Lin Feng, Ling-Ling E., Hong-Chen Liu

Abstract:

The development of chemoresistance in patients represents a major challenge in cancer treatment. Lactate dehydrogenase‑A (LDHA) is one of the principle isoforms of LDH that is expressed in breast tissue, controlling the conversion of pyruvate to lactate and also playing a significant role in the metabolism of glucose. The aim of this study was to identify whether LDHA was involved in oral cancer cell resistance to Taxol and whether the downregulation of LDHA, as a result of cisplatin treatment, may overcome Taxol resistance in human oral squamous cells. The OECM‑1 oral epidermal carcinoma cell line was used, which has been widely used as a model of oral cancer in previous studies. The role of LDHA in Taxol and cisplatin resistance was investigated and the synergistic cytotoxicity of cisplatin and/or Taxol in oral squamous cells was analyzed. Cell viability was analyzed by MTT assay, LDHA expression was analyzed by western blot analysis and siRNA transfection was performed to knock down LDHA expression. The present study results showed that decreased levels of LDHA were responsible for the resistance of oral cancer cells to cisplatin (CDDP). CDDP treatments downregulated LDHA expression and lower levels of LDHA were detected in the CDDP‑resistant oral cancer cells compared with the CDDP‑sensitive cells. By contrast, the Taxol‑resistant cancer cells showed elevated LDHA expression levels. In addition, small interfering RNA‑knockdown of LDHA sensitized the cells to Taxol but desensitized them to CDDP treatment while exogenous expression of LDHA sensitized the cells to CDDP, but desensitized them to Taxol. The present study also revealed the synergistic cytotoxicity of CDDP and Taxol for killing oral cancer cells through the inhibition of LDHA. This study highlights LDHA as a novel therapeutic target for overcoming Taxol resistance in oral cancer patients using the combined treatments of Taxol and CDDP.

Keywords: cisplatin, Taxol, carcinoma, oral squamous cells

Procedia PDF Downloads 419
1684 Preparation and In vitro Characterization of Nanoparticle Hydrogel for Wound Healing

Authors: Rajni Kant Panik

Abstract:

The aim of the present study was to develop and evaluate mupirocin loaded nanoparticle incorporated into hydrogel as an infected wound healer. Incorporated Nanoparticle in hydrogel provides a barrier that effectively prevents the contamination of the wound and further progression of infection to deeper tissues. Hydrogel creates moist healing environment on wound space with good fluid absorbance. Nanoparticles were prepared by double emulsion solvent evaporation method using different ratios of PLGA polymer and the hydrogels was developed using sodium alginate and gelatin. Further prepared nanoparticles were then incorporated into the hydrogels. The formulations were characterized by FT-IR and DSC for drug and polymer compatibility and surface morphology was studied by TEM. Nanoparticle hydrogel were evaluated for their size, shape, encapsulation efficiency and for in vitro studies. The FT-IR and DSC confirmed the absence of any drug polymer interaction. The average size of Nanoparticle was found to be in range of 208.21-412.33 nm and shape was found to be spherical. The maximum encapsulation efficiency was found to be 69.03%. The in vitro release profile of Nanoparticle incorporated hydrogel formulation was found to give sustained release of drug. Antimicrobial activity testing confirmed that encapsulated drug preserve its effectiveness. The stability study confirmed that the formulation prepared were stable. Present study complements our finding that mupirocin loaded Nanoparticle incorporated into hydrogel has the potential to be an effective and safe novel addition for the release of mupirocin in sustained manner, which may be a better option for the management of wound. These finding also supports the progression of antibiotic via hydrogel delivery system is a novel topical dosage form for the management of wound.

Keywords: hydrogel, nanoparticle, PLGA, wound healing

Procedia PDF Downloads 311
1683 Passenger Preferences on Airline Check-In Methods: Traditional Counter Check-In Versus Common-Use Self-Service Kiosk

Authors: Cruz Queen Allysa Rose, Bautista Joymeeh Anne, Lantoria Kaye, Barretto Katya Louise

Abstract:

The study presents the preferences of passengers on the quality of service provided by the two airline check-in methods currently present in airports-traditional counter check-in and common-use self-service kiosks. Since a study has shown that airlines perceive self-service kiosks alone are sufficient enough to ensure adequate services and customer satisfaction, and in contrast, agents and passengers stated that it alone is not enough and that human interaction is essential. In reference with former studies that established opposing ideas about the choice of the more favorable airline check-in method to employ, it is the purpose of this study to present a recommendation that shall somehow fill-in the gap between the conflicting ideas by means of comparing the perceived quality of service through the RATER model. Furthermore, this study discusses the major competencies present in each method which are supported by the theories–FIRO Theory of Needs upholding the importance of inclusion, control and affection, and the Queueing Theory which points out the discipline of passengers and the length of the queue line as important factors affecting quality service. The findings of the study were based on the data gathered by the researchers from selected Thomasian third year and fourth year college students currently enrolled in the first semester of the academic year 2014-2015, who have already experienced both airline check-in methods through the implication of a stratified probability sampling. The statistical treatments applied in order to interpret the data were mean, frequency, standard deviation, t-test, logistic regression and chi-square test. The final point of the study revealed that there is a greater effect in passenger preference concerning the satisfaction experienced in common-use self-service kiosks in comparison with the application of the traditional counter check-in.

Keywords: traditional counter check-in, common-use self-service Kiosks, airline check-in methods

Procedia PDF Downloads 408
1682 Impact of Silicon Surface Modification on the Catalytic Performance Towards CO₂ Conversion of Cu₂S/Si-Based Photocathodes

Authors: Karima Benfadel, Lamia Talbi, Sabiha Anas Boussaa, Afaf Brik, Assia Boukezzata, Yahia Ouadah, Samira Kaci

Abstract:

In order to prevent global warming, which is mainly caused by the increase in carbon dioxide levels in the atmosphere, it is interesting to produce renewable energy in the form of chemical energy by converting carbon dioxide into alternative fuels and other energy-dense products. Photoelectrochemical reduction of carbon dioxide to value-added products and fuels is a promising and current method. The objective of our study is to develop Cu₂S-based photoélectrodes, in which Cu₂S is used as a CO₂ photoelectrocatalyst deposited on nanostructured silicon substrates. Cu₂S thin layers were deposited using the chemical bath deposition (CBD) technique. Silicon nanowires and nanopyramids were obtained by alkaline etching. SEM and UV-visible spectroscopy was used to analyse the morphology and optical characteristics. By using a potentiostat station, we characterized the photoelectrochemical properties. We performed cyclic voltammetry in the presence and without CO₂ purging as well as linear voltammetry (LSV) in the dark and under white light irradiation. We perform chronoamperometry to study the stability of our photocathodes. The quality of the nanowires and nanopyramids was visible in the SEM images, and after Cu₂S deposition, we could see how the deposition was distributed over the textured surfaces. The inclusion of the Cu₂S layer applied on textured substrates significantly reduces the reflectance (R%). The catalytic performance towards CO₂ conversion of Cu₂S/Si-based photocathodes revealed that the texturing of the silicon surface with nanowires and pyramids has a better photoelectrochemical behavior than those without surface modifications.

Keywords: CO₂ conversion, Cu₂S photocathode, silicone nanostructured, electrochemistry

Procedia PDF Downloads 80
1681 A Longitudinal Examination of the Impact of Treatment Modality on Relationship Satisfaction and Mental Health Quality of Life Outcomes among Prostate Cancer Survivors

Authors: Gabriela Ilie, Robert D. H. Rutledge

Abstract:

A review of the literature reveals a need for longitudinal studies to properly understand the quality of life of prostate cancer survivors during their prostate cancer journey in order to identify opportunities for patient support and care during prostate cancer survivorship. In this study, mental health and relationship satisfaction were assessed longitudinally and by treatment modality among a population-based sample of Canadian adult men with a history of prostate cancer diagnosis. A total of 98 men, aged 51 or older with a history of prostate cancer completed an on-line 15-minute survey between May 2017 and February 2018, assessing mental health (Kessler Psychological Distress Scale) and relationship satisfaction (Dyadic Adjustment Scale) at baseline and at three months post-treatment with either active or nonactive prostate cancer treatment. Almost 1 in 6 men in this sample screened positive for mental health issues (17.34%, n=17) irrespective of treatment modality and most (n=11) were not currently on medication for depression, anxiety or both. Mental health outcomes were poorer for men with multimorbidity. For every instance of screening positive for mental health issues, 2.021 (95% CI:1.1 to 3.8) times more comorbidities were recorded. Relationship satisfaction and dyadic cohesion were statistically significantly lower from first assessment to 3 months for men who underwent multiple treatment modalities (surgery and radiation with hormonal therapy). Relationship satisfaction was also lower at 3 months for men who underwent radiation therapy. Almost 1 in 2 men in this sample (74%) indicated they did not attend a prostate cancer support group. Results suggest that treatment for mental health is underutilized in men with prostate cancer. Men who undergo multiple forms of active treatment appear more vulnerable to relationship dissatisfaction and feeling disconnected from their partner. Data points to important opportunities for patient education and care support during survivorship.

Keywords: prostate cancer survivorship, mental health, quality of life, relationship satisfaction

Procedia PDF Downloads 117
1680 A Low Cost Gain-Coupled Distributed Feedback Laser Based on Periodic Surface p-Contacts

Authors: Yongyi Chen, Li Qin, Peng Jia, Yongqiang Ning, Yun Liu, Lijun Wang

Abstract:

The distributed feedback (DFB) lasers are indispensable in optical phase array (OPA) used for light detection and ranging (LIDAR) techniques, laser communication systems and integrated optics, thanks to their stable single longitudinal mode and narrow linewidth properties. Traditional index-coupled (IC) DFB lasers with uniform gratings have an inherent problem of lasing two degenerated modes. Phase shifts are usually required to eliminate the mode degeneration, making the grating structure complex and expensive. High-quality antireflection (AR) coatings on both lasing facets are also essential owing to the random facet phases introduced by the chip cleavage process, which means half of the lasing energy is wasted. Gain-coupled DFB (GC-DFB) lasers based on the periodic gain (or loss) are announced to have single longitudinal mode as well as capable of the unsymmetrical coating to increase lasing power and efficiency thanks to facet immunity. However, expensive and time-consuming technologies such as epitaxial regrowth and nanoscale grating processing are still required just as IC-DFB lasers, preventing them from practical applications and commercial markets. In this research, we propose a low-cost, single-mode regrowth-free GC-DFB laser based on periodic surface p-contacts. The gain coupling effect is achieved simply by periodic current distribution in the quantum well caused by periodic surface p-contacts, introducing very little index-coupling effect that can be omitted. It is prepared by i-line lithography, without nanoscale grating fabrication or secondary epitaxy. Due to easy fabrication techniques, it provides a method to fabricate practical low cost GC-DFB lasers for widespread practical applications.

Keywords: DFB laser, gain-coupled, low cost, periodic p-contacts

Procedia PDF Downloads 128
1679 Visitor's Perception toward Boating in Silver River, Florida

Authors: Hoda Manafian, Stephen Holland

Abstract:

Silver Springs are one of Florida's first tourist attractions. They are one of the largest artesian spring formations in the world, producing nearly 550 million gallons of crystal-clear water daily that is one of the most popular sites for water-based leisure activities. As part of managing the use of a state park, the state is interested in establishing a baseline count of number of boating users to compare this to the quality of the natural resources and environment in the park. Understanding the status of the environmental resources and also the human recreational experience is the main objective of the project. Two main goals of current study are 1) to identify the distribution of different types of watercrafts (kayak, canoe, motor boat, Jet Ski, paddleboard and pontoon). 2) To document the level of real crowdedness in the river during different seasons, months, and hours of each day based on the reliable information gained from camera versus self-reported method by tourists themselves in the past studies (the innovative achievement of this study). In line with these objectives, on-site surveys and also boat counting using a time-lapse camera at the Riverside launch was done during 12 months of 2015. 700 on-site surveys were conducted at three watercraft boat ramp sites (Rays Wayside, Riverside launch area, Ft. King Waterway) of recreational users. We used Virtualdub and ImageJ software for counting boats for meeting the first and second goals, since this two software can report even the hour of presence of watercraft in the water in addition to the number of users and the type of watercraft. The most crowded hours were between 9-11AM from February to May and kayak was the most popular watercraft. The findings of this research can make a good foundation for better management in this state park in future.

Keywords: eco-tourism, Florida state, visitors' perception, water-based recreation

Procedia PDF Downloads 247
1678 Combining the Fictitious Stress Method and Displacement Discontinuity Method in Solving Crack Problems in Anisotropic Material

Authors: Bahatti̇n Ki̇mençe, Uğur Ki̇mençe

Abstract:

In this study, the purpose of obtaining the influence functions of the displacement discontinuity in an anisotropic elastic medium is to produce the boundary element equations. A Displacement Discontinuous Method formulation (DDM) is presented with the aim of modeling two-dimensional elastic fracture problems. This formulation is found by analytical integration of the fundamental solution along a straight-line crack. With this purpose, Kelvin's fundamental solutions for anisotropic media on an infinite plane are used to form dipoles from singular loads, and the various combinations of the said dipoles are used to obtain the influence functions of displacement discontinuity. This study introduces a technique for coupling Fictitious Stress Method (FSM) and DDM; the reason for applying this technique to some examples is to demonstrate the effectiveness of the proposed coupling method. In this study, displacement discontinuity equations are obtained by using dipole solutions calculated with known singular force solutions in an anisotropic medium. The displacement discontinuities method obtained from the solutions of these equations and the fictitious stress methods is combined and compared with various examples. In this study, one or more crack problems with various geometries in rectangular plates in finite and infinite regions, under the effect of tensile stress with coupled FSM and DDM in the anisotropic environment, were examined, and the effectiveness of the coupled method was demonstrated. Since crack problems can be modeled more easily with DDM, it has been observed that the use of DDM has increased recently. In obtaining the displacement discontinuity equations, Papkovitch functions were used in Crouch, and harmonic functions were chosen to satisfy various boundary conditions. A comparison is made between two indirect boundary element formulations, DDM, and an extension of FSM, for solving problems involving cracks. Several numerical examples are presented, and the outcomes are contrasted to existing analytical or reference outs.

Keywords: displacement discontinuity method, fictitious stress method, crack problems, anisotropic material

Procedia PDF Downloads 75
1677 Digital Transformation and Environmental Disclosure in Industrial Firms: The Moderating Role of the Top Management Team

Authors: Yongxin Chen, Min Zhang

Abstract:

As industrial enterprises are the primary source of national pollution, environmental information disclosure is a crucial way to demonstrate to stakeholders the work they have done in fulfilling their environmental responsibilities and accepting social supervision. In the era of the digital economy, many companies, actively embracing the opportunities that come with digital transformation, have begun to apply digital technology to information collection and disclosure within the enterprise. However, less is known about the relationship between digital transformation and environmental disclosure. This study investigates how enterprise digital transformation affects environmental disclosure in 643 Chinese industrial companies, according to information processing theory. What is intriguing is that the depth (size) and breadth (diversity) of environmental disclosure linearly increase with the rise in the collection, processing, and analytical capabilities in the digital transformation process. However, the volume of data will grow exponentially, leading to a marginal increase in the economic and environmental costs of utilizing, storing, and managing data. In our empirical findings, linearly increasing benefits and marginal costs create a unique inverted U-shaped relationship between the degree of digital transformation and environmental disclosure in the Chinese industrial sector. Besides, based on the upper echelons theory, we also propose that the top management team with high stability and managerial capabilities will invest more effort and expense into improving environmental disclosure quality, lowering the carbon footprint caused by digital technology, maintaining data security etc. In both these contexts, the increasing marginal cost curves would become steeper, weakening the inverted U-shaped slope between DT and ED.

Keywords: digital transformation, environmental disclosure, the top management team, information processing theory, upper echelon theory

Procedia PDF Downloads 145
1676 Fabrication of Uniform Nanofibers Using Gas Dynamic Virtual Nozzle Based Microfluidic Liquid Jet System

Authors: R. Vasireddi, J. Kruse, M. Vakili, M. Trebbin

Abstract:

Here we present a gas dynamic virtual nozzle (GDVN) based microfluidic jetting devices for spinning of nano/microfibers. The device is fabricated by soft lithography techniques and is based on the principle of a GDVN for precise three-dimensional gas focusing of the spinning solution. The nozzle device is used to produce micro/nanofibers of a perfluorinated terpolymer (THV), which were collected on an aluminum substrate for scanning electron microscopy (SEM) analysis. The influences of air pressure, polymer concentration, flow rate and nozzle geometry on the fiber properties were investigated. It was revealed that surface properties are controlled by air pressure and polymer concentration while the diameter and shape of the fibers are influenced mostly by the concentration of the polymer solution and pressure. Alterations of the nozzle geometry had a negligible effect on the fiber properties, however, the jetting stability was affected. Round and flat fibers with differing surface properties from craters, grooves to smooth surfaces could be fabricated by controlling the above-mentioned parameters. Furthermore, the formation of surface roughness was attributed to the fast evaporation rate and velocity (mis)match between the polymer solution jet and the surrounding air stream. The diameter of the fibers could be tuned from ~250 nm to ~15 µm. Because of the simplicity of the setup, the precise control of the fiber properties, access to biocompatible nanofiber fabrication and the easy scale-up of parallel channels for high throughput, this method offers significant benefits compared to existing solution-based fiber production methods.

Keywords: gas dynamic virtual nozzle (GDVN) principle, microfluidic device, spinning, uniform nanofibers

Procedia PDF Downloads 155
1675 Ending Communal Conflicts in Africa: The Relevance of Traditional Approaches to Conflict Resolution

Authors: Kindeye Fenta Mekonnen, Alagaw Ababu Kifle

Abstract:

The failure of international responses to armed conflict to address local preconditions for national stability has recently attracted what has been called the ‘local turn’ in peace building. This ‘local turn’ in peace building amplified a renewed interest in traditional/indigenous methods of conflict resolution, a field that has been hitherto dominated by anthropologists with their focus on the procedures and rituals of such approaches. This notwithstanding, there is still limited empirical work on the relevance of traditional methods of conflict resolution to end localized conflicts vis-à-vis hybrid and modern approaches. The few exceptions to this generally draw their conclusion from very few (almost all successful) cases that make it difficult to judge the validity and cross-case application of their results. This paper seeks to fill these gaps by undertaking a quantitative analysis of the trend and applications of different communal conflict resolution initiatives, their potential to usher in long-term peace, and the extent to which their outcomes are influenced by the intensity and scope of a conflict. The paper makes the following three tentative conclusions. First, traditional mechanisms and traditional actors still dominate the communal conflict resolution landscape, either individually or in combination with other methods. Second, traditional mechanisms of conflict resolution tend to be more successful in ending a conflict and preventing its re-occurrence compared to hybrid and modern arrangements. This notwithstanding and probably due to the scholarly call for local turn in peace building, contemporary communal conflict resolution approaches are becoming less and less reliant on traditional mechanisms alone and (therefore) less effective. Third, there is yet inconclusive evidence on whether hybridization is an asset or a liability in the resolution of communal conflicts and the extent to which this might be mediated by the intensity of a conflict.

Keywords: traditional conflict resolution, hybrid conflict resolution, communal conflict, relevance, conflict intensity

Procedia PDF Downloads 86
1674 Absorption and Carrier Transport Properties of Doped Hematite

Authors: Adebisi Moruf Ademola

Abstract:

Hematite (Fe2O3),commonly known as ‘rust’ which usually surfaced on metal when exposed to some climatic materials. This emerges as a promising candidate for photoelectrochemical (PEC) water splitting due to its favorable physiochemical properties of the narrow band gap (2.1–2.2 eV), chemical stability, nontoxicity, abundance, and low cost. However, inherent limitations such as short hole diffusion length (2–4 nm), high charge recombination rate, and slow oxygen evolution reaction kinetics inhibit the PEC performances of a-Fe2O3 photoanodes. As such, given the narrow bandgap enabling excellent optical absorption, increased charge carrier density and accelerated surface oxidation reaction kinetics become the key points for improved photoelectrochemical performances for a-Fe2O3 photoanodes and metal ion doping as an effective way to promote charge transfer by increasing donor density and improving the electronic conductivity of a-Fe2O3. Hematite attracts enormous efforts with a number of metal ions (Ti, Zr, Sn, Pt ,etc.) as dopants. A facile deposition-annealing process showed greatly enhanced PEC performance due to the increased donor density and reduced electron-hole recombination at the time scale beyond a few picoseconds. Zr doping was also found to enhance the PEC performance of a-Fe2O3 nanorod arrays by reducing the rate of electron-hole recombination. Slow water oxidation reaction kinetics, another main factor limiting the PEC water splitting efficiency of aFe2O3 as photoanodes, was previously found to be effectively improved by surface treatment.

Keywords: deposition-annealing, hematite, metal ion doping, nanorod

Procedia PDF Downloads 222
1673 Evaluation of Outpatient Management of Proctological Surgery under Saddle Block

Authors: Bouhouf Atef, Beloulou Mohamed Lamine

Abstract:

Introduction: Outpatient surgery is continually developing compared to conventional inpatient surgery; its rate is constantly increasing every year due to global socio-economic pressure. Most hospitals continue to perform proctologic surgery in conventional hospitalization. Purpose: As part of a monocentric prospective descriptive study, we examined the feasibility of proctologic surgery under saddle block on an outpatient basis with the same safety conditions as in traditional hospitalization. Material and methods: This is a monocentric prospective descriptive study spread over a period of 24 months, from December 2018 to December 2020 including 150 patients meeting the medico-surgical and socio-environmental criteria of eligibility for outpatient surgery, operated for proctological pathologies under saddle block in outpatient mode, in the surgery department of the regional military hospital of Constantine Algeria. The data were collected and analyzed by the biomedical statistics software Epi-info and Microsoft Excel, then compared with other related studies. Results: This study involved over a period of two years, 150 male patients with an average age of 32 years (20-64). Most patients (95,33%) were ASA I class, and 4,67% ASA II class. All patients received saddle blocks. The average length of stay of patients was six hours. The quality indicators in outpatient surgery in our study were: zero (0)% of deprogrammings, three (3)% of conversions to full hospitalization, 0,7% of readmissions, an average waiting time before access to the operating room of 83 minutes without delay of discharge, a satisfaction rate of 90,8% and a reduction in the cost compared to conventional inpatient surgery in proportions ranging from – 32,6% and – 48,75%. Conclusions: The outpatient management of proctological surgery under saddle block is very beneficial in terms of safety, efficiency, simplicity, and economy. Our results are in line with those of the literature and our work deserves to be continued to include many patients.

Keywords: outpatient surgery, proctological surgery, saddle block, satisfaction, cost

Procedia PDF Downloads 23
1672 The Impact of Liquid Glass-Infused Lignin Waste Particles on Performance of Polyurethane Foam for Building Industry

Authors: Agnė Kairyte, Saulius Vaitkus

Abstract:

The gradual depletion of fossil feedstock and growing environmental concerns attracted extensive attention to natural resources due to their low cost, high abundance, renewability, sustainability, and biodegradability. Lignin is a significant by-product of the pulp and paper industry, having unique functional groups. Recently it became interesting for the manufacturing of high value-added products such as polyurethane and polyisocyanurate foams. This study focuses on the development of high-performance polyurethane foams with various amounts of lignin as a filler. It is determined that the incorporation of lignin as a filler material results in brittle and hard products due to the low molecular mobility of isocyanates and the inherent stiffness of lignin. Therefore, the current study analyses new techniques and possibilities of liquid glass infusion onto the surface of lignin particles to reduce the negative aspects and improve the performance characteristics of the modified foams. The foams modified with sole lignin and liquid glass-infused lignin had an apparent density ranging from 35 kg/m3 to 45 kg/m3 and closed-cell content (80–90%). The incorporation of sole lignin reduced the compressive and tensile strengths and increased dimensional stability and water absorption, while the contrary results were observed for polyurethane foams with liquid glass-infused lignin particles. The effect on rheological parameters of lignin and liquid glass infused lignin modified polyurethane premixes and morphology of polyurethane foam products were monitored to optimize the conditions and reveal the significant influence of the interaction between particles and polymer matrix.

Keywords: filler, lignin waste, liquid glass, polymer matrix, polyurethane foam, sustainability

Procedia PDF Downloads 214
1671 Numerical Simulation of Footing on Reinforced Loose Sand

Authors: M. L. Burnwal, P. Raychowdhury

Abstract:

Earthquake leads to adverse effects on buildings resting on soft soils. Mitigating the response of shallow foundations on soft soil with different methods reduces settlement and provides foundation stability. Few methods such as the rocking foundation (used in Performance-based design), deep foundation, prefabricated drain, grouting, and Vibro-compaction are used to control the pore pressure and enhance the strength of the loose soils. One of the problems with these methods is that the settlement is uncontrollable, leading to differential settlement of the footings, further leading to the collapse of buildings. The present study investigates the utility of geosynthetics as a potential improvement of the subsoil to reduce the earthquake-induced settlement of structures. A steel moment-resisting frame building resting on loose liquefiable dry soil, subjected to Uttarkashi 1991 and Chamba 1995 earthquakes, is used for the soil-structure interaction (SSI) analysis. The continuum model can simultaneously simulate structure, soil, interfaces, and geogrids in the OpenSees framework. Soil is modeled with PressureDependentMultiYield (PDMY) material models with Quad element that provides stress-strain at gauss points and is calibrated to predict the behavior of Ganga sand. The model analyzed with a tied degree of freedom contact reveals that the system responses align with the shake table experimental results. An attempt is made to study the responses of footing structure and geosynthetics with unreinforced and reinforced bases with varying parameters. The result shows that geogrid reinforces shallow foundation effectively reduces the settlement by 60%.

Keywords: settlement, shallow foundation, SSI, continuum FEM

Procedia PDF Downloads 194
1670 Development of Nanoparticulate Based Chimeric Drug Delivery System Using Drug Bioconjugated Plant Virus Capsid on Biocompatible Nanoparticles

Authors: Indu Barwal, Shloka Thakur, Subhash C. Yadav

Abstract:

The plant virus capsid protein based nanoparticles are extensively studied for their application in biomedical research for development of nanomedicines and drug delivery systems. We have developed a chimeric drug delivery system by controlled in vitro assembly of separately bioconjugated fluorescent dye (as reporting molecule), folic acid (as receptor binding biomolecule for targeted delivery) and doxorubicin (as anticancer drug) using modified EDC NHS chemistry on heterologously overexpressed (E. coli) capsid proteins of cowpea chlorotic mottle virus (CCMV). This chimeric vehicle was further encapsidated on gold nanoparticles (20nm) coated with 5≠ thiolated DNA probe to neutralize the positive charge of capsid proteins. This facilitates the in vitro assembly of modified capsid subunits on the gold nanoparticles to develop chimeric GNPs encapsidated targeted drug delivery system. The bioconjugation of functionalities, number of functionality on capsid subunits as well as virus like nanoparticles, structural stability and in vitro assembly were confirmed by SDS PAGE, relative absorbance, MALDI TOF, ESI-MS, Circular dichroism, intrinsic tryptophan fluorescence, zeta particle size analyzer and TEM imaging. This vehicle was stable at pH 4.0 to 8.0 suitable for many organelles targeting. This in vitro assembled chimeric plant virus like particles could be suitable for ideal drug delivery vehicles for subcutaneous cancer treatment and could be further modified for other type of cancer treatment by conjugating other functionalities (targeting, drug) on capsids.

Keywords: chimeric drug delivery vehicles, bioconjugated plant, virus, capsid

Procedia PDF Downloads 494
1669 English Learning Motivation in Communicative Competence

Authors: Sebastianus Menggo

Abstract:

The aim of communicative language teaching is to enable learners to communicate in the target language. Each learner is required to perform the micro and macro components in each utterance produced. Utterances produced must be in line with the understanding of competence and performance of each speaker. These are inter-depended. Competence and performance are obliged to be appeared proportionally in creating the utterances. The representative of competence and performance reflects the linguistics identity of a speaker in providing sentences in each certain language community. Each lexicon spoken may lead that interlocutor in comprehending the intentions utterances given. However proportional performance of both components in an utterance needed to be further elaborated. Finding appropriate gap between competence and performance components in a communicative competence must be supported positive response given by the learners.The learners’ inability to keep communicative competence proportionally is caused by inside and outside factors. The inside factors are certain lacks such as lack of self-confidence and lack of motivation which could make students feel ashamed to produce utterances, scared to make mistakes, and have no enough confidence. Knowing learner’s English learning motivation is an urgent variable to be considered in creating conducive atmosphere classroom which will raise the learners to do more toward the achievement of communicative competence. Meanwhile, the outside factor is related with the teacher. The teacher should be able to recognize the students’ problem in creating conducive atmosphere in the classroom that will raise the students’ ability to be an English speaker qualified. Moreover, the aim of this research is to know and describe the English learning motivation affecting students’ communicative competence of 48 students of XI grade of science program at catholic senior of Saint Ignasius Loyola Labuan Bajo, West Flores, Indonesia. Correlation design with purposive procedure applied in this research. Data were collected through questionnaire, interview, and students’ speaking achievement document. Result shows the description of motivation significantly affecting students’ communicative competence.

Keywords: communicative, competence, English, learning, motivation

Procedia PDF Downloads 200
1668 Modified Silicates as Dissolved Oxygen Sensors in Water: Structural and Optical Properties

Authors: Andile Mkhohlakali, Tien-Chien Jen, James Tshilongo, Happy Mabowa

Abstract:

Among different parameters, oxygen is one of the most important analytes of interest, dissolved oxygen (DO) concentration is very crucial and significant for various areas of physical, chemical, and environmental monitoring. Herein we report oxygen-sensitive luminophores -based lanthanum(III) trifluoromethanesulfonate), [La]³⁺ was encapsulated into SiO₂-based xerogel matrix. The nanosensor is composed of organically modified silica nanoparticles, doped with the luminescent oxygen–sensitive lanthanum(III) trifluoromethanesulfonate complex. The precursor materials used for sensing film were triethyl ethoxy silane (TEOS) and (3-Mercaptopropyltriethoxysilane) (MPTMS- TEOS) used for SiO2-baed matrices. Brunauer–Emmett–Teller (BET), and BJH indicate that the SiO₂ transformed from microporous to mesoporous upon the addition of La³⁺ luminophore with increased surface area (SBET). The typical amorphous SiO₂ based xerogels were revealed with X-Ray diffraction (XRD) and Selected Area Electron Diffraction (SAED) analysis. Scanning electron microscope- (SEM) and transmission electron microscope (TEM) showed the porous morphology and reduced particle for SiO₂ and La-SiO₂ xerogels respectively. The existence of elements, siloxane networks, and thermal stability of xerogel was confirmed by energy dispersive spectroscopy (EDS), Fourier-transform infrared spectroscopy (FTIR), and Thermographic analysis (TGA). UV-Vis spectroscopy and photoluminescence (PL) have been used to characterize the optical properties of xerogels. La-SiO₂ demonstrates promising characteristic features of an active sensing film for dissolved oxygen in the water. Keywords: Sol-gel, ORMOSILs, encapsulation, Luminophores quenching, O₂-sensing

Keywords: sol-gel, ORMOSILs, luminophores quenching, O₂-sensing

Procedia PDF Downloads 124
1667 Lamb Waves Wireless Communication in Healthy Plates Using Coherent Demodulation

Authors: Rudy Bahouth, Farouk Benmeddour, Emmanuel Moulin, Jamal Assaad

Abstract:

Guided ultrasonic waves are used in Non-Destructive Testing (NDT) and Structural Health Monitoring (SHM) for inspection and damage detection. Recently, wireless data transmission using ultrasonic waves in solid metallic channels has gained popularity in some industrial applications such as nuclear, aerospace and smart vehicles. The idea is to find a good substitute for electromagnetic waves since they are highly attenuated near metallic components due to Faraday shielding. The proposed solution is to use ultrasonic guided waves such as Lamb waves as an information carrier due to their capability of propagation for long distances. In addition to this, valuable information about the health of the structure could be extracted simultaneously. In this work, the reliable frequency bandwidth for communication is extracted experimentally from dispersion curves at first. Then, an experimental platform for wireless communication using Lamb waves is described and built. After this, coherent demodulation algorithm used in telecommunications is tested for Amplitude Shift Keying, On-Off Keying and Binary Phase Shift Keying modulation techniques. Signal processing parameters such as threshold choice, number of cycles per bit and Bit Rate are optimized. Experimental results are compared based on the average Bit Error Rate. Results have shown high sensitivity to threshold selection for Amplitude Shift Keying and On-Off Keying techniques resulting a Bit Rate decrease. Binary Phase Shift Keying technique shows the highest stability and data rate between all tested modulation techniques.

Keywords: lamb waves communication, wireless communication, coherent demodulation, bit error rate

Procedia PDF Downloads 263
1666 Antibacterial Activity of Endophytic Bacteria against Multidrug-Resistant Bacteria: Isolation, Characterization, and Antibacterial Activity

Authors: Maryam Beiranvand, Sajad Yaghoubi

Abstract:

Background: Some microbes can colonize plants’ inner tissues without causing obvious damage and can even produce useful bioactive substances. In the present study, the diversity of the endophytic bacteria associated with medicinal plants from Iran was investigated by culturing techniques, molecular gene identification, as well as measuring them for antibacterial activity. Results: In the spring season from 2013 to 2014, 35 herb pharmacology samples were collected, sterilized, meshed, and then cultured on selective media culture. A total of 199 endophytic bacteria were successfully isolated from 35 tissue cultures of medical plants, and sixty-seven out of 199 bacterial isolates were subjected to identification by the 16S rRNA gene sequence analysis method. Based on the sequence similarity gene and phylogenetic analyses, these isolates were grouped into five classes, fourteen orders, seventeen families, twenty-one genera, and forty strains. The most abundant group of endophytic bacteria was actinobacterial, consisting of thirty-two (47%) out of 67 bacterial isolates. Ten (22.3%) out of 67 bacterial isolates remained unidentified and classified at the genus level. The signature of the 16S rRNA gene formed a distinct line in a phylogenetic tree showing that they might be new species of bacteria. One (5.2%) out of 67 bacterial isolates was still not well categorized. Forty-two out of 67 strains were candidates for antimicrobial activity tests. Nineteen (45%) out of 42 strains showed antimicrobial activity multidrug resistance (MDR); thirteen (68%) out of 19 strains were allocated to classes actinobacteria. Four (21%) out of 19 strains belonged to the Bacillaceae family, one (5.2%) out of 19 strains was the Paenibacillaceae family, and one (5.2%) out of 19 strains belonged to the Pseudomonadaceae family. The other twenty-three strains did not show inhibitory activities. Conclusions: Our research showed a high-level phylogenetic diversity and the intoxicating antibiotic activity of endophytic bacteria in the herb pharmacology of Iran.

Keywords: Antibacterial activity, endophytic bacteria, multidrug-resistant bacteria, whole genom sequencing

Procedia PDF Downloads 86
1665 Perspective for the Creation of Molecular Imprinted Polymers from Coal Waste

Authors: Alma Khasenovna Zhakina, Arnt Oxana Vasilievna, Vasilets Evgeny Petrovich

Abstract:

The aim of this project is to develop methods for obtaining new molecularly imprinted polymers from coal waste to study their structure, structural and morphological features and properties. Recently, the development of molecularly imprinted polymers has become one of the hot topics for researchers. Modern research indicates the broad prospects of rapidly developing molecular imprinting technologies for creating a new generation of sorption materials. The attractiveness of this area of research lies in the fact that the use of imprinted polymers is not limited to scientific research; they are already being introduced in the chemical, pharmaceutical and biotechnological industries, primarily at the stages of purification of the final product. For the use of molecularly imprinted polymers in the development of sorption material, their ability to selectively remove pollutants, including trace concentrations, is of fundamental importance, and the exceptional stability of polymeric materials under harsh conditions makes it possible to simplify the process of water purification as a whole. The scientific and technical effect is associated with the development of technologies for the production of new molecularly imprinted polymers, the establishment of optimal conditions for their production and the creation of effective imprinted sorbents on their basis for wastewater treatment from heavy metals. The social effect is due to the fact that the use of coal waste as a feedstock for the production of imprinted sorbents will make it possible in the future to create new industries with additional jobs and obtain competitive multi-purpose products. The economic and multiplier effect is associated with the low cost of the final product due to the involvement of local coal waste in the production, reduction of transport, customs and other costs.

Keywords: imprinted polymers, coal waste, polymerization, template, customized sorbents

Procedia PDF Downloads 67
1664 Assessing P0.1 and Occlusion Pressures in Brain-Injured Patients on Pressure Support Ventilation: A Study Protocol

Authors: S. B. R. Slagmulder

Abstract:

Monitoring inspiratory effort and dynamic lung stress in patients on pressure support ventilation in the ICU is important for protecting against self inflicted lung injury (P-SILI) and diaphragm dysfunction. Strategies to address the detrimental effects of respiratory drive and effort can lead to improved patient outcomes. Two non-invasive estimation methods, occlusion pressure (Pocc) and P0.1, have been proposed for achieving lung and diaphragm protective ventilation. However, their relationship and interpretation in neuro ICU patients is not well understood. P0.1 is the airway pressure measured during a 100-millisecond occlusion of the inspiratory port. It reflects the neural drive from the respiratory centers to the diaphragm and respiratory muscles, indicating the patient's respiratory drive during the initiation of each breath. Occlusion pressure, measured during a brief inspiratory pause against a closed airway, provides information about the inspiratory muscles' strength and the system's total resistance and compliance. Research Objective: Understanding the relationship between Pocc and P0.1 in brain-injured patients can provide insights into the interpretation of these values in pressure support ventilation. This knowledge can contribute to determining extubation readiness and optimizing ventilation strategies to improve patient outcomes. The central goal is to asses a study protocol for determining the relationship between Pocc and P0.1 in brain-injured patients on pressure support ventilation and their ability to predict successful extubation. Additionally, comparing these values between brain-damaged and non-brain-damaged patients may provide valuable insights. Key Areas of Inquiry: 1. How do Pocc and P0.1 values correlate within brain injury patients undergoing pressure support ventilation? 2. To what extent can Pocc and P0.1 values serve as predictive indicators for successful extubation in patients with brain injuries? 3. What differentiates the Pocc and P0.1 values between patients with brain injuries and those without? Methodology: P0.1 and occlusion pressures are standard measurements for pressure support ventilation patients, taken by attending doctors as per protocol. We utilize electronic patient records for existing data. Unpaired T-test will be conducted to compare P0.1 and Pocc values between both study groups. Associations between P0.1 and Pocc and other study variables, such as extubation, will be explored with simple regression and correlation analysis. Depending on how the data evolve, subgroup analysis will be performed for patients with and without extubation failure. Results: While it is anticipated that neuro patients may exhibit high respiratory drive, the linkage between such elevation, quantified by P0.1, and successful extubation remains unknown The analysis will focus on determining the ability of these values to predict successful extubation and their potential impact on ventilation strategies. Conclusion: Further research is pending to fully understand the potential of these indices and their impact on mechanical ventilation in different patient populations and clinical scenarios. Understanding these relationships can aid in determining extubation readiness and tailoring ventilation strategies to improve patient outcomes in this specific patient population. Additionally, it is vital to account for the influence of sedatives, neurological scores, and BMI on respiratory drive and occlusion pressures to ensure a comprehensive analysis.

Keywords: brain damage, diaphragm dysfunction, occlusion pressure, p0.1, respiratory drive

Procedia PDF Downloads 68
1663 The Sublimation Of Personal Drama Into Mythological Tale: ‘‘The Search Of Golden Fleece’’ By Alexander Mcqueen, Givenchy

Authors: Ani Hambardzumyan

Abstract:

The influence of Greek culture and Greek mythology on the fashion industry is enormous. The first reason behind this is that Greek culture is one of the core elements to form the clothing tradition in Europe. French fashion houses have always been considered one of the leading cloth representatives in the world. As we could perceive in the first chapter, they are among the first ones to get inspired from Greek cultural heritage and apply it while creating their garments. The French fashion industry has kept traditional classical elements in clothes for decades. However, from the second half of the 20th century, this idea started to alter step by step. Society was transforming its vision with the influence of avant-garde movements. Hence, the fashion industry needed to transform its conception as well. However, it should be mentioned that fashion brands never stopped looking at the past when creating a new perspective or vision. Paradoxically, Greek mythology and clothing tradition continued to be applied even in the search of new ideas or new interpretations. In 1997 Alexander McQueen presents his first Haute Couture collection for French fashion house Givenchy, inspired by Greek mythology and titled ‘‘Search for The Golden Fleece.’’ Perhaps, this was one of the most controversial Haute Couture shows that French audience could expect to see and French media could capture and write about. The paper discuss Spring/Summer 1997 collection ‘‘The Search of Golden Fleece’’ by Alexander McQueen. It should be mentioned that there has not been yet conducted researches to analyze the mythological and archetypal nature of the collection, as well as general observations that go beyond traditional historical reviews are few in number. Here we will observe designer’s transformative new approach regarding Greek heritage and the media’s perception of it while collection was presented. On top of that, we will observe Alexander McQueen life in the parallel line with the fashion show since the collection is nothing else but the sublimation of his personal journey and drama.

Keywords: mythology, mcqueen, the argonaut, french fashion, golden fleece, givenchy

Procedia PDF Downloads 118
1662 Ultrasound Disintegration as a Potential Method for the Pre-Treatment of Virginia Fanpetals (Sida hermaphrodita) Biomass before Methane Fermentation Process

Authors: Marcin Dębowski, Marcin Zieliński, Mirosław Krzemieniewski

Abstract:

As methane fermentation is a complex series of successive biochemical transformations, its subsequent stages are determined, to a various extent, by physical and chemical factors. A specific state of equilibrium is being settled in the functioning fermentation system between environmental conditions and the rate of biochemical reactions and products of successive transformations. In the case of physical factors that influence the effectiveness of methane fermentation transformations, the key significance is ascribed to temperature and intensity of biomass agitation. Among the chemical factors, significant are pH value, type, and availability of the culture medium (to put it simply: the C/N ratio) as well as the presence of toxic substances. One of the important elements which influence the effectiveness of methane fermentation is the pre-treatment of organic substrates and the mode in which the organic matter is made available to anaerobes. Out of all known and described methods for organic substrate pre-treatment before methane fermentation process, the ultrasound disintegration is one of the most interesting technologies. Investigations undertaken on the ultrasound field and the use of installations operating on the existing systems result principally from very wide and universal technological possibilities offered by the sonication process. This physical factor may induce deep physicochemical changes in ultrasonicated substrates that are highly beneficial from the viewpoint of methane fermentation processes. In this case, special role is ascribed to disintegration of biomass that is further subjected to methane fermentation. Once cell walls are damaged, cytoplasm and cellular enzymes are released. The released substances – either in dissolved or colloidal form – are immediately available to anaerobic bacteria for biodegradation. To ensure the maximal release of organic matter from dead biomass cells, disintegration processes are aimed to achieve particle size below 50 μm. It has been demonstrated in many research works and in systems operating in the technical scale that immediately after substrate supersonication the content of organic matter (characterized by COD, BOD5 and TOC indices) was increasing in the dissolved phase of sedimentation water. This phenomenon points to the immediate sonolysis of solid substances contained in the biomass and to the release of cell material, and consequently to the intensification of the hydrolytic phase of fermentation. It results in a significant reduction of fermentation time and increased effectiveness of production of gaseous metabolites of anaerobic bacteria. Because disintegration of Virginia fanpetals biomass via ultrasounds applied in order to intensify its conversion is a novel technique, it is often underestimated by exploiters of agri-biogas works. It has, however, many advantages that have a direct impact on its technological and economical superiority over thus far applied methods of biomass conversion. As for now, ultrasound disintegrators for biomass conversion are not produced on the mass-scale, but by specialized groups in scientific or R&D centers. Therefore, their quality and effectiveness are to a large extent determined by their manufacturers’ knowledge and skills in the fields of acoustics and electronic engineering.

Keywords: ultrasound disintegration, biomass, methane fermentation, biogas, Virginia fanpetals

Procedia PDF Downloads 369