Search results for: future water resources
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18613

Search results for: future water resources

12643 The Effects of Computer Game-Based Pedagogy on Graduate Students Statistics Performance

Authors: Eva Laryea, Clement Yeboah Authors

Abstract:

A pretest-posttest within subjects, experimental design was employed to examine the effects of a computerized basic statistics learning game on achievement and statistics-related anxiety of students enrolled in introductory graduate statistics course. Participants (N = 34) were graduate students in a variety of programs at state-funded research university in the Southeast United States. We analyzed pre-test posttest differences using paired samples t-tests for achievement and for statistics anxiety. The results of the t-test for knowledge in statistics were found to be statistically significant indicating significant mean gains for statistical knowledge as a function of the game-based intervention. Likewise, the results of the t-test for statistics-related anxiety were also statistically significant indicating a decrease in anxiety from pretest to posttest. The implications of the present study are significant for both teachers and students. For teachers, using computer games developed by the researchers can help to create a more dynamic and engaging classroom environment, as well as improve student learning outcomes. For students, playing these educational games can help to develop important skills such as problem solving, critical thinking, and collaboration. Students can develop interest in the subject matter and spend quality time to learn the course as they play the game without knowing that they are even learning the presupposed hard course. The future directions of the present study are promising, as technology continues to advance and become more widely available. Some potential future developments include the integration of virtual and augmented reality into educational games, the use of machine learning and artificial intelligence to create personalized learning experiences, and the development of new and innovative game-based assessment tools. It is also important to consider the ethical implications of computer game-based pedagogy, such as the potential for games to perpetuate harmful stereotypes and biases. As the field continues to evolve, it will be crucial to address these issues and work towards creating inclusive and equitable learning experiences for all students. This study has the potential to revolutionize the way basic statistics graduate students learn and offers exciting opportunities for future development and research. It is an important area of inquiry for educators, researchers, and policymakers, and will continue to be a dynamic and rapidly evolving field for years to come.

Keywords: pretest-posttest within subjects, experimental design, achievement, statistics-related anxiety

Procedia PDF Downloads 57
12642 Applying Big Data Analysis to Efficiently Exploit the Vast Unconventional Tight Oil Reserves

Authors: Shengnan Chen, Shuhua Wang

Abstract:

Successful production of hydrocarbon from unconventional tight oil reserves has changed the energy landscape in North America. The oil contained within these reservoirs typically will not flow to the wellbore at economic rates without assistance from advanced horizontal well and multi-stage hydraulic fracturing. Efficient and economic development of these reserves is a priority of society, government, and industry, especially under the current low oil prices. Meanwhile, society needs technological and process innovations to enhance oil recovery while concurrently reducing environmental impacts. Recently, big data analysis and artificial intelligence become very popular, developing data-driven insights for better designs and decisions in various engineering disciplines. However, the application of data mining in petroleum engineering is still in its infancy. The objective of this research aims to apply intelligent data analysis and data-driven models to exploit unconventional oil reserves both efficiently and economically. More specifically, a comprehensive database including the reservoir geological data, reservoir geophysical data, well completion data and production data for thousands of wells is firstly established to discover the valuable insights and knowledge related to tight oil reserves development. Several data analysis methods are introduced to analysis such a huge dataset. For example, K-means clustering is used to partition all observations into clusters; principle component analysis is applied to emphasize the variation and bring out strong patterns in the dataset, making the big data easy to explore and visualize; exploratory factor analysis (EFA) is used to identify the complex interrelationships between well completion data and well production data. Different data mining techniques, such as artificial neural network, fuzzy logic, and machine learning technique are then summarized, and appropriate ones are selected to analyze the database based on the prediction accuracy, model robustness, and reproducibility. Advanced knowledge and patterned are finally recognized and integrated into a modified self-adaptive differential evolution optimization workflow to enhance the oil recovery and maximize the net present value (NPV) of the unconventional oil resources. This research will advance the knowledge in the development of unconventional oil reserves and bridge the gap between the big data and performance optimizations in these formations. The newly developed data-driven optimization workflow is a powerful approach to guide field operation, which leads to better designs, higher oil recovery and economic return of future wells in the unconventional oil reserves.

Keywords: big data, artificial intelligence, enhance oil recovery, unconventional oil reserves

Procedia PDF Downloads 278
12641 Coffee Consumption Has No Acute Effects on Glucose Metabolism in Healthy Men: A Randomized Crossover Clinical Trial

Authors: Caio E. G. Reis, Sara Wassell, Adriana L. Porto, Angélica A. Amato, Leslie J. C. Bluck, Teresa H. M. da Costa

Abstract:

Background: Multiple epidemiologic studies have consistently reported association between increased coffee consumption and a lowered risk of Type 2 Diabetes Mellitus. However, the mechanisms behind this finding have not been fully elucidated. Objective: We investigate the effect of coffee (caffeinated and decaffeinated) on glucose effectiveness and insulin sensitivity using the stable isotope minimal model protocol with oral glucose administration in healthy men. Design: Fifteen healthy men underwent 5 arms randomized crossover single-blinding (researchers) clinical trial. They consumed decaffeinated coffee, caffeinated coffee (with and without sugar), and controls – water (with and without sugar) followed 1 hour by an oral glucose tolerance test (75 g of available carbohydrate) with intravenous labeled dosing interpreted by the two compartment minimal model (225 minutes). One-way ANOVA with Bonferroni adjustment were used to compare the effects of the tested beverages on glucose metabolism parameters. Results: Decaffeinated coffee resulted in 29% and 85% higher insulin sensitivity compared with caffeinated coffee and water, respectively, and the caffeinated coffee showed 15% and 60% higher glucose effectiveness compared with decaffeinated coffee and water, respectively. However, these differences were not significant (p > 0.10). In overall analyze (0 – 225 min) there were no significant differences on glucose effectiveness, insulin sensitivity, and glucose and insulin area under the curve between the groups. The beneficial effects of coffee did not seem to act in the short-term (hours) on glucose metabolism parameters mainly on insulin sensitivity indices. The benefits of coffee consumption occur in the long-term (years) as has been shown in the reduction of Type 2 Diabetes Mellitus risk in epidemiological studies. The clinical relevance of the present findings is that there is no need to avoid coffee as the drink choice for healthy people. Conclusions: The findings of this study demonstrate that the consumption of caffeinated and decaffeinated coffee with or without sugar has no acute effects on glucose metabolism in healthy men. Further researches, including long-term interventional studies, are needed to fully elucidate the mechanisms behind the coffee effects on reduced risk for Type 2 Diabetes Mellitus.

Keywords: coffee, diabetes mellitus type 2, glucose, insulin

Procedia PDF Downloads 427
12640 Assessing the Influence of Station Density on Geostatistical Prediction of Groundwater Levels in a Semi-arid Watershed of Karnataka

Authors: Sakshi Dhumale, Madhushree C., Amba Shetty

Abstract:

The effect of station density on the geostatistical prediction of groundwater levels is of critical importance to ensure accurate and reliable predictions. Monitoring station density directly impacts the accuracy and reliability of geostatistical predictions by influencing the model's ability to capture localized variations and small-scale features in groundwater levels. This is particularly crucial in regions with complex hydrogeological conditions and significant spatial heterogeneity. Insufficient station density can result in larger prediction uncertainties, as the model may struggle to adequately represent the spatial variability and correlation patterns of the data. On the other hand, an optimal distribution of monitoring stations enables effective coverage of the study area and captures the spatial variability of groundwater levels more comprehensively. In this study, we investigate the effect of station density on the predictive performance of groundwater levels using the geostatistical technique of Ordinary Kriging. The research utilizes groundwater level data collected from 121 observation wells within the semi-arid Berambadi watershed, gathered over a six-year period (2010-2015) from the Indian Institute of Science (IISc), Bengaluru. The dataset is partitioned into seven subsets representing varying sampling densities, ranging from 15% (12 wells) to 100% (121 wells) of the total well network. The results obtained from different monitoring networks are compared against the existing groundwater monitoring network established by the Central Ground Water Board (CGWB). The findings of this study demonstrate that higher station densities significantly enhance the accuracy of geostatistical predictions for groundwater levels. The increased number of monitoring stations enables improved interpolation accuracy and captures finer-scale variations in groundwater levels. These results shed light on the relationship between station density and the geostatistical prediction of groundwater levels, emphasizing the importance of appropriate station densities to ensure accurate and reliable predictions. The insights gained from this study have practical implications for designing and optimizing monitoring networks, facilitating effective groundwater level assessments, and enabling sustainable management of groundwater resources.

Keywords: station density, geostatistical prediction, groundwater levels, monitoring networks, interpolation accuracy, spatial variability

Procedia PDF Downloads 47
12639 Type of Sun Trackers and Its Controlling Techniques for MPPT

Authors: Talha Ali Khan

Abstract:

Discovering different energy resources to full fill the world growing demand is now one of the society’s bigger challenge for the next half-century. The main task is to convert the sun radiation into electricity via photovoltaic solar cells which is suddenly decreasing $/watt of delivered solar electricity. Therefore, in this context, the sun trackers are those devices that can be used to ameliorate efficiency. In this paper, a variety of the sun tracking systems are evaluated and their merits and demerits are highlighted. The most adept and proficient sun-tracking devices are polar axis and azimuth-elevation types.

Keywords: dual axis, fixed axis, sun tracker, MPPT

Procedia PDF Downloads 571
12638 Variation of Litter Chemistry under Intensified Drought: Consequences on Flammability

Authors: E. Ormeno, C. Gutigny, J. Ruffault, J. Madrigal, M. Guijarro, C. Lecareux, C. Ballini

Abstract:

Mediterranean plant species feature numerous metabolic and morpho-physiological responses crucial to survive under both, typical Mediterranean drought conditions and future aggravated drought expected by climate change. Whether these adaptive responses will, in turn, increase the ecosystem perturbation in terms of fire hazard, is an issue that needs to be addressed. The aim of this study was to test whether recurrent and aggravated drought in the Mediterranean area favors the accumulation of waxes in leaf litter, with an eventual increase of litter flammability. The study was conducted in 2017 in a garrigue in Southern France dominated by Quercus coccifera, where two drought treatments were used: a treatment with recurrent aggravated drought consisting of ten rain exclusion structures which withdraw part of the annual precipitation since January 2012, and a natural drought treatment where Q. coccifera stands are free of such structures and thus grow under natural precipitation. Waxes were extracted with organic solvent and analyzed by GC-MS and litter flammability was assessed through measurements of the ignition delay, flame residence time and flame intensity (flame height) using an epiradiator as well as the heat of combustion using an oxygen bomb calorimeter. Results show that after 5 years of rain restriction, wax content in the cuticle of leaf litter increases significantly compared to shrubs growing under natural precipitation, in accordance with the theoretical knowledge which expects increases of cuticle waxes in green leaves in order to limit water evapotranspiration. Wax concentrations were also linearly and positively correlated to litter flammability, a correlation that lies on the high flammability own to the long-chain alkanes (C25-C31) found in leaf litter waxes. This innovative investigation shows that climate change is likely to favor ecosystem fire hazard through accumulation of highly flammable waxes in litter. It also adds valuable information about the types of metabolites that are associated with increasing litter flammability, since so far, within the leaf metabolic profile, only terpene-like compounds had been related to plant flammability.

Keywords: cuticular waxes, drought, flammability, litter

Procedia PDF Downloads 165
12637 Effects of the Coagulation Bath and Reduction Process on SO2 Adsorption Capacity of Graphene Oxide Fiber

Authors: Özge Alptoğa, Nuray Uçar, Nilgün Karatepe Yavuz, Ayşen Önen

Abstract:

Sulfur dioxide (SO2) is a very toxic air pollutant gas and it causes the greenhouse effect, photochemical smog, and acid rain, which threaten human health severely. Thus, the capture of SO2 gas is very important for the environment. Graphene which is two-dimensional material has excellent mechanical, chemical, thermal properties, and many application areas such as energy storage devices, gas adsorption, sensing devices, and optical electronics. Further, graphene oxide (GO) is examined as a good adsorbent because of its important features such as functional groups (epoxy, carboxyl and hydroxyl) on the surface and layered structure. The SO2 adsorption properties of the fibers are usually investigated on carbon fibers. In this study, potential adsorption capacity of GO fibers was researched. GO dispersion was first obtained with Hummers’ method from graphite, and then GO fibers were obtained via wet spinning process. These fibers were converted into a disc shape, dried, and then subjected to SO2 gas adsorption test. The SO2 gas adsorption capacity of GO fiber discs was investigated in the fields of utilization of different coagulation baths and reduction by hydrazine hydrate. As coagulation baths, single and triple baths were used. In single bath, only ethanol and CaCl2 (calcium chloride) salt were added. In triple bath, each bath has a different concentration of water/ethanol and CaCl2 salt, and the disc obtained from triple bath has been called as reference disk. The fibers which were produced with single bath were flexible and rough, and the analyses show that they had higher SO2 adsorption capacity than triple bath fibers (reference disk). However, the reduction process did not increase the adsorption capacity, because the SEM images showed that the layers and uniform structure in the fiber form were damaged, and reduction decreased the functional groups which SO2 will be attached. Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD) analyzes were performed on the fibers and discs, and the effects on the results were interpreted. In the future applications of the study, it is aimed that subjects such as pH and additives will be examined.

Keywords: coagulation bath, graphene oxide fiber, reduction, SO2 gas adsorption

Procedia PDF Downloads 356
12636 Impact of Wastewater from Outfalls of River Ganga on Germination Percentage and Growth Parameters of Bitter Gourd (Momordica charantia L.) with Antioxidant Activity Study

Authors: Sayanti Kar, Amitava Ghosh, Pritam Aitch, Gupinath Bhandari

Abstract:

An extensive seasonal analysis of wastewater had been done from outfalls of river Ganga in Howrah, Hooghly, 24 PGS (N) District, West Bengal, India during 2017. The morphological parameters of Bitter gourd (Momordica charantia L.) were estimated under wastewater treatment. An approach to study the activity within the range of low molecular weight peptide 3-0.5 kDa were taken through its extraction and purification by ion exchange resin column, cation, and anion exchanger. HPLC analysis had been done for both in wastewater treated and untreated plants. The antioxidant activity by using DPPH and germination percentage in control and treated plants were also determined in relation to wastewater effect. The inhibition of growth and its parameters were maximum in pre-monsoon in comparing to post-monsoon and monsoon season. The study also helped to explore the effect of wastewater on the peptidome of Bitter gourd (Momordica charantia L.). Some of these low molecular weight peptide(s) (3-0.5 kDa) also inhibited during wastewater treatment. Expression of particular peptide(s) or absence of some peptide(s) in chromatogram indicated the adverse effects on plants which may be the indication of stressful condition. Pre monsoon waste water was found to create more impact than other two.

Keywords: bitter gourd (Momordica charantia l.), low molecular weight peptide, river ganga, waste water

Procedia PDF Downloads 119
12635 Prevalence of Endemic Goiter in School Children and Women of Reproductive Age Group during Post Salt Iodization Period in Andro Constituency, Imphal-East District, Manipur, India

Authors: Y. Suchitra Devi, L. Hemchandra Singh

Abstract:

Background: Because of its geographical location, Manipur lies in the conventional goiter endemic belt. During the post salt iodization period, endemic goiter was prevalent in the valley districts of Manipur without iodine deficiency. Objectives: The present study aim at the prevalence of goiter among school children (6-12 years) and women of reproductive age group (above 20 years) of Andro Assembly Constituency, Imphal- East, Manipur, India. Method: A total of 3992 individuals were clinically examined for thyroid enlargement. Hormones like TSH, FT₄, FT₃, and Anti-TPO, Anti-Tg were tested, UIC, USCN, testing of iodine in water and salt. Result: Total goiter prevalence was found to be 13.98%, median urinary iodine level was 166.0 µg/l, mean urinary thiocyanate concentration was 0.726 ± 0.408, mean water iodine concentration was 3.843 ± 2.291, and all the salt samples were above 15ppm. 6 out of 41 children and 93 out of 176 women were auto antibody positive. 41 children and 176 women were tested for TSH, FT₄, and FT₃, which shows disturbance in hormone level. Conclusion: The present study showed that the region is mildly goiter endemic without biochemical iodine deficiency.

Keywords: goiter, TSH, FT₄, FT₃, anti-TPO, anti-Tg, UIC, USCN, school children and women of reproductive age

Procedia PDF Downloads 100
12634 Establishing a Sustainable Construction Industry: Review of Barriers That Inhibit Adoption of Lean Construction in Lesotho

Authors: Tsepiso Mofolo, Luna Bergh

Abstract:

The Lesotho construction industry fails to embrace environmental practices, which has then lead to excessive consumption of resources, land degradation, air and water pollution, loss of habitats, and high energy usage. The industry is highly inefficient, and this undermines its capability to yield the optimum contribution to social, economic and environmental developments. Sustainable construction is, therefore, imperative to ensure the cultivation of benefits from all these intrinsic themes of sustainable development. The development of a sustainable construction industry requires a holistic approach that takes into consideration the interaction between Lean Construction principles, socio-economic and environmental policies, technological advancement and the principles of construction or project management. Sustainable construction is a cutting-edge phenomenon, forming a component of a subjectively defined concept called sustainable development. Sustainable development can be defined in terms of attitudes and judgments to assist in ensuring long-term environmental, social and economic growth in society. The key concept of sustainable construction is Lean Construction. Lean Construction emanates from the principles of the Toyota Production System (TPS), namely the application and adaptation of the fundamental concepts and principles that focus on waste reduction, the increase in value to the customer, and continuous improvement. The focus is on the reduction of socio-economic waste, and protestation of environmental degradation by reducing carbon dioxide emission footprint. Lean principles require a fundamental change in the behaviour and attitudes of the parties involved in order to overcome barriers to cooperation. Prevalent barriers to adoption of Lean Construction in Lesotho are mainly structural - such as unavailability of financing, corruption, operational inefficiency or wastage, lack of skills and training and inefficient construction legislation and political interferences. The consequential effects of these problems trigger down to quality, cost and time of the project - which then result in an escalation of operational costs due to the cost of rework or material wastage. Factor and correlation analysis of these barriers indicate that they are highly correlated, which then poses a detrimental potential to the country’s welfare, environment and construction safety. It is, therefore, critical for Lesotho’s construction industry to develop a robust governance through bureaucracy reforms and stringent law enforcement.

Keywords: construction industry, sustainable development, sustainable construction industry, lean construction, barriers to sustainable construction

Procedia PDF Downloads 281
12633 Artificial Neural Network Approach for Vessel Detection Using Visible Infrared Imaging Radiometer Suite Day/Night Band

Authors: Takashi Yamaguchi, Ichio Asanuma, Jong G. Park, Kenneth J. Mackin, John Mittleman

Abstract:

In this paper, vessel detection using the artificial neural network is proposed in order to automatically construct the vessel detection model from the satellite imagery of day/night band (DNB) in visible infrared in the products of Imaging Radiometer Suite (VIIRS) on Suomi National Polar-orbiting Partnership (Suomi-NPP).The goal of our research is the establishment of vessel detection method using the satellite imagery of DNB in order to monitor the change of vessel activity over the wide region. The temporal vessel monitoring is very important to detect the events and understand the circumstances within the maritime environment. For the vessel locating and detection techniques, Automatic Identification System (AIS) and remote sensing using Synthetic aperture radar (SAR) imagery have been researched. However, each data has some lack of information due to uncertain operation or limitation of continuous observation. Therefore, the fusion of effective data and methods is important to monitor the maritime environment for the future. DNB is one of the effective data to detect the small vessels such as fishery ships that is difficult to observe in AIS. DNB is the satellite sensor data of VIIRS on Suomi-NPP. In contrast to SAR images, DNB images are moderate resolution and gave influence to the cloud but can observe the same regions in each day. DNB sensor can observe the lights produced from various artifact such as vehicles and buildings in the night and can detect the small vessels from the fishing light on the open water. However, the modeling of vessel detection using DNB is very difficult since complex atmosphere and lunar condition should be considered due to the strong influence of lunar reflection from cloud on DNB. Therefore, artificial neural network was applied to learn the vessel detection model. For the feature of vessel detection, Brightness Temperature at the 3.7 μm (BT3.7) was additionally used because BT3.7 can be used for the parameter of atmospheric conditions.

Keywords: artificial neural network, day/night band, remote sensing, Suomi National Polar-orbiting Partnership, vessel detection, Visible Infrared Imaging Radiometer Suite

Procedia PDF Downloads 232
12632 The Role of the Urban Renewal Projects on the Reshaping of the Cities in Izmir, Turkey

Authors: Sibel Ecemis Kilic, Neslihan Karatas

Abstract:

The concept of urban renewal came up with interventions to the urban areas which have social and economic problems aimed at gaining the city. In Turkey after 2000, urban renewal has become a frequent topic on the agenda; regulations have been developed in this regard. Urban renewal project would be a focal point for the formation of the city in the near future. The future of the city is directly related to how to achieve these applications. Urban renewal policies will be decisive in the positive or negative development of the potential of the existing renewal process. Urban renewal is seen as a refreshing new planned action for reshaping unplanned and uncontrolled growth of big cities/metropolitan areas. In this context, Izmir is one of the largest metropolitan areas which came on the agenda of urban renewal application in the recent period. Izmir, which is the third largest city of Turkey, is an important trade and port city. The city, located west of Turkey, is a gate opening to Europe. In particular, continued its development rapidly after the Republican Period, it has become an important big city today. Assessment of the current situation shows that the majority of existing residential areas was formed with squatters and unplanned settlements in Izmir city center. Therefore, an important part of these areas have significant problems in terms of the quality of life, safety, and environmental quality. Legal residential areas which have had developed before 2000 is seen inadequate security in terms of an earthquake. In this study, the central policies in Turkey and local policies in İzmir about urban renewal will be considered. In addition, urban renewal projects that are being implemented or applied in Izmir were discussed and suggestions will be developed in accordance with this policy.

Keywords: urban transformation, Izmir, urban planning, urban renewal

Procedia PDF Downloads 478
12631 Challenges in E-Government: Conceptual Views and Solutions

Authors: Rasim Alguliev, Farhad Yusifov

Abstract:

Considering the international experience, conceptual and architectural principles of forming of electron government are researched and some suggestions were made. The assessment of monitoring of forming processes of electron government, intellectual analysis of web-resources, provision of information security, electron democracy problems were researched, conceptual approaches were suggested. By taking into consideration main principles of electron government theory, important research directions were specified.

Keywords: electron government, public administration, information security, web-analytics, social networks, data mining

Procedia PDF Downloads 463
12630 Organic Substance Removal from Pla-Som Family Industrial Wastewater through APCW System

Authors: W. Wararam, K. Angchanpen, T. Pattamapitoon, K. Chunkao, O. Phewnil, M. Srichomphu, T. Jinjaruk

Abstract:

The research focused on the efficiency for treating high organic wastewater from pla-som production process by anaerobic tanks, oxidation ponds and constructed wetland treatment systems (APCW). The combined system consisted of 50-mm plastic screen, five 5.8 m3 oil-grease trap tanks (2-day hydraulic retention time; HRT), four 4.3 m3 anaerobic tanks (1-day HRT), 16.7 m3 oxidation pond no.1 (7-day HRT), 12.0 m3 oxidation pond no.2 (3-day HRT), and 8.2 m3 constructed wetland plot (1-day HRT). After washing fresh raw fishes, they were sliced in small pieces and were converted into ground fish meat by blender machine. The fish meat was rinsed for 8 rounds: 1, 2, 3, 5, 6 and 7 by tap water and 4 and 8 by rice-wash-water, before mixing with salt, garlic, steamed rice and monosodium glutamate, followed by plastic wrapping for 72-hour of edibility. During pla-som production processing, the rinsed wastewater about 5 m3/day was fed to the treatment systems and fully stagnating storage in its components. The result found that, 1) percentage of treatment efficiency for BOD, COD, TDS and SS were 93, 95, 32 and 98 respectively, 2) the treatment was conducted with 500-kg raw fishes along with full equipment of high organic wastewater treatment systems, 3) the trend of the treatment efficiency and quantity in all indicators was similarly processed and 4) the small pieces of fish meat and fish blood were needed more than 3-day HRT in anaerobic digestion process.

Keywords: organic substance, Pla-Som family industry, wastewater, APCW system

Procedia PDF Downloads 356
12629 Water-Bentonite Interaction of Green Pellets through Micro-Structural Analysis

Authors: Satyananda Patra, Venugopal Rayasam

Abstract:

The quality of pellets produced is affected by quality and type of green pellets, amount of addition of binders and fluxing agents along with the provided firing conditions. The green pellet quality depends upon chemistry, mineralogy and granulometry of fines used for pellet making, the feed size, its moisture content and porosity. During firing of green pellets, ingredients present within reacts to form different phases and microstructure. So in turn, physical and metallurgical properties of pellets are influenced by amount and type of binder and flux addition, induration time and temperature. During iron making process, the metallurgical properties of fired pellets are decided by the type and amount of these phases and their chemistry. Green pelletizing and induration studies have been already carried out with magnetite and hematite ore fines but for Indian iron ores of high alumina content showing different pelletizing characters, these studies cannot be directly interpreted. The main objective of proposed research work is to understand the green pelletizing process and determine the water bentonite interaction at different levels. Swelling behavior of bentonite and microstructure of the green pellet are investigated. Conversion of iron ore fines into pellets, the key raw material and process variables that influence the pellet quality needs to be identified and a correlation should be established between them.

Keywords: iron ore, pelletization, binders, green pellets, microstructure

Procedia PDF Downloads 300
12628 Analyzing the Impacts of Sustainable Tourism Development on Residents’ Well-Being Based on Stakeholder Perception: Evidence from a Coastal-Hinterland Region

Authors: Elham Falatoonitoosi, Vikki Schaffer, Don Kerr

Abstract:

Over-development for tourism and its consequences on residents’ well-being turn into a critical issue in tourism destinations. Learning about undesirable impacts of tourism has led many people to seek more sustainable and responsible tourism. The main objective of this research is to understand how and to what extent sustainable tourism development enhances locals’ well-being regarding stakeholder perception. The research was conducted in a coastal-hinterland tourism region through two sequential phases. At the first phase, a unique set of 19 sustainable tourism indicators resulted from a triplex model was used to examine the sustainability effects on the main factors of residents’ well-being including equity and living condition, life satisfaction, health condition, and education quality. The triplex model including i) systematic literature search, ii) convergent interviewing, and iii) DEMATEL aimed to develop sustainability indicators, specify them for a particular destination, and identify the dominant sustainability issues acting as key predictors in sustainable development. At the second phase, a hierarchical multiple regression was used to examine the relationship between sustainable development and local residents’ well-being. A number of 167 participants from five different groups of stakeholders perceived the importance level of each sustainability indicators regarding well-being factors on 5-point Likert scale. Results from the first phase indicated that sustainability training, government support, tourism sociocultural effects, tourism revenue, and climate change are the top dominant sustainability issues in the regional sustainable development. Results from the second phase showed that sustainable development considerably improves the overall residents’ well-being and has positive relationships with all well-being factors except life satisfaction. It explains that it was difficult for stakeholders to recognize a link between sustainable development and their overall life satisfaction and happiness. Among well-being’s factors, health condition was influenced the most by sustainability indicators that indicate stakeholders believed sustainability development can promote public health, health sector performance, quality of drinking water, and sanitation. For the future research, it is highly recommended to analysis the effects of sustainable tourism development on the other features of a tourism destination’s well-being including residents sociocultural empowerment, local economic growth, and attractiveness of the destination.

Keywords: residents' well-being, stakeholder perception, sustainability indicators, sustainable tourism

Procedia PDF Downloads 257
12627 Artificial Intelligence Approach to Water Treatment Processes: Case Study of Daspoort Treatment Plant, South Africa

Authors: Olumuyiwa Ojo, Masengo Ilunga

Abstract:

Artificial neural network (ANN) has broken the bounds of the convention programming, which is actually a function of garbage in garbage out by its ability to mimic the human brain. Its ability to adopt, adapt, adjust, evaluate, learn and recognize the relationship, behavior, and pattern of a series of data set administered to it, is tailored after the human reasoning and learning mechanism. Thus, the study aimed at modeling wastewater treatment process in order to accurately diagnose water control problems for effective treatment. For this study, a stage ANN model development and evaluation methodology were employed. The source data analysis stage involved a statistical analysis of the data used in modeling in the model development stage, candidate ANN architecture development and then evaluated using a historical data set. The model was developed using historical data obtained from Daspoort Wastewater Treatment plant South Africa. The resultant designed dimensions and model for wastewater treatment plant provided good results. Parameters considered were temperature, pH value, colour, turbidity, amount of solids and acidity. Others are total hardness, Ca hardness, Mg hardness, and chloride. This enables the ANN to handle and represent more complex problems that conventional programming is incapable of performing.

Keywords: ANN, artificial neural network, wastewater treatment, model, development

Procedia PDF Downloads 144
12626 Absence of Secured Bathing Spaces and Its Effect on Women: An Exploratory Qualitative Study of Rural Odisha, India

Authors: Minaj Ranjita Singh, Meghna Mukherjee, Abhijeet Jadhav

Abstract:

This is an exploratory qualitative study with an objective to understand the bathing practices followed by rural women and its consequences. Access to safe bathing spaces in rural India is a neglected issue due to which women are affected in various ways. Today, government policies are largely focused towards the building of toilets, but no importance has been given to the construction of bathrooms. Both qualitative and quantitative data were collected using in-depth interviews and focused group discussions with rural women in six villages of Odisha, India. The study was approved by an Institutional Research and Ethics Committee, and informed consent was taken from participants. For most of the participants, the access to water, bathing space and toilet was compromised posing various challenges in their daily lives. Women's daily schedule, hygiene practices, dignity, and health are greatly affected due to this lack. Since bathing in the open has been an ancient practice, the community's perception is benign towards the hardship of women. Lack of exposure to concealed bathing, necessary funds, and competing priorities are some of the household level factors which never let them think about having bathrooms and the lack of water supply, proper drainage system, subsidy or financial support are the governance and policy related factors which prevent their access to secured bathing spaces.

Keywords: bathrooms, dignity, exploratory, rural, qualitative, women's health, women

Procedia PDF Downloads 179
12625 Fabrication of Fe3O4core-meso SiO2/TiO2 Double Shell for Dye Pollution Remediation

Authors: Mohamed Habila, Ahmed Mohamed El-Toni, Mohamed Sheikh Moshab, Abdulrhman Al-Awadi, Zeid AL Othman

Abstract:

Water pollution with dyes is a critical environmental issue because off the huge amount of dyes disbarred annually, which cause severe damage for the ecosystem and human life. The main raison for this severs pollution is the rapid industrial development which led to more production of harmful pollutants. on the other hand, the core shell based magnetic materials have showed amazing character for controlling the material synthesis with the targeted structure to enhance the adsorptive removal of pollutants. Herein, the Fe3O4core-meso SiO2/TiO2 double shell have been prepared for methylene blue dye adsorption. the preparation procedure is controlled to prepare the magnetic core with further coating layers from silica and titania. The prepared Fe3O4core-meso SiO2/TiO2 double shell showed adsorption capacity for methylene blue removal about 50 mg/g at pH 6 after 80 min contact time form 50 ppm methylene blue solution. The adsorption process of methylene blue onto Fe3O4core-meso SiO2/TiO2 double shell was well fitted with the pseudo-second-order kinetic model and freundlish isotherm, indicating a quick and multilayer adsorption mechanism.

Keywords: magnetic core, silica shell, titania shell, water treatment, methylene blue, solvo-thermal process, adsorption

Procedia PDF Downloads 116
12624 State Forest Management Practices by Indigenous Peoples in Dharmasraya District, West Sumatra Province, Indonesia

Authors: Abdul Mutolib, Yonariza Mahdi, Hanung Ismono

Abstract:

The existence of forests is essential to human lives on earth, but its existence is threatened by forest deforestations and degradations. Forest deforestations and degradations in Indonesia is not only caused by the illegal activity by the company or the like, even today many cases in Indonesia forest damage caused by human activities, one of which cut down forests for agriculture and plantations. In West Sumatra, community forest management are the result supported the enactment of customary land tenure, including ownership of land within the forest. Indigenous forest management have a positive benefit, which gives the community an opportunity to get livelihood and income, but if forest management practices by indigenous peoples is not done wisely, then there is the destruction of forests and cause adverse effects on the environment. Based on intensive field works in Dhamasraya District employing some data collection techniques such as key informant interviews, household surveys, secondary data analysis, and satellite image interpretation. This paper answers the following questions; how the impact of forest management by local communities on forest conditions (foccus in Forest Production and Limited Production Forest) and knowledge of the local community on the benefits of forests. The site is a Nagari Bonjol, Dharmasraya District, because most of the forest in Dharmasraya located and owned by Nagari Bonjol community. The result shows that there is damage to forests in Dharmasraya because of forest management activities by local communities. Damage to the forest area of 33,500 ha in Dharmasraya because forests are converted into oil palm and rubber plantations with monocultures. As a result of the destruction of forests, water resources are also diminishing, and the community has experienced a drought in the dry season due to forest cut down and replaced by oil palm plantations. Knowledge of the local community on the benefits of low forest, the people considered that the forest does not have better benefits and cut down and converted into oil palm or rubber plantations. Local people do not understand the benefits of ecological and environmental services that forests. From the phenomena in Dharmasraya on land ownership, need to educate the local community about the importance of protecting the forest, and need a strategy to integrate forests management to keep the ecological functions that resemble the woods and counts the economic benefits for the welfare of local communities. One alternative that can be taken is to use forest management models agroforestry smallholders in accordance with the characteristics of the local community who still consider the economic, social and environmental.

Keywords: community, customary land, farmer plantations, and forests

Procedia PDF Downloads 330
12623 Erosion Influencing Factors Analysis: Case of Isser Watershed (North-West Algeria)

Authors: Chahrazed Salhi, Ayoub Zeroual, Yasmina Hamitouche

Abstract:

Soil water erosion poses a significant threat to the watersheds in Algeria today. The degradation of storage capacity in large dams over the past two decades, primarily due to erosion, necessitates a comprehensive understanding of the factors that contribute to soil erosion. The Isser watershed, located in the Northwestern region of Algeria, faces additional challenges such as recurrent droughts and the presence of delicate marl and clay outcrops, which amplify its susceptibility to water erosion. This study aims to employ advanced techniques such as Geographic Information Systems (GIS) and Remote Sensing (RS), in conjunction with the Canonical Correlation Analysis (CCA) method and Soil Water Assessment Tool (SWAT) model, to predict specific erosion patterns and analyze the key factors influencing erosion in the Isser basin. To accomplish this, an array of data sources including rainfall, climatic, hydrometric, land use, soil, digital elevation, and satellite data were utilized. The application of the SWAT model to the Isser basin yielded an average annual soil loss of approximately 16 t/ha/year. Particularly high erosion rates, exceeding 12 T/ha/year, were observed in the central and southern parts of the basin, encompassing 41% of the total basin area. Through Canonical Correlation Analysis, it was determined that vegetation cover and topography exerted the most substantial influence on erosion. Consequently, the study identified significant and spatially heterogeneous erosion throughout the study area. The impact of land topography on soil loss was found to be directly proportional, while vegetation cover exhibited an inverse proportional relationship. Modeling specific erosion for the Ladrat dam sub-basin estimated a rate of around 39 T/ha/year, thus accounting for the recorded capacity loss of 17.80% compared to the bathymetric survey conducted in 2019. The findings of this research provide valuable decision-support tools for soil conservation managers, empowering them to make informed decisions regarding soil conservation measures.

Keywords: Isser watershed, RS, CCA, SWAT, vegetation cover, topography

Procedia PDF Downloads 63
12622 Micelles Made of Pseudo-Proteins for Solubilization of Hydrophobic Biologicals

Authors: Sophio Kobauri, David Tugushi, Vladimir P. Torchilin, Ramaz Katsarava

Abstract:

Hydrophobic / hydrophilically modified functional polymers are of high interest in modern biomedicine due to their ability to solubilize water-insoluble / poorly soluble (hydrophobic) drugs. Among the many approaches that are being developed in this direction, one of the most effective methods is the use of polymeric micelles (PMs) (micelles formed by amphiphilic block-copolymers) for solubilization of hydrophobic biologicals. For therapeutic purposes, PMs are required to be stable and biodegradable, although quite a few amphiphilic block-copolymers are described capable of forming stable micelles with good solubilization properties. For obtaining micelle-forming block-copolymers, polyethylene glycol (PEG) derivatives are desirable to use as hydrophilic shell because it represents the most popular biocompatible hydrophilic block and various hydrophobic blocks (polymers) can be attached to it. Although the construction of the hydrophobic core, due to the complex requirements and micelles structure development, is the very actual and the main problem for nanobioengineers. Considering the above, our research goal was obtaining biodegradable micelles for the solubilization of hydrophobic drugs and biologicals. For this purpose, we used biodegradable polymers– pseudo-proteins (PPs)(synthesized with naturally occurring amino acids and other non-toxic building blocks, such as fatty diols and dicarboxylic acids) as hydrophobic core since these polymers showed reasonable biodegradation rates and excellent biocompatibility. In the present study, we used the hydrophobic amino acid – L-phenylalanine (MW 4000-8000Da) instead of L-leucine. Amino-PEG (MW 2000Da) was used as hydrophilic fragments for constructing the suitable micelles. The molecular weight of PP (the hydrophobic core of micelle) was regulated by variation of used monomers ratios. Micelles were obtained by dissolving of synthesized amphiphilic polymer in water. The micelle-forming property was tested using dynamic light scattering (Malvern zetasizer NanoZSZEN3600). The study showed that obtaining amphiphilic block-copolymer form stable neutral micelles 100 ± 7 nm in size at 10mg/mL concentration, which is considered as an optimal range for pharmaceutical micelles. The obtained preliminary data allow us to conclude that the obtained micelles are suitable for the delivery of poorly water-soluble drugs and biologicals.

Keywords: amino acid – L-phenylalanine, pseudo-proteins, amphiphilic block-copolymers, biodegradable micelles

Procedia PDF Downloads 130
12621 Exploring the Effective Learning Strategies for the Adult Learners in India: An Exploratory Study of Malcolm Knowls Principles and Their Use in the Education Policies of India with a Special Focus on the New India Literacy Programme

Authors: Km Tanu

Abstract:

It has been widely accepted that the learning style of adults and children is different, the learning motivation among adults vary, and even their learning preferences cannot be predetermined. In India, where the population is widely diverse and socio-economic and cultural disparities are there, the learning strategies should also be according to their needs and preferences. The present study explores the concept of adult learners in India in order to understand their needs and styles better. The adult learning principles of Malcolm Knowles have been analyzed, and its presence in the different policies and programs has been traced. To what extent these principles and other such concepts would be beneficial for the Indian population and for effective learning strategies, and what contextual understanding is needed, has been argued in the study. Descriptive research methodology, along with content and thematic analyses, has been used for the paper. It has been argued that there are four areas that play crucial roles in making learning effective. These are the learner, the facilitator, the resources and the policy. The prior experiences of the learners, their motivation, the group to which they belong (i.e., the learning styles and the strategies can be varied for the group of farmers and migrant laborers), and their expected outcome play an important role in making any adult education program successful but along with this, the role of facilitator or the educator is also very important as it is not easy to deal with the adult learners, the understanding that the task is not to teach the adult learners but to make them learn and to use their prior knowledge is a task in itself, proper training is needed for that matter. Many times, it has been seen that adult education programs are poorly funded, or even if they are funded, the fund is not utilized well; the unavailability of the resources is one of the reasons for the failure of adult education programs, and if we see these four points as a triangle, at the bottom, there is a policy document. A well-stated and described doable policy document is also equally important.

Keywords: adult education, Indian adult learner, effective learning styles, Malcolm Knowles learning principles, adult education policies and program

Procedia PDF Downloads 55
12620 Degradation of Acetaminophen with Fe3O4 and Fe2+ as Activator of Peroxymonosulfate

Authors: Chaoqun Tan, Naiyun Gao, Xiaoyan Xin

Abstract:

Perxymonosulfate (PMS)-based oxidation processes, as an alternative of hydrogen peroxide-based oxidation processes, are more and more popular because of reactive radical species (SO4-•, OH•) produced in systems. Magnetic nano-scaled particles Fe3O4 and ferrous anion (Fe2+) were studied for the activation of PMS for degradation of acetaminophen (APAP) in water. The Fe3O4 MNPs were found to effectively catalyze PMS for APAP and the reactions well followed a pseudo-first-order kinetics pattern (R2 > 0.95), while the degradation of APAP in PMS-Fe2+ system proceeds through two stages: a fast stage and a much slower stage. Within 5 min, approximately 7% and 18% of 10 ppm APAP was accomplished by 0.2 mM PMS in Fe3O4 (0.8g/L) and Fe2+ (0.1mM) activation process. However, as reaction proceed to 120 min, approximately 75% and 35% of APAP was removed in Fe3O4 activation process and Fe2+ activation process, respectively. Within 120 min, the mineralization of APAP was about 7.5% and 5.0% (initial APAP of 10 ppm and [PMS]0 of 0.2 mM) in Fe3O4-PMS and Fe2+-PMS system, while the mineralization could be greatly increased to about 31% and 40% as [PMS]0 increased to 2.0 mM in in Fe3O4-PMS and Fe2+-PMS system, respectively. At last, the production of reactive radical species were validated directly from Electron Paramagnetic Resonance (ESR) tests with 0.1 M 5,5-dimethyl-1-pyrrolidine N-oxide (DMPO). Plausible mechanisms on the radical generation from Fe3O4 and Fe2+ activation of PMS are proposed on the results of radial identification tests. The results demonstrated that Fe3O4 MNPs activated PMS and Fe2+ anion activated PMS systems are promising technologies for water pollution caused by contaminants such as pharmaceutical. Fe3O4-PMS system is more suitable for slowly remediation, while Fe2+-PMS system is more suitable for fast remediation.

Keywords: acetaminophen, peroxymonosulfate, radicals, Fe3O4

Procedia PDF Downloads 249
12619 Application of Bacteriophage and Essential Oil to Enhance Photocatalytic Efficiency

Authors: Myriam Ben Said, Dhekra Trabelsi, Faouzi Achouri, Marwa Ben Saad, Latifa Bousselmi, Ahmed Ghrabi

Abstract:

This present study suggests the use of biological and natural bactericide, cheap, safe to handle, natural, environmentally benign agents to enhance the conventional wastewater treatment process. In the same sense, to highlight the enhancement of wastewater photocatalytic treatability, we were used virulent bacteriophage(s) and essential oils (EOs). The pre-phago-treatment of wastewater with lytic phage(s), leads to a decrease in bacterial density and, consequently, limits the establishment of intercellular communication (QS), thus preventing biofilm formation and inhibiting the expression of other virulence factors after photocatalysis. Moreover, to increase the photocatalytic efficiency, we were added to the secondary treated wastewater 1/1000 (w/v) of EO of thyme (T. vulgaris). This EO showed in vitro an anti-biofilm activity through the inhibition of plonctonic cell mobility and their attachment on an inert surface and also the deterioration of the sessile structure. The presence of photoactivatable molecules (photosensitizes) in this type of oil allows the optimization of photocatalytic efficiency without hazards relayed to dyes and chemicals reagent. The use of ‘biological and natural tools’ in combination with usual water treatment process can be considered as a safety procedure to reduce and/or to prevent the recontamination of treated water and also to prevent the re-expression of virulent factors by pathogenic bacteria such as biofilm formation with friendly processes.

Keywords: biofilm, essential oil, optimization, phage, photocatalysis, wastewater

Procedia PDF Downloads 149
12618 Ultrasonic Techniques to Characterize and Monitor Water-in-Oil Emulsion

Authors: E. A. Alshaafi, A. Prakash

Abstract:

Oil-water emulsions are commonly encountered in various industrial operations and at different stages of crude oil production and processing. Emulsions are often difficult to track and treat and can cause a number of costly problems which need to be avoided. The characteristics of the emulsion phase can vary with crude composition and types of impurities present in oil. The objectives of this study are the development of ultrasonic techniques to track and characterize emulsion phase generated during production and cleaning of crude oil. The position of emulsion layer is monitored with the help of ultrasonic probes suitably placed in the vessel. The sensitivity of the technique and its potential has been demonstrated based on extensive testing with different oil samples. The technique is also being developed to monitor emulsion phase characteristics such as stability, composition, and droplet size distribution. The ultrasonic parameters recorded are changes in acoustic velocity, signal attenuation and its frequency spectrum. Emulsion has been prepared with light mineral oil sample and the effects of various factors including mixing speed, temperature, surfactant, and solid particles concentrations have been investigated. The applied frequency for ultrasonic waves has been varied from 1 to 5 MHz to carry out a sensitivity analysis. Emulsion droplet structure is observed with optical microscopy and stability is examined by tracking the changes in ultrasonic parameters with time. A model based on ultrasonic attenuation spectroscopy is being developed and tested to track changes in droplet size distribution with time.

Keywords: ultrasonic techniques, emulsion, characterization, droplet size

Procedia PDF Downloads 168
12617 Feasibility Study of a Solar Solid Desiccant Cooling System in Algerian Areas

Authors: N. Hatraf, l. Merabeti, M. Abbas

Abstract:

The interest in air conditioning using renewable energies is increasing. The Thermal energy produced from the solar energy can be transformed to useful cooling and heating through the thermo chemical or thermo physical processes by using thermally activated energy conversion system. Solid desiccant conditioning systems can represent a reliable alternative solution compared with other thermal cooling technologies. Their basic characteristics refer to the capability to regulate both temperature and humidity of the conditioned space in one side and to its potential in electrical energy saving in the other side. The ambient air contains so much water that very high dehumidification rates are required. For a continuous dehumidification of the process air the water adsorbed on the desiccant material has to be removed, which is done by allowing hot air to flow through the desiccant material (regeneration). Basically, solid desiccant cooling system transfers moisture from the inlet air to the silica gel by using two processes: absorption process and the regeneration process; The silica gel in the desiccant wheel which is the most important device in the system absorbs the moisture from the incoming air to the desiccant material in this case the silica gel, then it changes the heat with an rotary heat exchanger, after that the air passes through an humidifier to have the humidity required before entering to the local. The main aim of this paper is to study how the dehumidification rate, the generation temperature and many other factors influence the efficiency of a solid desiccant system by using TRNSYS software.

Keywords: desiccation, dehumidification, TRNSYS, efficiency

Procedia PDF Downloads 412
12616 Development and Psychometric Validation of the Hospitalised Older Adults Dignity Scale for Measuring Dignity during Acute Hospital Admissions

Authors: Abdul-Ganiyu Fuseini, Bernice Redley, Helen Rawson, Lenore Lay, Debra Kerr

Abstract:

Aim: The study aimed to develop and validate a culturally appropriate patient-reported outcome measure for measuring dignity for older adults during acute hospital admissions. Design: A three-phased mixed-method sequential exploratory design was used. Methods: Concept elicitation and generation of items for the scale was informed by older adults’ perspectives about dignity during acute hospitalization and a literature review. Content validity evaluation and pre-testing were undertaken using standard instrument development techniques. A cross-sectional survey design was conducted involving 270 hospitalized older adults for evaluation of construct and convergent validity, internal consistency reliability, and test–retest reliability of the scale. Analysis was performed using Statistical Package for the Social Sciences, version 25. Reporting of the study was guided by the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) checklist. Results: We established the 15-item Hospitalized Older Adults’ Dignity Scale that has a 5-factor structure: Shared Decision-Making (3 items); Healthcare Professional-Patient Communication (3 items); Patient Autonomy (4 items); Patient Privacy (2 items); and Respectful Care (3 items). Excellent content validity, adequate construct and convergent validity, acceptable internal consistency reliability, and good test-retest reliability were demonstrated. Conclusion: We established the Hospitalized Older Adults Dignity Scale as a valid and reliable scale to measure dignity for older adults during acute hospital admissions. Future studies using confirmatory factor analysis are needed to corroborate the dimensionality of the factor structure and external validity of the scale. Routine use of the scale may provide information that informs the development of strategies to improve dignity-related care in the future. Impact: The development and validation of the Hospitalized Older Adults Dignity Scale will provide healthcare professionals with a feasible and reliable scale for measuring older adults’ dignity during acute hospitalization. Routine use of the scale may enable the capturing and incorporation of older patients’ perspectives about their healthcare experience and provide information that informs the development of strategies to improve dignity-related care in the future.

Keywords: dignity, older adults, hospitalisation, scale, patients, dignified care, acute care

Procedia PDF Downloads 84
12615 Wettability of Superhydrophobic Polymer Layers Filled with Hydrophobized Silica on Glass

Authors: Diana Rymuszka, Konrad Terpiłowski, Lucyna Hołysz, Elena Goncharuk, Iryna Sulym

Abstract:

Superhydrophobic surfaces exhibit extremely high water repellency. The commonly accepted basic criterion for such surfaces is a water contact angle larger than 150°, low contact angle hysteresis and low sliding angle. These surfaces are of special interest, because properties such as anti-sticking, anti-contamination and self-cleaning are expected. These properties are attractive for many applications such as anti-sticking of snow for antennas and windows, anti-biofouling paints for boats, waterproof clothing, self-cleaning windshields for automobiles, dust-free coatings or metal refining. The various methods for the preparation of superhydrophobic surfaces since last two decades have been reported, such as phase separation, electrochemical deposition, template method, plasma method, chemical vapor deposition, wet chemical reaction, sol-gel processing, lithography and so on. The aim of the study was to investigate the influence of modified colloidal silica, used as a filler, on the hydrophobicity of the polymer film deposited on the glass support activated with plasma. On prepared surfaces water advancing (ӨA) and receding (ӨR) contact angles were measured and then their total apparent surface free energy was determined using the contact angle hysteresis approach (CAH). The structures of deposited films were observed with the help of an optical microscope. Topographies of selected films were also determined using an optical profilometer. It was found that plasma treatment influence glass surface wetting and energetic properties that is observed in higher adhesion between polymer/filler film and glass support. Using the colloidal silica particles as a filler for the polymer thin film deposited on the glass support, it is possible to produce strongly adhering layers of superhydrophobic properties. The best superhydrophobic properties were obtained for surfaces of the film glass/polimer + modified silica covered in 89 and 100%. The advancing contact angle measured on these surfaces amounts above 150° that leads to under 2 mJ/m2 value of the apparent surface free energy. Such films may have many practical applications, among others, as dust-free coatings or anticorrosion protection.

Keywords: contact angle, plasma, superhydrophobic, surface free energy

Procedia PDF Downloads 467
12614 Fuel Inventory/ Depletion Analysis for a Thorium-Uranium Dioxide (Th-U) O2 Pin Cell Benchmark Using Monte Carlo and Deterministic Codes with New Version VIII.0 of the Evaluated Nuclear Data File (ENDF/B) Nuclear Data Library

Authors: Jamal Al-Zain, O. El Hajjaji, T. El Bardouni

Abstract:

A (Th-U) O2 fuel pin benchmark made up of 25 w/o U and 75 w/o Th was used. In order to analyze the depletion and inventory of the fuel for the pressurized water reactor pin-cell model. The new version VIII.0 of the ENDF/B nuclear data library was used to create a data set in ACE format at various temperatures and process the data using the MAKXSF6.2 and NJOY2016 programs to process the data at the various temperatures in order to conduct this study and analyze cross-section data. The infinite multiplication factor, the concentrations and activities of the main fission products, the actinide radionuclides accumulated in the pin cell, and the total radioactivity were all estimated and compared in this study using the Monte Carlo N-Particle 6 (MCNP6.2) and DRAGON5 programs. Additionally, the behavior of the Pressurized Water Reactor (PWR) thorium pin cell that is dependent on burn-up (BU) was validated and compared with the reference data obtained using the Massachusetts Institute of Technology (MIT-MOCUP), Idaho National Engineering and Environmental Laboratory (INEEL-MOCUP), and CASMO-4 codes. The results of this study indicate that all of the codes examined have good agreements.

Keywords: PWR thorium pin cell, ENDF/B-VIII.0, MAKXSF6.2, NJOY2016, MCNP6.2, DRAGON5, fuel burn-up.

Procedia PDF Downloads 87