Search results for: feed forward neural network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7177

Search results for: feed forward neural network

1117 Manipulation of Ideological Items in the Audiovisual Translation of Voiced-Over Documentaries in the Arab World

Authors: S. Chabbak

Abstract:

In a widely globalized world, the influence of audiovisual translation on the culture and identity of audiences is unmistakable. However, in the Arab World, there is a noticeable disproportion between this growing influence and the research carried out in the field. As a matter of fact, the voiced-over documentary is one of the most abundantly translated genres in the Arab World that carries lots of ideological elements which are in many cases rendered by manipulation. However, voiced-over documentaries have hardly received any focused attention from researchers in the Arab World. This paper attempts to scrutinize the process of translation of voiced-over documentaries in the Arab World, from French into Arabic in the present case study, by sub-categorizing the ideological items subject to manipulation, identifying the techniques utilized in their translation and exploring the potential extra-linguistic factors that prompt translation agents to opt for manipulative translation. The investigation is based on a corpus of 94 episodes taken from a series entitled 360° GEO Reports, produced by the French German network ARTE in French, and acquired, translated and aired by Al Jazeera Documentary Channel for Arab audiences. The results yielded 124 cases of manipulation in four sub-categories of ideological items, and the use of 10 different oblique procedures in the process of manipulative translation. The study also revealed that manipulation is in most of the instances dictated by the editorial line of the broadcasting channel, in addition to the religious, geopolitical and socio-cultural peculiarities of the target culture.

Keywords: audiovisual translation, ideological items, manipulation, voiced-over documentaries

Procedia PDF Downloads 197
1116 Severity Index Level in Effectively Managing Medium Voltage Underground Power Cable

Authors: Mohd Azraei Pangah Pa'at, Mohd Ruzlin Mohd Mokhtar, Norhidayu Rameli, Tashia Marie Anthony, Huzainie Shafi Abd Halim

Abstract:

Partial Discharge (PD) diagnostic mapping testing is one of the main diagnostic testing techniques that are widely used in the field or onsite testing for underground power cable in medium voltage level. The existence of PD activities is an early indication of insulation weakness hence early detection of PD activities can be determined and provides an initial prediction on the condition of the cable. To effectively manage the results of PD Mapping test, it is important to have acceptable criteria to facilitate prioritization of mitigation action. Tenaga Nasional Berhad (TNB) through Distribution Network (DN) division have developed PD severity model name Severity Index (SI) for offline PD mapping test since 2007 based on onsite test experience. However, this severity index recommendation action had never been revised since its establishment. At presence, PD measurements data have been extensively increased, hence the severity level indication and the effectiveness of the recommendation actions can be analyzed and verified again. Based on the new revision, the recommended action to be taken will be able to reflect the actual defect condition. Hence, will be accurately prioritizing preventive action plan and minimizing maintenance expenditure.

Keywords: partial discharge, severity index, diagnostic testing, medium voltage, power cable

Procedia PDF Downloads 161
1115 An Internet of Things Smart Washroom Framework

Authors: Robin Ratnasingham, Maher Elshakankiri

Abstract:

This research report will look at how to make a smart washroom to increase public hygiene and cleanliness. The system would use IoT devices to pick up various activities in the washroom and notify the appropriate stakeholders or devices to regulate the condition of the washroom. As more people are required to physically go back to the office or school, ensuring a clean and sanitized washroom is even more important now than before. It would help prevent virus outbreaks and safeguard the organization from shutdowns or slowdowns in their business. A framework of the suggested smart washroom was introduced to help reduce the chances of a virus outbreak. Most organizations outsource renovation or implementation to an external party. Using the smart washroom framework, we looked at vendors that provide smart washroom solutions. There are IoT vendors that cannot match the framework, and there are vendors that can support the framework design. This segment is a niche market, and most of the devices are similar in their basic functions. However, all the vendors have unique characteristics to give them a competitive advantage over the rest of the IoT washroom companies. Ultimately, the organization would need to decide if they want to add IoT devices to enable smart capability or renovate the washroom to create a fluid IoT smart washroom design. The report would introduce an IoT smart washroom framework to help organizations design a cohesive preventive measure network for the daily maintenance routine. The framework is designed to help understand how to manage washroom cleanliness more efficiently and to provide guidance in achieving this goal. The leading result is eliminating potential viral outbreaks that could jeopardize the organization.

Keywords: IoT, smart washroom, public hygiene, cleanliness, virus outbreaks, safeguard

Procedia PDF Downloads 75
1114 Neurocognitive and Executive Function in Cocaine Addicted Females

Authors: Gwendolyn Royal-Smith

Abstract:

Cocaine ranks as one of the world’s most addictive and commonly abused stimulant drugs. Recent evidence indicates that the abuse of cocaine has risen so quickly among females that this group now accounts for about 40 percent of all users in the United States. Neuropsychological studies have demonstrated that specific neural activation patterns carry higher risks for neurocognitive and executive function in cocaine addicted females thereby increasing their vulnerability for poorer treatment outcomes and more frequent post-treatment relapse when compared to males. This study examined secondary data with a convenience sample of 164 cocaine addicted male and females to assess neurocognitive and executive function. The principal objective of this study was to assess whether individual performance on the Stroop Word Color Task is predictive of treatment success by gender. A second objective of the study evaluated whether individual performance employing neurocognitive measures including the Stroop Word-Color task, the Rey Auditory Verbal Learning Test (RALVT), the Iowa Gambling Task, the Wisconsin Card Sorting Task (WISCT), the total score from the Barratte Impulsiveness Scale (Version 11) (BIS-11) and the total score from the Frontal Systems Behavioral Scale (FrSBE) test demonstrated differences in neurocognitive and executive function performance by gender. Logistic regression models were employed utilizing a covariate adjusted model application. Initial analyses of the Stroop Word color tasks indicated significant differences in the performance of males and females, with females experiencing more challenges in derived interference reaction time and associate recall ability. In early testing including the Rey Auditory Verbal Learning Test (RALVT), the number of advantageous vs disadvantageous cards from the Iowa Gambling Task, the number of perseverance errors from the Wisconsin Card Sorting Task (WISCT), the total score from the Barratte Impulsiveness Scale (Version 11) (BIS-11) and the total score from the Frontal Systems Behavioral Scale, results were mixed with women scoring lower in multiple indicators in both neurocognitive and executive function.

Keywords: cocaine addiction, gender, neuropsychology, neurocognitive, executive function

Procedia PDF Downloads 382
1113 Adapting an Accurate Reverse-time Migration Method to USCT Imaging

Authors: Brayden Mi

Abstract:

Reverse time migration has been widely used in the Petroleum exploration industry to reveal subsurface images and to detect rock and fluid properties since the early 1980s. The seismic technology involves the construction of a velocity model through interpretive model construction, seismic tomography, or full waveform inversion, and the application of the reverse-time propagation of acquired seismic data and the original wavelet used in the acquisition. The methodology has matured from 2D, simple media to present-day to handle full 3D imaging challenges in extremely complex geological conditions. Conventional Ultrasound computed tomography (USCT) utilize travel-time-inversion to reconstruct the velocity structure of an organ. With the velocity structure, USCT data can be migrated with the “bend-ray” method, also known as migration. Its seismic application counterpart is called Kirchhoff depth migration, in which the source of reflective energy is traced by ray-tracing and summed to produce a subsurface image. It is well known that ray-tracing-based migration has severe limitations in strongly heterogeneous media and irregular acquisition geometries. Reverse time migration (RTM), on the other hand, fully accounts for the wave phenomena, including multiple arrives and turning rays due to complex velocity structure. It has the capability to fully reconstruct the image detectable in its acquisition aperture. The RTM algorithms typically require a rather accurate velocity model and demand high computing powers, and may not be applicable to real-time imaging as normally required in day-to-day medical operations. However, with the improvement of computing technology, such a computational bottleneck may not present a challenge in the near future. The present-day (RTM) algorithms are typically implemented from a flat datum for the seismic industry. It can be modified to accommodate any acquisition geometry and aperture, as long as sufficient illumination is provided. Such flexibility of RTM can be conveniently implemented for the application in USCT imaging if the spatial coordinates of the transmitters and receivers are known and enough data is collected to provide full illumination. This paper proposes an implementation of a full 3D RTM algorithm for USCT imaging to produce an accurate 3D acoustic image based on the Phase-shift-plus-interpolation (PSPI) method for wavefield extrapolation. In this method, each acquired data set (shot) is propagated back in time, and a known ultrasound wavelet is propagated forward in time, with PSPI wavefield extrapolation and a piece-wise constant velocity model of the organ (breast). The imaging condition is then applied to produce a partial image. Although each image is subject to the limitation of its own illumination aperture, the stack of multiple partial images will produce a full image of the organ, with a much-reduced noise level if compared with individual partial images.

Keywords: illumination, reverse time migration (RTM), ultrasound computed tomography (USCT), wavefield extrapolation

Procedia PDF Downloads 57
1112 A Hybrid Traffic Model for Smoothing Traffic Near Merges

Authors: Shiri Elisheva Decktor, Sharon Hornstein

Abstract:

Highway merges and unmarked junctions are key components in any urban road network, which can act as bottlenecks and create traffic disruption. Inefficient highway merges may trigger traffic instabilities such as stop-and-go waves, pose safety conditions and lead to longer journey times. These phenomena occur spontaneously if the average vehicle density exceeds a certain critical value. This study focuses on modeling the traffic using a microscopic traffic flow model. A hybrid traffic model, which combines human-driven and controlled vehicles is assumed. The controlled vehicles obey different driving policies when approaching the merge, or in the vicinity of other vehicles. We developed a co-simulation model in SUMO (Simulation of Urban Mobility), in which the human-driven cars are modeled using the IDM model, and the controlled cars are modeled using a dedicated controller. The scenario chosen for this study is a closed track with one merge and one exit, which could be later implemented using a scaled infrastructure on our lab setup. This will enable us to benchmark the results of this study obtained in simulation, to comparable results in similar conditions in the lab. The metrics chosen for the comparison of the performance of our algorithm on the overall traffic conditions include the average speed, wait time near the merge, and throughput after the merge, measured under different travel demand conditions (low, medium, and heavy traffic).

Keywords: highway merges, traffic modeling, SUMO, driving policy

Procedia PDF Downloads 89
1111 The Importance of Downstream Supply Chain in Supply Chain Risk Management: Multi-Objective Optimization

Authors: Zohreh Khojasteh-Ghamari, Takashi Irohara

Abstract:

One of the efficient ways in supply chain risk management is avoiding the interruption in Supply Chain (SC) before it occurs. Although the majority of the organizations focus on their first-tier suppliers to avoid risk in the SC, studies show that in only 60 percent of the disruption cases the reason is first tier suppliers. In the 40 percent of the SC disruptions, the reason is downstream SC, which is the second tier and lower. Due to the increasing complexity and interrelation of modern supply chains, the SC elements have become difficult to trace. Moreover, studies show that there is a vital need to better understand the integration of risk and visibility, especially in the context of multiple objectives. In this study, we propose a multi-objective programming model to avoid disruption in SC. The objective of this study is evaluating the effect of downstream SCV on managing supply chain risk. We propose a multi-objective mathematical programming model with the objective functions of minimizing the total cost and maximizing the downstream supply chain visibility (SCV). The decision variable is supplier selection. We assume there are several manufacturers and several candidate suppliers. For each manufacturer, our model proposes the best suppliers with the lowest cost and maximum visibility in downstream supply chain. We examine the applicability of the model by numerical examples. We also define several scenarios for datasets and observe the tendency. The results show that minimum visibility in downstream SC is needed to have a safe SC network.

Keywords: downstream supply chain, optimization, supply chain risk, supply chain visibility

Procedia PDF Downloads 233
1110 Timing and Probability of Presurgical Teledermatology: Survival Analysis

Authors: Felipa de Mello-Sampayo

Abstract:

The aim of this study is to undertake, from patient’s perspective, the timing and probability of using teledermatology, comparing it with a conventional referral system. The dynamic stochastic model’s main value-added consists of the concrete application to patients waiting for dermatology surgical intervention. Patients with low health level uncertainty must use teledermatology treatment as soon as possible, which is precisely when the teledermatology is least valuable. The results of the model were then tested empirically with the teledermatology network covering the area served by the Hospital Garcia da Horta, Portugal, links the primary care centers of 24 health districts with the hospital’s dermatology department via the corporate intranet of the Portuguese healthcare system. Health level volatility can be understood as the hazard of developing skin cancer and the trend of health level as the bias of developing skin lesions. The results of the survival analysis suggest that the theoretical model can explain the use of teledermatology. It depends negatively on the volatility of patients' health, and positively on the trend of health, i.e., the lower the risk of developing skin cancer and the younger the patients, the more presurgical teledermatology one expects to occur. Presurgical teledermatology also depends positively on out-of-pocket expenses and negatively on the opportunity costs of teledermatology, i.e., the lower the benefit missed by using teledermatology, the more presurgical teledermatology one expects to occur.

Keywords: teledermatology, wait time, uncertainty, opportunity cost, survival analysis

Procedia PDF Downloads 105
1109 Distributed Coordination of Connected and Automated Vehicles at Multiple Interconnected Intersections

Authors: Zhiyuan Du, Baisravan Hom Chaudhuri, Pierluigi Pisu

Abstract:

In connected vehicle systems where wireless communication is available among the involved vehicles and intersection controllers, it is possible to design an intersection coordination strategy that leads the connected and automated vehicles (CAVs) travel through the road intersections without the conventional traffic light control. In this paper, we present a distributed coordination strategy for the CAVs at multiple interconnected intersections that aims at improving system fuel efficiency and system mobility. We present a distributed control solution where in the higher level, the intersection controllers calculate the road desired average velocity and optimally assign reference velocities of each vehicle. In the lower level, every vehicle is considered to use model predictive control (MPC) to track their reference velocity obtained from the higher level controller. The proposed method has been implemented on a simulation-based case with two-interconnected intersection network. Additionally, the effects of mixed vehicle types on the coordination strategy has been explored. Simulation results indicate the improvement on vehicle fuel efficiency and traffic mobility of the proposed method.

Keywords: connected vehicles, automated vehicles, intersection coordination systems, multiple interconnected intersections, model predictive control

Procedia PDF Downloads 335
1108 Vitamin B9 Separation by Synergic Pertraction

Authors: Blaga Alexandra Cristina, Kloetzer Lenuta, Bompa Amalia Stela, Galaction Anca Irina, Cascaval Dan

Abstract:

Vitamin B9 is an important member of vitamins B group, being a growth factor, important for making genetic material as DNA and RNA, red blood cells, for building muscle tissues, especially during periods of infancy, adolescence and pregnancy. Its production by biosynthesis is based on the high metabolic potential of mutant Bacillus subtilis, due to a superior biodisponibility compared to that obtained by chemical pathways. Pertraction, defined as the extraction and transport through liquid membranes consists in the transfer of a solute between two aqueous phases of different pH-values, phases that are separated by a solvent layer of various sizes. The pertraction efficiency and selectivity could be significantly enhanced by adding a carrier in the liquid membrane, such as organophosphoric compounds, long chain amines or crown-ethers etc., the separation process being called facilitated pertraction. The aim of the work is to determine the impact of the presence of two extractants/carriers in the bulk liquid membrane, i.e. di(2-ethylhexyl) phosphoric acid (D2EHPA) and lauryltrialkylmetilamine (Amberlite LA2) on the transport kinetics of vitamin B9. The experiments have been carried out using two pertraction equipments for a free liquid membrane or bulk liquid membrane. One pertraction cell consists on a U-shaped glass pipe (used for the dichloromethane membrane) and the second one is an H-shaped glass pipe (used for h-heptane), having 45 mm inner diameter of the total volume of 450 mL, the volume of each compartment being of 150 mL. The aqueous solutions are independently mixed by means of double blade stirrers with 6 mm diameter and 3 mm height, having the rotation speed of 500 rpm. In order to reach high diffusional rates through the solvent layer, the organic phase has been mixed with a similar stirrer, at a similar rotation speed (500 rpm). The area of mass transfer surface, both for extraction and for reextraction, was of 1.59x10-³ m2. The study on facilitated pertraction with the mixture of two carriers, namely D2EHPA and Amberlite LA-2, dissolved in two solvents with different polarities: n-heptane and dichloromethane, indicated the possibility to obtain the synergic effect. The synergism has been analyzed by considering the vitamin initial and final mass flows, as well as the permeability factors through liquid membrane. The synergic effect has been observed at low D2EHPA concentrations and high Amberlite LA-2 concentrations, being more important for the low-polar solvent (n-heptane). The results suggest that the mechanism of synergic pertraction consists on the reaction between the organophosphoric carrier and vitamin B9 at the interface between the feed and membrane phases, while the aminic carrier enhances the hydrophobicity of this compound by solvation. However, the formation of this complex reduced the reextraction rate and, consequently, affects the synergism related to the final mass flows and permeability factor. For describing the influences of carriers concentrations on the synergistic coefficients, some equations have been proposed by taking into account the vitamin mass flows or permeability factors, with an average deviations between 4.85% and 10.73%.

Keywords: pertraction, synergism, vitamin B9, Amberlite LA-2, di(2-ethylhexyl) phosphoric acid

Procedia PDF Downloads 260
1107 Negative Environmental Impacts on Marine Seismic Survey Activities

Authors: Katherine Del Carmen Camacho Zorogastua, Victor Hugo Gallo Ramos, Jhon Walter Gomez Lora

Abstract:

Marine hydrocarbon exploration (oil and natural gas) activities are developed using 2D, 3D and 4D seismic prospecting techniques where sound waves are directed from a seismic vessel emitted every few seconds depending on the variety of air compressors, which cross the layers of rock at the bottom of the sea and are reflected to the surface of the water. Hydrophones receive and record the reflected energy signals for cross-sectional mapping of the lithological profile in order to identify possible areas where hydrocarbon deposits can be formed. However, they produce several significant negative environmental impacts on the marine ecosystem and in the social and economic sectors. Therefore, the objective of the research is to publicize the negative impacts and environmental measures that must be carried out during the development of these activities to prevent and mitigate water quality, the population involved (fishermen) and the marine biota (e.g., Cetaceans, fish) that are the most vulnerable. The research contains technical environmental aspects based on bibliographic sources of environmental studies approved by the Peruvian authority, research articles, undergraduate and postgraduate theses, books, guides, and manuals from Spain, Australia, Canada, Brazil, and Mexico. It describes the negative impacts on the environment and population (fishing sector), environmental prevention, mitigation, recovery and compensation measures that must be properly implemented and the cases of global sea species stranding, for which international experiences from Spain, Madagascar, Mexico, Ecuador, Uruguay, and Peru were referenced. Negative impacts on marine fauna, seawater quality, and the socioeconomic sector (fishermen) were identified. Omission or inadequate biological monitoring in mammals could alter their ability to communicate, feed, and displacement resulting in their stranding and death. In fish, they cause deadly damage to physical-physiological type and in their behavior. Inadequate wastewater treatment and waste management could increase the organic load and oily waste on seawater quality in violation of marine flora and fauna. The possible estrangement of marine resources (fish) affects the economic sector as they carry out their fishing activity for consumption or sale. Finally, it is concluded from the experiences gathered from Spain, Madagascar, Mexico, Ecuador, Uruguay, and Peru that there is a cause and effect relationship between the inadequate development of seismic exploration activities (cause) and marine species strandings (effect) since over the years, stranded or dead marine mammals have been detected on the shores of the sea in areas of seismic acquisition of hydrocarbons. In this regard, it is recommended to establish technical procedures, guidelines, and protocols for the monitoring of marine species in order to contribute to the conservation of hydrobiological resources.

Keywords: 3D seismic prospecting, cetaceans, significant environmental impacts, prevention, mitigation, recovery, environmental compensation

Procedia PDF Downloads 165
1106 Intelligent Minimal Allocation of Capacitors in Distribution Networks Using Genetic Algorithm

Authors: S. Neelima, P. S. Subramanyam

Abstract:

A distribution system is an interface between the bulk power system and the consumers. Among these systems, radial distributions system is popular because of low cost and simple design. In distribution systems, the voltages at buses reduces when moved away from the substation, also the losses are high. The reason for a decrease in voltage and high losses is the insufficient amount of reactive power, which can be provided by the shunt capacitors. But the placement of the capacitor with an appropriate size is always a challenge. Thus, the optimal capacitor placement problem is to determine the location and size of capacitors to be placed in distribution networks in an efficient way to reduce the power losses and improve the voltage profile of the system. For this purpose, in this paper, two stage methodologies are used. In the first stage, the load flow of pre-compensated distribution system is carried out using ‘dimension reducing distribution load flow algorithm (DRDLFA)’. On the basis of this load flow the potential locations of compensation are computed. In the second stage, Genetic Algorithm (GA) technique is used to determine the optimal location and size of the capacitors such that the cost of the energy loss and capacitor cost to be a minimum. The above method is tested on IEEE 9 and 34 bus system and compared with other methods in the literature.

Keywords: dimension reducing distribution load flow algorithm, DRDLFA, genetic algorithm, electrical distribution network, optimal capacitors placement, voltage profile improvement, loss reduction

Procedia PDF Downloads 372
1105 Storage Method for Parts from End of Life Vehicles' Dismantling Process According to Sustainable Development Requirements: Polish Case Study

Authors: M. Kosacka, I. Kudelska

Abstract:

Vehicle is one of the most influential and complex product worldwide, which affects people’s life, state of the environment and condition of the economy (all aspects of sustainable development concept) during each stage of lifecycle. With the increase of vehicles’ number, there is growing potential for management of End of Life Vehicle (ELV), which is hazardous waste. From one point of view, the ELV should be managed to ensure risk elimination, but from another point, it should be treated as a source of valuable materials and spare parts. In order to obtain materials and spare parts, there are established recycling networks, which are an example of sustainable policy realization at the national level. The basic object in the polish recycling network is dismantling facility. The output material streams in dismantling stations include waste, which very often generate costs and spare parts, that have the biggest potential for revenues creation. Both outputs are stored into warehouses, according to the law. In accordance to the revenue creation and sustainability potential, it has been placed a strong emphasis on storage process. We present the concept of storage method, which takes into account the specific of the dismantling facility in order to support decision-making process with regard to the principles of sustainable development. The method was developed on the basis of case study of one of the greatest dismantling facility in Poland.

Keywords: dismantling, end of life vehicles, sustainability, storage

Procedia PDF Downloads 254
1104 Power Allocation Algorithm for Orthogonal Frequency Division Multiplexing Based Cognitive Radio Networks

Authors: Bircan Demiral

Abstract:

Cognitive radio (CR) is the promising technology that addresses the spectrum scarcity problem for future wireless communications. Orthogonal Frequency Division Multiplexing (OFDM) technology provides more power band ratios for cognitive radio networks (CRNs). While CR is a solution to the spectrum scarcity, it also brings up the capacity problem. In this paper, a novel power allocation algorithm that aims at maximizing the sum capacity in the OFDM based cognitive radio networks is proposed. Proposed allocation algorithm is based on the previously developed water-filling algorithm. To reduce the computational complexity calculating in water filling algorithm, proposed algorithm allocates the total power according to each subcarrier. The power allocated to the subcarriers increases sum capacity. To see this increase, Matlab program was used, and the proposed power allocation was compared with average power allocation, water filling and general power allocation algorithms. The water filling algorithm performed worse than the proposed algorithm while it performed better than the other two algorithms. The proposed algorithm is better than other algorithms in terms of capacity increase. In addition the effect of the change in the number of subcarriers on capacity was discussed. Simulation results show that the increase in the number of subcarrier increases the capacity.

Keywords: cognitive radio network, OFDM, power allocation, water filling

Procedia PDF Downloads 121
1103 Design and Implementation of Agricultural Machinery Equipment Scheduling Platform Based On Case-Based Reasoning

Authors: Wen Li, Zhengyu Bai, Qi Zhang

Abstract:

The demand for smart scheduling platform in agriculture, particularly in the scheduling process of machinery equipment, is high. With the continuous development of agricultural machinery equipment technology, a large number of agricultural machinery equipment and agricultural machinery cooperative service organizations continue to appear in China. The large area of cultivated land and a large number of agricultural activities in the central and western regions of China have made the demand for smart and efficient agricultural machinery equipment scheduling platforms more intense. In this study, we design and implement a platform for agricultural machinery equipment scheduling to allocate agricultural machinery equipment resources reasonably. With agricultural machinery equipment scheduling platform taken as the research object, we discuss its research significance and value, use the service blueprint technology to analyze and characterize the agricultural machinery equipment schedule workflow, the network analytic method to obtain the demand platform function requirements, and divide the platform functions through the platform function division diagram. Simultaneously, based on the case-based reasoning (CBR) algorithm, the equipment scheduling module of the agricultural machinery equipment scheduling platform is realized; finally, a design scheme of the agricultural machinery equipment scheduling platform architecture is provided, and the visualization interface of the platform is established via VB programming language. It provides design ideas and theoretical support for the construction of a modern agricultural equipment information scheduling platform.

Keywords: case-based reasoning, service blueprint, system design, ANP, VB programming language

Procedia PDF Downloads 156
1102 Comparison of Spiking Neuron Models in Terms of Biological Neuron Behaviours

Authors: Fikret Yalcinkaya, Hamza Unsal

Abstract:

To understand how neurons work, it is required to combine experimental studies on neural science with numerical simulations of neuron models in a computer environment. In this regard, the simplicity and applicability of spiking neuron modeling functions have been of great interest in computational neuron science and numerical neuroscience in recent years. Spiking neuron models can be classified by exhibiting various neuronal behaviors, such as spiking and bursting. These classifications are important for researchers working on theoretical neuroscience. In this paper, three different spiking neuron models; Izhikevich, Adaptive Exponential Integrate Fire (AEIF) and Hindmarsh Rose (HR), which are based on first order differential equations, are discussed and compared. First, the physical meanings, derivatives, and differential equations of each model are provided and simulated in the Matlab environment. Then, by selecting appropriate parameters, the models were visually examined in the Matlab environment and it was aimed to demonstrate which model can simulate well-known biological neuron behaviours such as Tonic Spiking, Tonic Bursting, Mixed Mode Firing, Spike Frequency Adaptation, Resonator and Integrator. As a result, the Izhikevich model has been shown to perform Regular Spiking, Continuous Explosion, Intrinsically Bursting, Thalmo Cortical, Low-Threshold Spiking and Resonator. The Adaptive Exponential Integrate Fire model has been able to produce firing patterns such as Regular Ignition, Adaptive Ignition, Initially Explosive Ignition, Regular Explosive Ignition, Delayed Ignition, Delayed Regular Explosive Ignition, Temporary Ignition and Irregular Ignition. The Hindmarsh Rose model showed three different dynamic neuron behaviours; Spike, Burst and Chaotic. From these results, the Izhikevich cell model may be preferred due to its ability to reflect the true behavior of the nerve cell, the ability to produce different types of spikes, and the suitability for use in larger scale brain models. The most important reason for choosing the Adaptive Exponential Integrate Fire model is that it can create rich ignition patterns with fewer parameters. The chaotic behaviours of the Hindmarsh Rose neuron model, like some chaotic systems, is thought to be used in many scientific and engineering applications such as physics, secure communication and signal processing.

Keywords: Izhikevich, adaptive exponential integrate fire, Hindmarsh Rose, biological neuron behaviours, spiking neuron models

Procedia PDF Downloads 161
1101 Correlation of Residential Community Layout and Neighborhood Relationship: A Morphological Analysis of Tainan Using Space Syntax

Authors: Ping-Hung Chen, Han-Liang Lin

Abstract:

Taiwan has formed diverse settlement patterns in different time and space backgrounds. Various socio-network links are created between individuals, families, communities, and societies, and different living cultures are also derived. But rapid urbanization and social structural change have caused the creation of densely-packed assembly housing complexes and made neighborhood community upward developed. This, among others, seemed to have affected neighborhood relationship and also created social problems. To understand the complex relations and socio-spatial structure of the community, it is important to use mixed methods. This research employs the theory of space syntax to analyze the layout and structural indicators of the selected communities in Tainan city. On the other hand, this research does the survey about residents' interactions and the sense of community by questionnaire of the selected communities. Then the mean values of the syntax measures from each community were correlated with the results of the questionnaire using a Pearson correlation to examine how elements in physical design affect the sense of community and neighborhood relationship. In Taiwan, most urban morphology research methods are qualitative study. This paper tries to use space syntax to find out the correlation between the community layout and the neighborhood relationship. The result of this study could be used in future studies or improve the quality of residential communities in Taiwan.

Keywords: community layout, neighborhood relationship, space syntax, mixed-method

Procedia PDF Downloads 172
1100 Health and Mental Health among College Students: Toward a Better Understanding of the Impact of Sexual Assault, Alcohol Use, and COVID-19

Authors: Noel Busch-Armendariz, Caitlin Sulley

Abstract:

Introduction: This study investigated the development of college experiences, COVID-19 pandemic experiences, alcohol use, and sexual violence. The longitudinal study includes 656 college students living in the same dormitory. Students' alcohol use and social network structure were investigated to better understand the relationship with sexual violence risk. Basic Methodologies: Over two years, students repeated five web-based surveys, including a pre-college survey and surveys during four consecutive semesters. Questions were added in the fourth wave to assess students’ experiences of the COVID-19 pandemic, administered from November-January 2021, including mental and behavioral health. Analyses include the impact of COVID on living arrangements, drinking behaviors, and daily life; experiences of COVID symptoms, testing, and diagnosis, responses to COVID such as social distancing, quarantining, not working, increased health care needs; experience of fear, worry, stigma, emotional well-being, loneliness, and mental health; experiences of financial loss, lack of basic supplies, receiving emotional and financial support, and comparison with academic disengagement. Concluding Statement: Findings and discussion will include strategies to strengthen mental and behavioral health programs and policies.

Keywords: COVID, mental health, substance abuse, college students, sexual misconducts

Procedia PDF Downloads 63
1099 Enhancing Fault Detection in Rotating Machinery Using Wiener-CNN Method

Authors: Mohamad R. Moshtagh, Ahmad Bagheri

Abstract:

Accurate fault detection in rotating machinery is of utmost importance to ensure optimal performance and prevent costly downtime in industrial applications. This study presents a robust fault detection system based on vibration data collected from rotating gears under various operating conditions. The considered scenarios include: (1) both gears being healthy, (2) one healthy gear and one faulty gear, and (3) introducing an imbalanced condition to a healthy gear. Vibration data was acquired using a Hentek 1008 device and stored in a CSV file. Python code implemented in the Spider environment was used for data preprocessing and analysis. Winner features were extracted using the Wiener feature selection method. These features were then employed in multiple machine learning algorithms, including Convolutional Neural Networks (CNN), Multilayer Perceptron (MLP), K-Nearest Neighbors (KNN), and Random Forest, to evaluate their performance in detecting and classifying faults in both the training and validation datasets. The comparative analysis of the methods revealed the superior performance of the Wiener-CNN approach. The Wiener-CNN method achieved a remarkable accuracy of 100% for both the two-class (healthy gear and faulty gear) and three-class (healthy gear, faulty gear, and imbalanced) scenarios in the training and validation datasets. In contrast, the other methods exhibited varying levels of accuracy. The Wiener-MLP method attained 100% accuracy for the two-class training dataset and 100% for the validation dataset. For the three-class scenario, the Wiener-MLP method demonstrated 100% accuracy in the training dataset and 95.3% accuracy in the validation dataset. The Wiener-KNN method yielded 96.3% accuracy for the two-class training dataset and 94.5% for the validation dataset. In the three-class scenario, it achieved 85.3% accuracy in the training dataset and 77.2% in the validation dataset. The Wiener-Random Forest method achieved 100% accuracy for the two-class training dataset and 85% for the validation dataset, while in the three-class training dataset, it attained 100% accuracy and 90.8% accuracy for the validation dataset. The exceptional accuracy demonstrated by the Wiener-CNN method underscores its effectiveness in accurately identifying and classifying fault conditions in rotating machinery. The proposed fault detection system utilizes vibration data analysis and advanced machine learning techniques to improve operational reliability and productivity. By adopting the Wiener-CNN method, industrial systems can benefit from enhanced fault detection capabilities, facilitating proactive maintenance and reducing equipment downtime.

Keywords: fault detection, gearbox, machine learning, wiener method

Procedia PDF Downloads 60
1098 Wildfire Risk and Biodiversity Management: Understanding Perceptions and Preparedness

Authors: Emily Moskwa, Delene Weber, Jacob Arnold, Guy M. Robinson, Douglas K. Bardsley

Abstract:

Management strategies to reduce the risks to human life and property from wildfire are key contemporary concerns, with a growing literature exploring these issues from a social research perspective. Efforts range from narrowly focused examinations, such as comparing the level of community support for vegetation clearance with that of controlled burning, to broader considerations of what constitutes effective fire management policy and education campaigns. However, little analysis is available that integrates the social component of risk mitigation and the influence of educational materials with the biodiversity conservation strategies so often needed in fire-prone ecosystems found on the periphery of urban areas. Indeed many communities living on the fringe of Australian cities face major issues relating to an increased risk of wildfire events and a decline in local biodiversity. Inadequate policy and planning, and a lack of awareness or information, exacerbate this risk. This has brought forward an emerging governance challenge that requires the mitigation of wildfire risk while simultaneously supporting improved conservation practices in these urban-fringe areas. Focusing on the perceptions and experiences of residents of the Lower Eyre Peninsula in South Australia, this study analyses data collected from a series of semi-structured interviews with landholders (n=20) living in rural and urban-fringe areas surrounding the city of Port Lincoln, a city with a growing population and one that has faced a number of very large fires in recent years. In South Australia, new policies have assigned increased responsibility on individual landholders to manage their land and prepare themselves for a wildfire event, potentially to the detriment of the surrounding native vegetation. Our findings indicate the value of gaining a more nuanced understanding of the perceptions and behaviours of landholders living in areas of high fire risk, who often choose to live there in order to be close to the natural environment. Many interviewees demonstrated a high awareness of wildfire risk as a result of their past experience with fire, and the majority considered themselves to be well-prepared in the event of a future fire. Community interactions and educational programs were found to be effective in raising awareness of risk; however, negative trust relationships with government authorities and low exposure to information concerning biodiversity resulted in an overall misunderstanding of the relationship between risk mitigation and biodiversity protection. The study offers insights into how catastrophic fires are reframing perceptions of what constitutes effective vegetation management. It provides recommendations to assist with the development of education strategies that concurrently address wildfire management and biodiversity conservation, and contribute towards environmentally-informed and risk conscious governance.

Keywords: biodiversity conservation, risk, peri-urban planning, wildfire management

Procedia PDF Downloads 229
1097 Intelligent Agent-Based Model for the 5G mmWave O2I Technology Adoption

Authors: Robert Joseph M. Licup

Abstract:

The deployment of the fifth-generation (5G) mobile system through mmWave frequencies is the new solution in the requirement to provide higher bandwidth readily available for all users. The usage pattern of the mobile users has moved towards either the work from home or online classes set-up because of the pandemic. Previous mobile technologies can no longer meet the high speed, and bandwidth requirement needed, given the drastic shift of transactions to the home. The millimeter-wave (mmWave) underutilized frequency is utilized by the fifth-generation (5G) cellular networks that support multi-gigabit-per-second (Gbps) transmission. However, due to its short wavelengths, high path loss, directivity, blockage sensitivity, and narrow beamwidth are some of the technical challenges that need to be addressed. Different tools, technologies, and scenarios are explored to support network design, accurate channel modeling, implementation, and deployment effectively. However, there is a big challenge on how the consumer will adopt this solution and maximize the benefits offered by the 5G Technology. This research proposes to study the intricacies of technology diffusion, individual attitude, behaviors, and how technology adoption will be attained. The agent based simulation model shaped by the actual applications, technology solution, and related literature was used to arrive at a computational model. The research examines the different attributes, factors, and intricacies that can affect each identified agent towards technology adoption.

Keywords: agent-based model, AnyLogic, 5G O21, 5G mmWave solutions, technology adoption

Procedia PDF Downloads 84
1096 Profiling Risky Code Using Machine Learning

Authors: Zunaira Zaman, David Bohannon

Abstract:

This study explores the application of machine learning (ML) for detecting security vulnerabilities in source code. The research aims to assist organizations with large application portfolios and limited security testing capabilities in prioritizing security activities. ML-based approaches offer benefits such as increased confidence scores, false positives and negatives tuning, and automated feedback. The initial approach using natural language processing techniques to extract features achieved 86% accuracy during the training phase but suffered from overfitting and performed poorly on unseen datasets during testing. To address these issues, the study proposes using the abstract syntax tree (AST) for Java and C++ codebases to capture code semantics and structure and generate path-context representations for each function. The Code2Vec model architecture is used to learn distributed representations of source code snippets for training a machine-learning classifier for vulnerability prediction. The study evaluates the performance of the proposed methodology using two datasets and compares the results with existing approaches. The Devign dataset yielded 60% accuracy in predicting vulnerable code snippets and helped resist overfitting, while the Juliet Test Suite predicted specific vulnerabilities such as OS-Command Injection, Cryptographic, and Cross-Site Scripting vulnerabilities. The Code2Vec model achieved 75% accuracy and a 98% recall rate in predicting OS-Command Injection vulnerabilities. The study concludes that even partial AST representations of source code can be useful for vulnerability prediction. The approach has the potential for automated intelligent analysis of source code, including vulnerability prediction on unseen source code. State-of-the-art models using natural language processing techniques and CNN models with ensemble modelling techniques did not generalize well on unseen data and faced overfitting issues. However, predicting vulnerabilities in source code using machine learning poses challenges such as high dimensionality and complexity of source code, imbalanced datasets, and identifying specific types of vulnerabilities. Future work will address these challenges and expand the scope of the research.

Keywords: code embeddings, neural networks, natural language processing, OS command injection, software security, code properties

Procedia PDF Downloads 90
1095 Mean Field Model Interaction for Computer and Communication Systems: Modeling and Analysis of Wireless Sensor Networks

Authors: Irina A. Gudkova, Yousra Demigha

Abstract:

Scientific research is moving more and more towards the study of complex systems in several areas of economics, biology physics, and computer science. In this paper, we will work on complex systems in communication networks, Wireless Sensor Networks (WSN) that are considered as stochastic systems composed of interacting entities. The current advancements of the sensing in computing and communication systems is an investment ground for research in several tracks. A detailed presentation was made for the WSN, their use, modeling, different problems that can occur in their application and some solutions. The main goal of this work reintroduces the idea of mean field method since it is a powerful technique to solve this type of models especially systems that evolve according to a Continuous Time Markov Chain (CTMC). Modeling of a CTMC has been focused; we obtained a large system of interacting Continuous Time Markov Chain with population entities. The main idea was to work on one entity and replace the others with an average or effective interaction. In this context to make the solution easier, we consider a wireless sensor network as a multi-body problem and we reduce it to one body problem. The method was applied to a system of WSN modeled as a Markovian queue showing the results of the used technique.

Keywords: Continuous-Time Markov Chain, Hidden Markov Chain, mean field method, Wireless sensor networks

Procedia PDF Downloads 141
1094 The Influence of Minority Stress on Depression among Thai Lesbian, Gay, Bisexual, and Transgender Adults

Authors: Priyoth Kittiteerasack, Alana Steffen, Alicia K. Matthews

Abstract:

Depression is a leading cause of the worldwide burden of disability and disease burden. Notably, lesbian, gay, bisexual, and transgender (LGBT) populations are more likely to be a high-risk group for depression compared to their heterosexual and cisgender counterparts. To date, little is known about the rates and predictors of depression among Thai LGBT populations. As such, the purpose of this study was to: 1) measure the prevalence of depression among a diverse sample of Thai LGBT adults and 2) determine the influence of minority stress variables (discrimination, victimization, internalized homophobia, and identity concealment), general stress (stress and loneliness), and coping strategies (problem-focused, avoidance, and seeking social support) on depression outcomes. This study was guided by the Minority Stress Model (MSM). The MSM posits that elevated rates of mental health problems among LGBT populations stem from increased exposures to social stigma due to their membership in a stigmatized minority group. Social stigma, including discrimination and violence, represents unique sources of stress for LGBT individuals and have a direct impact on mental health. This study was conducted as part of a larger descriptive study of mental health among Thai LGBT adults. Standardized measures consistent with the MSM were selected and translated into the Thai language by a panel of LGBT experts using the forward and backward translation technique. The psychometric properties of translated instruments were tested and acceptable (Cronbach’s alpha > .8 and Content Validity Index = 1). Study participants were recruited using convenience and snowball sampling methods. Self-administered survey data were collected via an online survey and via in-person data collection conducted at a leading Thai LGBT organization. Descriptive statistics and multivariate analyses using multiple linear regression models were conducted to analyze study data. The mean age of participants (n = 411) was 29.5 years (S.D. = 7.4). Participants were primarily male (90.5%), homosexual (79.3%), and cisgender (76.6%). The mean score for depression of study participant was 9.46 (SD = 8.43). Forty-three percent of LGBT participants reported clinically significant levels of depression as measured by the Beck Depression Inventory. In multivariate models, the combined influence of demographic, stress, coping, and minority stressors explained 47.2% of the variance in depression scores (F(16,367) = 20.48, p < .001). Minority stressors independently associated with depression included discrimination (β = .43, p < .01) victimization (β = 1.53, p < .05), and identity concealment (β = -.54, p < .05). In addition, stress (β = .81, p < .001), history of a chronic disease (β = 1.20, p < .05), and coping strategies (problem-focused coping β = -1.88, p < .01, seeking social support β = -1.12, p < .05, and avoidance coping β = 2.85, p < .001) predicted depression scores. The study outcomes emphasized that minority stressors uniquely contributed to depression levels among Thai LGBT participants over and above typical non-minority stressors. Study findings have important implications for nursing practice and the development of intervention research.

Keywords: depression, LGBT, minority stress, sexual and gender minority, Thailand

Procedia PDF Downloads 111
1093 Road Traffic Accidents Analysis in Mexico City through Crowdsourcing Data and Data Mining Techniques

Authors: Gabriela V. Angeles Perez, Jose Castillejos Lopez, Araceli L. Reyes Cabello, Emilio Bravo Grajales, Adriana Perez Espinosa, Jose L. Quiroz Fabian

Abstract:

Road traffic accidents are among the principal causes of traffic congestion, causing human losses, damages to health and the environment, economic losses and material damages. Studies about traditional road traffic accidents in urban zones represents very high inversion of time and money, additionally, the result are not current. However, nowadays in many countries, the crowdsourced GPS based traffic and navigation apps have emerged as an important source of information to low cost to studies of road traffic accidents and urban congestion caused by them. In this article we identified the zones, roads and specific time in the CDMX in which the largest number of road traffic accidents are concentrated during 2016. We built a database compiling information obtained from the social network known as Waze. The methodology employed was Discovery of knowledge in the database (KDD) for the discovery of patterns in the accidents reports. Furthermore, using data mining techniques with the help of Weka. The selected algorithms was the Maximization of Expectations (EM) to obtain the number ideal of clusters for the data and k-means as a grouping method. Finally, the results were visualized with the Geographic Information System QGIS.

Keywords: data mining, k-means, road traffic accidents, Waze, Weka

Procedia PDF Downloads 386
1092 Hydrological Characterization of a Watershed for Streamflow Prediction

Authors: Oseni Taiwo Amoo, Bloodless Dzwairo

Abstract:

In this paper, we extend the versatility and usefulness of GIS as a methodology for any river basin hydrologic characteristics analysis (HCA). The Gurara River basin located in North-Central Nigeria is presented in this study. It is an on-going research using spatial Digital Elevation Model (DEM) and Arc-Hydro tools to take inventory of the basin characteristics in order to predict water abstraction quantification on streamflow regime. One of the main concerns of hydrological modelling is the quantification of runoff from rainstorm events. In practice, the soil conservation service curve (SCS) method and the Conventional procedure called rational technique are still generally used these traditional hydrological lumped models convert statistical properties of rainfall in river basin to observed runoff and hydrograph. However, the models give little or no information about spatially dispersed information on rainfall and basin physical characteristics. Therefore, this paper synthesizes morphometric parameters in generating runoff. The expected results of the basin characteristics such as size, area, shape, slope of the watershed and stream distribution network analysis could be useful in estimating streamflow discharge. Water resources managers and irrigation farmers could utilize the tool for determining net return from available scarce water resources, where past data records are sparse for the aspect of land and climate.

Keywords: hydrological characteristic, stream flow, runoff discharge, land and climate

Procedia PDF Downloads 317
1091 Evaluating the Effect of Splitting Wind Farms on Power Output

Authors: Nazanin Naderi, Milton Smith

Abstract:

Since worldwide demand for renewable energy is increasing rapidly because of the climate problem and the limitation of fossil fuels, technologies of alternative energy sources have been developed and the electric power network now includes renewable energy resources such as wind energy. Because of the huge advantages that wind energy has, like reduction in natural gas use, price pressure, emissions of greenhouse gases and other atmospheric pollutants, electric sector water consumption and many other contributions to the nation’s economy like job creation it has got too much attention these days from different parts of the world especially in the United States which is trying to provide 20% of the nation’s energy from wind by 2030. This study is trying to evaluate the effect of splitting wind farms on power output. We are trying to find if we can get more output by installing wind turbines in different sites rather than installing all wind turbines in one site. Five potential sites in Texas have been selected as a case study and two years wind data has been gathered for these sites. Wind data are analyzed and effect of correlation between sites on power output has been evaluated. Standard deviation and autocorrelation effect has also been considered for this study. The paper has been organized as follows: After the introduction the second section gives a brief overview of wind analysis. The third section addresses the case study and evaluates correlation between sites, auto correlation of sites and standard deviation of power output. In section four we describe the results.

Keywords: auto correlation, correlation between sites, splitting wind farms, power output, standard deviation

Procedia PDF Downloads 573
1090 iPSCs More Effectively Differentiate into Neurons on PLA Scaffolds with High Adhesive Properties for Primary Neuronal Cells

Authors: Azieva A. M., Yastremsky E. V., Kirillova D. A., Patsaev T. D., Sharikov R. V., Kamyshinsky R. A., Lukanina K. I., Sharikova N. A., Grigoriev T. E., Vasiliev A. L.

Abstract:

Adhesive properties of scaffolds, which predominantly depend on the chemical and structural features of their surface, play the most important role in tissue engineering. The basic requirements for such scaffolds are biocompatibility, biodegradation, high cell adhesion, which promotes cell proliferation and differentiation. In many cases, synthetic polymers scaffolds have proven advantageous because they are easy to shape, they are tough, and they have high tensile properties. The regeneration of nerve tissue still remains a big challenge for medicine, and neural stem cells provide promising therapeutic potential for cell replacement therapy. However, experiments with stem cells have their limitations, such as low level of cell viability and poor control of cell differentiation. Whereas the study of already differentiated neuronal cell culture obtained from newborn mouse brain is limited only to cell adhesion. The growth and implantation of neuronal culture requires proper scaffolds. Moreover, the polymer scaffolds implants with neuronal cells could demand specific morphology. To date, it has been proposed to use numerous synthetic polymers for these purposes, including polystyrene, polylactic acid (PLA), polyglycolic acid, and polylactide-glycolic acid. Tissue regeneration experiments demonstrated good biocompatibility of PLA scaffolds, despite the hydrophobic nature of the compound. Problem with poor wettability of the PLA scaffold surface could be overcome in several ways: the surface can be pre-treated by poly-D-lysine or polyethyleneimine peptides; roughness and hydrophilicity of PLA surface could be increased by plasma treatment, or PLA could be combined with natural fibers, such as collagen or chitosan. This work presents a study of adhesion of both induced pluripotent stem cells (iPSCs) and mouse primary neuronal cell culture on the polylactide scaffolds of various types: oriented and non-oriented fibrous nonwoven materials and sponges – with and without the effect of plasma treatment and composites with collagen and chitosan. To evaluate the effect of different types of PLA scaffolds on the neuronal differentiation of iPSCs, we assess the expression of NeuN in differentiated cells through immunostaining. iPSCs more effectively differentiate into neurons on PLA scaffolds with high adhesive properties for primary neuronal cells.

Keywords: PLA scaffold, neurons, neuronal differentiation, stem cells, polylactid

Procedia PDF Downloads 61
1089 Transformation of Periodic Fuzzy Membership Function to Discrete Polygon on Circular Polar Coordinates

Authors: Takashi Mitsuishi

Abstract:

Fuzzy logic has gained acceptance in the recent years in the fields of social sciences and humanities such as psychology and linguistics because it can manage the fuzziness of words and human subjectivity in a logical manner. However, the major field of application of the fuzzy logic is control engineering as it is a part of the set theory and mathematical logic. Mamdani method, which is the most popular technique for approximate reasoning in the field of fuzzy control, is one of the ways to numerically represent the control afforded by human language and sensitivity and has been applied in various practical control plants. Fuzzy logic has been gradually developing as an artificial intelligence in different applications such as neural networks, expert systems, and operations research. The objects of inference vary for different application fields. Some of these include time, angle, color, symptom and medical condition whose fuzzy membership function is a periodic function. In the defuzzification stage, the domain of the membership function should be unique to obtain uniqueness its defuzzified value. However, if the domain of the periodic membership function is determined as unique, an unintuitive defuzzified value may be obtained as the inference result using the center of gravity method. Therefore, the authors propose a method of circular-polar-coordinates transformation and defuzzification of the periodic membership functions in this study. The transformation to circular polar coordinates simplifies the domain of the periodic membership function. Defuzzified value in circular polar coordinates is an argument. Furthermore, it is required that the argument is calculated from a closed plane figure which is a periodic membership function on the circular polar coordinates. If the closed plane figure is continuous with the continuity of the membership function, a significant amount of computation is required. Therefore, to simplify the practice example and significantly reduce the computational complexity, we have discretized the continuous interval and the membership function in this study. In this study, the following three methods are proposed to decide the argument from the discrete polygon which the continuous plane figure is transformed into. The first method provides an argument of a straight line passing through the origin and through the coordinate of the arithmetic mean of each coordinate of the polygon (physical center of gravity). The second one provides an argument of a straight line passing through the origin and the coordinate of the geometric center of gravity of the polygon. The third one provides an argument of a straight line passing through the origin bisecting the perimeter of the polygon (or the closed continuous plane figure).

Keywords: defuzzification, fuzzy membership function, periodic function, polar coordinates transformation

Procedia PDF Downloads 341
1088 Promoting Compassionate Communication in a Multidisciplinary Fellowship: Results from a Pilot Evaluation

Authors: Evonne Kaplan-Liss, Val Lantz-Gefroh

Abstract:

Arts and humanities are often incorporated into medical education to help deepen understanding of the human condition and the ability to communicate from a place of compassion. However, a gap remains in our knowledge of compassionate communication training for postgraduate medical professionals (as opposed to students and residents); how training opportunities include and impact the artists themselves, and how train-the-trainer models can support learners to become teachers. In this report, the authors present results from a pilot evaluation of the UC San Diego Health: Sanford Compassionate Communication Fellowship, a 60-hour experiential program that uses theater, narrative reflection, poetry, literature, and journalism techniques to train a multidisciplinary cohort of medical professionals and artists in compassionate communication. In the culminating project, fellows design and implement their own projects as teachers of compassionate communication in their respective workplaces. Qualitative methods, including field notes and 30-minute Zoom interviews with each fellow, were used to evaluate the impact of the fellowship. The cohort included both artists (n=2) and physicians representing a range of specialties (n=7), such as occupational medicine, palliative care, and pediatrics. The authors coded the data using thematic analysis for evidence of how the multidisciplinary nature of the fellowship impacted the fellows’ experiences. The findings show that the multidisciplinary cohort contributed to a greater appreciation of compassionate communication in general. Fellows expressed that the ability to witness how those in different fields approached compassionate communication enhanced their learning and helped them see how compassion can be expressed in various contexts, which was both “exhilarating” and “humbling.” One physician expressed that the fellowship has been “really helpful to broaden my perspective on the value of good communication.” Fellows shared how what they learned in the fellowship translated to increased compassionate communication, not only in their professional roles but in their personal lives as well. A second finding was the development of a supportive community. Because each fellow brought their own experiences and expertise, there was a sense of genuine ability to contribute as well as a desire to learn from others. A “brave space” was created by the fellowship facilitators and the inclusion of arts-based activities: a space that invited vulnerability and welcomed fellows to make their own meaning without prescribing any one answer or right way to approach compassionate communication. This brave space contributed to a strong connection among the fellows and reports of increased well-being, as well as multiple collaborations post-fellowship to carry forward compassionate communication training at their places of work. Results show initial evidence of the value of a multidisciplinary fellowship for promoting compassionate communication for both artists and physicians. The next steps include maintaining the supportive fellowship community and collaborations with a post-fellowship affiliate faculty program; scaling up the fellowship with non-physicians (e.g., nurses and physician assistants); and collecting data from family members, colleagues, and patients to understand how the fellowship may be creating a ripple effect outside of the fellowship through fellows’ compassionate communication.

Keywords: compassionate communication, communication in healthcare, multidisciplinary learning, arts in medicine

Procedia PDF Downloads 48