Search results for: process variation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17294

Search results for: process variation

16724 Annual and Seasonal Variations in Air Quality Index of the National Capital Region, India

Authors: Surinder Deswal, Vineet Verma

Abstract:

Air Quality Index (AQI) is used as a tool to indicate the level of severity and disseminate the information on air pollution to enable the public to understand the health and environmental impacts of air pollutant concentration levels. The annual and seasonal variation of criteria air pollutants concentration based on the National Ambient Air Quality Monitoring Programme has been conducted for a period of nine years (2006-2014) using the AQI system. AQI was calculated using IND-AQI methodology and Maximum Operator Concept is applied. An attempt has been made to quantify the variations in AQI on an annual and seasonal basis over a period of nine years. Further, year-wise frequency of occurrence of AQI in each category for all the five stations is analysed, which presents in depth analysis of trends over the period of study. The best air quality was observed in the Noida residential area, followed by Noida industrial area during the study period; whereas, Bulandshahar industrial area and Faridabad residential area were observed to have the worst air quality. A shift in the worst air quality from winter to summer season has also been observed during the study period. Further, the level of Respirable Suspended Particulate Matter was found to be above permissible limit at all the stations. The present study helps in enhancing public awareness and calls for the need of immediate measures to be taken to counter-effect the cause of the increasing level of air pollution.

Keywords: air quality index, annual trends, criteria pollutants, seasonal variation

Procedia PDF Downloads 281
16723 A Clustering Algorithm for Massive Texts

Authors: Ming Liu, Chong Wu, Bingquan Liu, Lei Chen

Abstract:

Internet users have to face the massive amount of textual data every day. Organizing texts into categories can help users dig the useful information from large-scale text collection. Clustering, in fact, is one of the most promising tools for categorizing texts due to its unsupervised characteristic. Unfortunately, most of traditional clustering algorithms lose their high qualities on large-scale text collection. This situation mainly attributes to the high- dimensional vectors generated from texts. To effectively and efficiently cluster large-scale text collection, this paper proposes a vector reconstruction based clustering algorithm. Only the features that can represent the cluster are preserved in cluster’s representative vector. This algorithm alternately repeats two sub-processes until it converges. One process is partial tuning sub-process, where feature’s weight is fine-tuned by iterative process. To accelerate clustering velocity, an intersection based similarity measurement and its corresponding neuron adjustment function are proposed and implemented in this sub-process. The other process is overall tuning sub-process, where the features are reallocated among different clusters. In this sub-process, the features useless to represent the cluster are removed from cluster’s representative vector. Experimental results on the three text collections (including two small-scale and one large-scale text collections) demonstrate that our algorithm obtains high quality on both small-scale and large-scale text collections.

Keywords: vector reconstruction, large-scale text clustering, partial tuning sub-process, overall tuning sub-process

Procedia PDF Downloads 435
16722 Exploring the Influence of High-Frequency Acoustic Parameters on Wave Behavior in Porous Bilayer Materials: An Equivalent Fluid Theory Approach

Authors: Mustapha Sadouk

Abstract:

This study investigates the sensitivity of high-frequency acoustic parameters in a rigid air-saturated porous bilayer material within the framework of the equivalent fluid theory, a specific case of the Biot model. The study specifically focuses on the sensitivity analysis in the frequency domain. The interaction between the fluid and solid phases of the porous medium incorporates visco-inertial and thermal exchange, characterized by two functions: the dynamic tortuosity α(ω) proposed by Johnson et al. and the dynamic compressibility β(ω) proposed by Allard, refined by Sadouki for the low-frequency domain of ultrasound. The parameters under investigation encompass porosity, tortuosity, viscous characteristic length, thermal characteristic length, as well as viscous and thermal shape factors. A +30% variation in these parameters is considered to assess their impact on the transmitted wave amplitudes. By employing this larger variation, a more comprehensive understanding of the sensitivity of these parameters is obtained. The outcomes of this study contribute to a better comprehension of the high-frequency wave behavior in porous bilayer materials, providing valuable insights for the design and optimization of such materials across various applications.

Keywords: bilayer materials, ultrasound, sensitivity analysis, equivalent fluid theory, dynamic tortuosity., porous material

Procedia PDF Downloads 86
16721 Spatial Variation in Urbanization and Slum Development in India: Issues and Challenges in Urban Planning

Authors: Mala Mukherjee

Abstract:

Background: India is urbanizing very fast and urbanisation in India is treated as one of the most crucial components of economic growth. Though the pace of urbanisation (31.6 per cent in 2011) is however slower and lower than the average for Asia but the absolute number of people residing in cities and towns has increased substantially. Rapid urbanization leads to urban poverty and it is well represented in slums. Currently India has four metropolises and 53 million plus cities. All of them have significant slum population but the standard of living and success of slum development programmes varies across regions. Objectives: Objectives of the paper are to show how urbanisation and slum development varies across space; to show spatial variation in the standard of living in Indian slums; to analyse how the implementation of slum development policies like JNNURM, Rajiv Awas Yojana varies across cities and bring different results in different regions and what are the factors responsible for such variation. Data Sources and Methodology: Census 2011 data on urban population and slum households and amenities have been used for analysing the regional variation of urbanisation in 53 million plus cities of India. Special focus has been put on Kolkata Metropolitan Area. Statistical techniques like z-score and PCA have been employed to work out Standard of Living Deprivation score for all the slums of 53 metropolises. ARC-GIS software is used for making maps. Standard of living has been measured in terms of access to basic amenities, infrastructure and assets like drinking water, sanitation, housing condition, bank account, and so on. Findings: 1. The first finding reveals that migration and urbanization is very high in Greater Mumbai, Delhi, Bangaluru, Chennai, Hyderabad and Kolkata; but slum population is high in Greater Mumbai (50% population live in slums), Meerut, Faridabad, Ludhiana, Nagpur, Kolkata etc. Though the rate of urbanization is high in southern and western states but the percentage of slum population is high in northern states (except Greater Mumbai). 2. Standard of Living also varies widely. Slums of Greater Mumbai and North Indian Cities score fairly high in the index indicating the fact that standard of living is high in those slums compare to the slums in eastern India (Dhanbad, Jamshedpur, Kolkata). Therefore, though Kolkata have relatively lesser percentage of slum population compare to north and south Indian cities but the standard of living in Kolkata’s slums is deplorable. 3. It is interesting to note that even within Kolkata Metropolitan Area slums located in the southern and eastern municipal towns like Rajpur-Sonarpur, Pujali, Diamond Harbour, Baduria and Dankuni have lower standard of living compare to the slums located in the Hooghly Industrial belt like Titagarh, Rishrah, Srerampore etc. Slums of the Hooghly Industrial Belt are older than the slums located in eastern and southern part of the urban agglomeration. 4. Therefore, urban development and emergence of slums should not be the only issue of urban governance but standard of living should be the main focus. Slums located in the main cities like Delhi, Mumbai, Kolkata get more attention from the urban planners and similarly, older slums in a city receives greater political attention compare to the slums of smaller cities and newly emerged slums of the peripheral parts.

Keywords: urbanisation, slum, spatial variation, India

Procedia PDF Downloads 360
16720 Application Potential of Forward Osmosis-Nanofiltration Hybrid Process for the Treatment of Mining Waste Water

Authors: Ketan Mahawer, Abeer Mutto, S. K. Gupta

Abstract:

The mining wastewater contains inorganic metal salts, which makes it saline and additionally contributes to contaminating the surface and underground freshwater reserves that exist nearby mineral processing industries. Therefore, treatment of wastewater and water recovery is obligatory by any available technology before disposing it into the environment. Currently, reverse osmosis (RO) is the commercially acceptable conventional membrane process for saline wastewater treatment, but consumes an enormous amount of energy and makes the process expensive. To solve this industrial problem with minimum energy consumption, we tested the feasibility of forward osmosis-nanofiltration (FO-NF) hybrid process for the mining wastewater treatment. The FO-NF process experimental results for 0.029M concentration of saline wastewater treated by 0.42 M sodium-sulfate based draw solution shows that specific energy consumption of the FO-NF process compared with standalone NF was slightly above (between 0.5-1 kWh/m3) from conventional process. However, average freshwater recovery was 30% more from standalone NF with same feed and operating conditions. Hence, FO-NF process in place of RO/NF offers a huge possibility for treating mining industry wastewater and concentrates the metals as the by-products without consuming an excessive/large amount of energy and in addition, mitigates the fouling in long periods of treatment, which also decreases the maintenance and replacement cost of the separation process.

Keywords: forward osmosis, nanofiltration, mining, draw solution, divalent solute

Procedia PDF Downloads 118
16719 The Lethal Autonomy and Military Targeting Process

Authors: Serdal Akyüz, Halit Turan, Mehmet Öztürk

Abstract:

The future security environment will have new battlefield and enemies. The boundaries of battlefield and the identity of enemies cannot be noticed easily. The politicians may not want to lose their soldiers in very risky operations. This approach will pave the way for smart machines like war robots and new drones. These machines will have the decision-making ability and act simultaneously. This ability can change the military targeting process. Military targeting process (MTP) benefits from a wide scope of lethal and non-lethal weapons to reach an intended end-state. This process is now managed by people but in the future smart machines can do it by themselves. At first sight, this development seems useful for humanity owing to decrease the casualties in war. Using robots -which can decide, detect, deliver and asses without human support- for homeland security and against terrorist has very crucial risks and threats. Besides, it can decrease the havoc but also increase the collateral damages. This paper examines the current use of smart war machines, military targeting process and presents a new approach to MTP from lethal autonomy concept's point of view.

Keywords: the autonomous weapon systems, the lethal autonomy, military targeting process (MTP)

Procedia PDF Downloads 428
16718 Genetic Diversity in Capsicum Germplasm Based on Inter Simple Sequence Repeat Markers

Authors: Siwapech Silapaprayoon, Januluk Khanobdee, Sompid Samipak

Abstract:

Chili peppers are the fruits of Capsicum pepper plants well known for their fiery burning sensation on the tongue after consumption. They are members of the Solanaceae or common nightshade family along with potato, tomato and eggplant. Thai cuisine has gained popularity for its distinct flavors due to usages of various spices and its heat from the addition of chili pepper. Though being used in little quantity for each dish, chili pepper holds a special place in Thai cuisine. There are many varieties of chili peppers in Thailand, and thirty accessions were collected at Rajamangala University of Technology Lanna, Lampang, Thailand. To effectively manage any germplasm it is essential to know the diversity and relationships among members. Thirty-six Inter Simple Sequence Repeat (ISSRs) DNA markers were used to analyze the germplasm. Total of 335 polymorphic bands was obtained giving the average of 9.3 alleles per marker. Unweighted pair-group mean arithmetic method (UPGMA) clustering of data using NTSYS-pc software indicated that the accessions showed varied levels of genetic similarity ranging from 0.57-1.00 similarity coefficient index indicating significant levels of variation. At SM coefficient of 0.81, the germplasm was separated into four groups. Phenotypic variation was discussed in context of phylogenetic tree clustering.

Keywords: diversity, germplasm, Chili pepper, ISSR

Procedia PDF Downloads 152
16717 Genetic Variations of CYP2C9 in Thai Patients Taking Medical Cannabis

Authors: Naso Isaiah Thanavisuth

Abstract:

Medical cannabis can be used for treatment including pain, multiple sclerosis, Parkinson's disease, and cancer. However, medical cannabis leads to adverse effects (AEs), which is delta-9-tetrahydrocannabinol (THC). In previous studies, the major of THC metabolism enzymes are CYP2C9. Especially, the variation of CYP2C9 gene consist of CYP2C9*2 on exon 3 and CYP2C9*3 on exon 7 to decrease enzyme activity. Notwithstanding, there is no data describing whether the variant of CYP2C9 genes are apharmacogenetics marker for the prediction of THC-induced AEs in Thai patients. We want to investigate the association between CYP2C9 gene and THC-induced AEs in Thai patients. We enrolled 39 Thai patients with medical cannabis treatment who were classified by clinical data. The CYP2C9*2 and *3 genotyping were conducted using the TaqMan real time PCR assay. All Thai patients who received the medical cannabis consist of twenty-four (61.54%) patients were female, and fifteen (38.46%) were male, with age range 27- 87 years. Moreover, the most AEs in Thai patients who were treated with medical cannabis between cases and controls were tachycardia, arrhythmia, dry mouth, and nausea. Particularly, thirteen (72.22%) medical cannabis-induced AEs were female and age range 33 – 69 years. In this study, none of the medical cannabis groups carried CYP2C9*2 variants in Thai patients. The CYP2C9*3 variants (*1/*3, intermediate metabolizer, IM) and (*3/*3, poor metabolizer, PM) were found, three of thirty-nine (7.69%) and one of thirty-nine (2.56%), respectively. Although, our results indicate that there is no found the CYP2C9*2. However, the variation of CYP2C9 allele might serve as a pharmacogenetics marker for screening before initiating the therapy with medical cannabis for the prevention of medical cannabis-induced AEs.

Keywords: CYP2C9, medical cannabis, adverse effects, THC, P450

Procedia PDF Downloads 119
16716 Using Gaussian Process in Wind Power Forecasting

Authors: Hacene Benkhoula, Mohamed Badreddine Benabdella, Hamid Bouzeboudja, Abderrahmane Asraoui

Abstract:

The wind is a random variable difficult to master, for this, we developed a mathematical and statistical methods enable to modeling and forecast wind power. Gaussian Processes (GP) is one of the most widely used families of stochastic processes for modeling dependent data observed over time, or space or time and space. GP is an underlying process formed by unrecognized operator’s uses to solve a problem. The purpose of this paper is to present how to forecast wind power by using the GP. The Gaussian process method for forecasting are presented. To validate the presented approach, a simulation under the MATLAB environment has been given.

Keywords: wind power, Gaussien process, modelling, forecasting

Procedia PDF Downloads 418
16715 Sensitivity and Reliability Analysis of Masonry Infilled Frames

Authors: Avadhoot Bhosale, Robin Davis P., Pradip Sarkar

Abstract:

The seismic performance of buildings with irregular distribution of mass, stiffness and strength along the height may be significantly different from that of regular buildings with masonry infill. Masonry infilled reinforced concrete (RC) frames are very common structural forms used for multi-storey building construction. These structures are found to perform better in past earthquakes owing to additional strength, stiffness and energy dissipation in the infill walls. The seismic performance of a building depends on the variation of material, structural and geometrical properties. The sensitivity of these properties affects the seismic response of the building. The main objective of the sensitivity analysis is to found out the most sensitive parameter that affects the response of the building. This paper presents a sensitivity analysis by considering 5% and 95% probability value of random variable in the infills characteristics, trying to obtain a reasonable range of results representing a wide number of possible situations that can be met in practice by using pushover analysis. The results show that the strength-related variation values of concrete and masonry, with the exception of tensile strength of the concrete, have shown a significant effect on the structural performance and that this effect increases with the progress of damage condition for the concrete. The seismic risk assessments of the selected frames are expressed in terms of reliability index.

Keywords: fragility curve, sensitivity analysis, reliability index, RC frames

Procedia PDF Downloads 323
16714 Screening Some Accessions of Lentil (Lens culinaris M.) for Salt Tolerance at Germination and Early Seedling Stage in Eastern Ethiopia

Authors: Azene Tesfaye, Yohannes Petros, Habtamu Zeleke

Abstract:

To evaluate genetic variation among Ethiopian lentil, laboratory experiment were conducted to screen 12 accessions of lentil (Lens culinaris M.) for salt tolerance. Seeds of 12 Lentil accessions were grown at laboratory (Petri dish) condition with different levels of salinity (0, 2, 4, and 8 dSm-1 NaCl) for 4 weeks. The experimental design was completely randomized design (CRD) in factorial combination with three replications. Data analysis was carried out using SAS software. Average germination time, germination percentage, seedling shoot and root traits, seedling shoot and root weight were evaluated. The two way ANOVA for varieties revealed statistically significant variation among lentil accession, NaCl level and their interactions (p<0.001) with respect to the entire parameters. It was found that salt stress significantly delays germination rate and decreases germination percentage, shoot and root length, seedling shoot and root weight of lentil accessions. The degree of decrement varied with accessions and salinity levels. Accessions 36120, 9235 and 36004 were better salt tolerant than the other accessions. As the result, it is recommended to be used as a genetic resource for the development of lentil accession and other very salt sensitive crop with improved germination under salt stress condition.

Keywords: accession, germination, lentil, NaCl, screening, seedling stage

Procedia PDF Downloads 341
16713 Optimizing Operation of Photovoltaic System Using Neural Network and Fuzzy Logic

Authors: N. Drir, L. Barazane, M. Loudini

Abstract:

It is well known that photovoltaic (PV) cells are an attractive source of energy. Abundant and ubiquitous, this source is one of the important renewable energy sources that have been increasing worldwide year by year. However, in the V-P characteristic curve of GPV, there is a maximum point called the maximum power point (MPP) which depends closely on the variation of atmospheric conditions and the rotation of the earth. In fact, such characteristics outputs are nonlinear and change with variations of temperature and irradiation, so we need a controller named maximum power point tracker MPPT to extract the maximum power at the terminals of photovoltaic generator. In this context, the authors propose here to study the modeling of a photovoltaic system and to find an appropriate method for optimizing the operation of the PV generator using two intelligent controllers respectively to track this point. The first one is based on artificial neural networks and the second on fuzzy logic. After the conception and the integration of each controller in the global process, the performances are examined and compared through a series of simulation. These two controller have prove by their results good tracking of the MPPT compare with the other method which are proposed up to now.

Keywords: maximum power point tracking, neural networks, photovoltaic, P&O

Procedia PDF Downloads 339
16712 Study of the Effect of Inclusion of TiO2 in Active Flux on Submerged Arc Welding of Low Carbon Mild Steel Plate and Parametric Optimization of the Process by Using DEA Based Bat Algorithm

Authors: Sheetal Kumar Parwar, J. Deb Barma, A. Majumder

Abstract:

Submerged arc welding is a very complex process. It is a very efficient and high performance welding process. In this present study an attempt have been done to reduce the welding distortion by increased amount of oxide flux through TiO2 in submerged arc welding process. Care has been taken to avoid the excessiveness of the adding agent for attainment of significant results. Data Envelopment Analysis (DEA) based BAT algorithm is used for the parametric optimization purpose in which DEA Data Envelopment Analysis is used to convert multi response parameters into a single response parameter. The present study also helps to know the effectiveness of the addition of TiO2 in active flux during submerged arc welding process.

Keywords: BAT algorithm, design of experiment, optimization, submerged arc welding

Procedia PDF Downloads 639
16711 Improving the Biocontrol of the Argentine Stem Weevil; Using the Parasitic Wasp Microctonus hyperodae

Authors: John G. Skelly, Peter K. Dearden, Thomas W. R. Harrop, Sarah N. Inwood, Joseph Guhlin

Abstract:

The Argentine stem weevil (ASW; L. bonariensis) is an economically important pasture pest in New Zealand, which causes about $200 million of damage per annum. Microctonus hyperodae (Mh), a parasite of the ASW in its natural range in South America, was introduced into New Zealand to curb the pasture damage caused by the ASW. Mh is an endoparasitic wasp that lays its eggs in the ASW halting its reproduction. Mh was initially successful at preventing ASW proliferation and reducing pasture damage. The effectiveness of Mh has since declined due to decreased parasitism rates and has resulted in increased pasture damage. Although the mechanism through which ASW has developed resistance to Mh has not been discovered, it has been proposed to be due to the different reproductive modes used by Mh and the ASW in New Zealand. The ASW reproduces sexually, whereas Mh reproduces asexually, which has been hypothesised to have allowed the ASW to ‘out evolve’ Mh. Other species within the Microctonus genus reproduce both sexually and asexually. Strains of Microctonus aethiopoides (Ma), a species closely related to Mh, reproduce either by sexual or asexual reproduction. Comparing the genomes of sexual and asexual Microctonus may allow for the identification of the mechanism of asexual reproduction and other characteristics that may improve Mh as a biocontrol agent. The genomes of Mh and three strains of Ma, two of which reproduce sexually and one reproduces asexually, have been sequenced and annotated. The French (MaFR) and Moroccan (MaMO) reproduce sexually, whereas the Irish strain (MaIR) reproduces asexually. Like Mh, The Ma strains are also used as biocontrol agents, but for different weevil species. The genomes of Mh and MaIR were subsequently upgraded using Hi-C, resulting in a set of high quality, highly contiguous genomes. A subset of the genes involved in mitosis and meiosis, which have been identified though the use of Hidden Markov Models generated from genes involved in these processes in other Hymenoptera, have been catalogued in Mh and the strains of Ma. Meiosis and mitosis genes were broadly conserved in both sexual and asexual Microctonus species. This implies that either the asexual species have retained a subset of the molecular components required for sexual reproduction or that the molecular mechanisms of mitosis and meiosis are different or differently regulated in Microctonus to other insect species in which these mechanisms are more broadly characterised. Bioinformatic analysis of the chemoreceptor compliment in Microctonus has revealed some variation in the number of olfactory receptors, which may be related to host preference. Phylogenetic analysis of olfactory receptors highlights variation, which may be able to explain different host range preferences in the Microctonus. Hi-C clustering implies that Mh has 12 chromosomes, and MaIR has 8. Hence there may be variation in gene regulation between species. Genome alignment of Mh and MaIR implies that there may be large scale genome structural variation. Greater insight into the genetics of these agriculturally important group of parasitic wasps may be beneficial in restoring or maintaining their biocontrol efficacy.

Keywords: argentine stem weevil, asexual, genomics, Microctonus hyperodae

Procedia PDF Downloads 157
16710 Energy Efficiency Analysis of Crossover Technologies in Industrial Applications

Authors: W. Schellong

Abstract:

Industry accounts for one-third of global final energy demand. Crossover technologies (e.g. motors, pumps, process heat, and air conditioning) play an important role in improving energy efficiency. These technologies are used in many applications independent of the production branch. Especially electrical power is used by drives, pumps, compressors, and lightning. The paper demonstrates the algorithm of the energy analysis by some selected case studies for typical industrial processes. The energy analysis represents an essential part of energy management systems (EMS). Generally, process control system (PCS) can support EMS. They provide information about the production process, and they organize the maintenance actions. Combining these tools into an integrated process allows the development of an energy critical equipment strategy. Thus, asset and energy management can use the same common data to improve the energy efficiency.

Keywords: crossover technologies, data management, energy analysis, energy efficiency, process control

Procedia PDF Downloads 210
16709 Evaluation of Mixing and Oxygen Transfer Performances for a Stirred Bioreactor Containing P. chrysogenum Broths

Authors: A. C. Blaga, A. Cârlescu, M. Turnea, A. I. Galaction, D. Caşcaval

Abstract:

The performance of an aerobic stirred bioreactor for fungal fermentation was analyzed on the basis of mixing time and oxygen mass transfer coefficient, by quantifying the influence of some specific geometrical and operational parameters of the bioreactor, as well as the rheological behavior of Penicillium chrysogenum broth (free mycelia and mycelia aggregates). The rheological properties of the fungus broth, controlled by the biomass concentration, its growth rate, and morphology strongly affect the performance of the bioreactor. Experimental data showed that for both morphological structures the accumulation of fungus biomass induces a significant increase of broths viscosity and modifies the rheological behavior. For lower P. chrysogenum concentrations (both morphological conformations), the mixing time initially increases with aeration rate, reaches a maximum value and decreases. This variation can be explained by the formation of small bubbles, due to the presence of solid phase which hinders the bubbles coalescence, the rising velocity of bubbles being reduced by the high apparent viscosity of fungus broths. By biomass accumulation, the variation of mixing time with aeration rate is gradually changed, the continuous reduction of mixing time with air input flow increase being obtained for 33.5 g/l d.w. P. chrysogenum. Owing to the superior apparent viscosity, which reduces considerably the relative contribution of mechanical agitation to the broths mixing, these phenomena are more pronounced for P. chrysogenum free mycelia. Due to the increase of broth apparent viscosity, the biomass accumulation induces two significant effects on oxygen transfer rate: the diminution of turbulence and perturbation of bubbles dispersion - coalescence equilibrium. The increase of P. chrysogenum free mycelia concentration leads to the decrease of kla values. Thus, for the considered variation domain of the main parameters taken into account, namely air superficial velocity from 8.36 10-4 to 5.02 10-3 m/s and specific power input from 100 to 500 W/m3, kla was reduced for 3.7 times for biomass concentration increase from 4 to 36.5 g/l d.w. The broth containing P. crysogenum mycelia aggregates exhibits a particular behavior from the point of view of oxygen transfer. Regardless of bioreactor operating conditions, the increase of biomass concentration leads initially to the increase of oxygen mass transfer rate, the phenomenon that can be explained by the interaction of pellets with bubbles. The results are in relation with the increase of apparent viscosity of broths corresponding to the variation of biomass concentration between the mentioned limits. Thus, the apparent viscosity of the suspension of fungus mycelia aggregates increased for 44.2 times and fungus free mycelia for 63.9 times for CX increase from 4 to 36.5 g/l d.w. By means of the experimental data, some mathematical correlations describing the influences of the considered factors on mixing time and kla have been proposed. The proposed correlations can be used in bioreactor performance evaluation, optimization, and scaling-up.

Keywords: biomass concentration, mixing time, oxygen mass transfer, P. chrysogenum broth, stirred bioreactor

Procedia PDF Downloads 340
16708 A Review of the Run to Run (R to R) Control in the Manufacturing Processes

Authors: Khalil Aghapouramin, Mostafa Ranjbar

Abstract:

Run- to- Run (R2 R) control was developed in order to monitor and control different semiconductor manufacturing processes based upon the fundamental engineering frameworks. This technology allows rectification in the optimum direction. This control always had a significant potency in which was appeared in a variety of processes. The term run to run refers to the case where the act of control would take with the aim of getting batches of silicon wafers which produced in a manufacturing process. In the present work, a brief review about run-to-run control investigated which mainly is effective in the manufacturing process.

Keywords: Run-to-Run (R2R) control, manufacturing, process in engineering, manufacturing controls

Procedia PDF Downloads 496
16707 Non-Invasive Viscosity Determination of Liquid Organic Hydrogen Carriers by Alteration of Temperature and Flow Velocity Using Cavity Based Permittivity Measurement

Authors: I. Wiemann, N. Weiß, E. Schlücker, M. Wensing, A. Kölpin

Abstract:

Chemical storage of hydrogen by liquid organic hydrogen carriers (LOHC) is a very promising alternative to compression or cryogenics. These carriers have high energy density and allow at the same time efficient and safe storage of hydrogen under ambient conditions and without leakage losses. Another benefit of LOHC is the possibility to transport it using already available infrastructure for transport of fossil fuels. Efficient use of LOHC is related to a precise process control, which requires a number of sensors in order to measure all relevant process parameters, for example, to measure the level of hydrogen loading of the carrier. The degree of loading is relevant for the energy content of the storage carrier and represents simultaneously the modification in chemical structure of the carrier molecules. This variation can be detected in different physical properties like viscosity, permittivity or density. Thereby, each degree of loading corresponds to different viscosity values. Conventional measurements currently use invasive viscosity measurements or near-line measurements to obtain quantitative information. Avoiding invasive measurements has several severe advantages. Efforts are currently taken to provide a precise, non-invasive measurement method with equal or higher precision of the obtained results. This study investigates a method for determination of the viscosity of LOHC. Since the viscosity can retroactively derived from the degree of loading, permittivity is a target parameter as it is a suitable for determining the hydrogenation degree. This research analyses the influence of common physical properties on permittivity. The permittivity measurement system is based on a cavity resonator, an electromagnetic resonant structure, whose resonation frequency depends on its dimensions as well as the permittivity of the medium inside. For known resonator dimensions, the resonation frequency directly characterizes the permittivity. In order to determine the dependency of the permittivity on temperature and flow velocity, an experimental setup with heating device and flow test bench was designed. By varying temperature in the range of 293,15 K -393,15 K and flow velocity up to 140 mm/s, corresponding changes in the resonation frequency were measured in the hundredths of the GHz range.

Keywords: liquid organic hydrogen carriers, measurement, permittivity, viscosity., temperature, flow process

Procedia PDF Downloads 100
16706 Uncovering the Complex Structure of Building Design Process Based on Royal Institute of British Architects Plan of Work

Authors: Fawaz A. Binsarra, Halim Boussabaine

Abstract:

The notion of complexity science has been attracting the interest of researchers and professionals due to the need of enhancing the efficiency of understanding complex systems dynamic and structure of interactions. In addition, complexity analysis has been used as an approach to investigate complex systems that contains a large number of components interacts with each other to accomplish specific outcomes and emerges specific behavior. The design process is considered as a complex action that involves large number interacted components, which are ranked as design tasks, design team, and the components of the design process. Those three main aspects of the building design process consist of several components that interact with each other as a dynamic system with complex information flow. In this paper, the goal is to uncover the complex structure of information interactions in building design process. The Investigating of Royal Institute of British Architects Plan Of Work 2013 information interactions as a case study to uncover the structure and building design process complexity using network analysis software to model the information interaction will significantly enhance the efficiency of the building design process outcomes.

Keywords: complexity, process, building desgin, Riba, design complexity, network, network analysis

Procedia PDF Downloads 527
16705 The Process of Crisis: Model of Its Development in the Organization

Authors: M. Mikušová

Abstract:

The main aim of this paper is to present a clear and comprehensive picture of the process of a crisis in the organization which will help to better understand its possible developments. For a description of the sequence of individual steps and an indication of their causation and possible variants of the developments, a detailed flow diagram with verbal comment is applied. For simplicity, the process of the crisis is observed in four basic phases called: symptoms of the crisis, diagnosis, action and prevention. The model highlights the complexity of the phenomenon of the crisis and that the various phases of the crisis are interweaving.

Keywords: crisis, management, model, organization

Procedia PDF Downloads 292
16704 Evaluation of Illegal Hunting of Red Deer and Conservation Policy of Department of Environment in Iran

Authors: Tahere Fazilat

Abstract:

Caspian red deer or maral (Cervus elaphus maral) is the largest type of deer in iran. Maral in the past has lived in the north forests of Iran from the Caspian sea coast, Alborz mountains chain and oak forest of Zagros margin from the Azarbaijan up to fars province. However, the generation of them was completely destroyed in the north west and west of Iran. According to reports about 50 years and out of reach of humans. In the present studies, data were collected from 2004 to 2014 in the Mazandaran state Hyrcanian forest by means of guard of environment and justiciary office of department of environment of Mazandaran in this process the all arrested illegal hunting of red deer and the population census, estimation and the correlation of these data was assayed. We provide a first evaluation of how suitable these methods are by comparing the results with population estimates obtained using cohort analysis, and by analyzing the within-season variation in number of seen deer. The data gave us the future of red deer in northern forest of Iran and the results of policy of department of environment in Iran in red deer conservation.

Keywords: illegal hunting, red deer, census, concervation

Procedia PDF Downloads 553
16703 A Further Insight to Foaming in Anaerobic Digester

Authors: Ifeyinwa Rita Kanu, Thomas Aspray, Adebayo J. Adeloye

Abstract:

As a result of the ambiguity and complexity surrounding anaerobic digester foaming, efforts have been made by various researchers to understand the process of anaerobic digester foaming so as to proffer a solution that can be universally applied rather than site specific. All attempts ranging from experimental analysis to comparative review of other process has been futile at explaining explicitly the conditions and process of foaming in anaerobic digester. Studying the available knowledge on foam formation and relating it to anaerobic digester process and operating condition, this study presents a succinct and enhanced understanding of foaming in anaerobic digesters as well as introducing a simple and novel method to identify the onset of anaerobic digester foaming based on analysis of historical data from a field scale system.

Keywords: anaerobic digester, foaming, biogas, surfactant, wastewater

Procedia PDF Downloads 445
16702 Processing of Input Material as a Way to Improve the Efficiency of the Glass Production Process

Authors: Joanna Rybicka-Łada, Magda Kosmal, Anna Kuśnierz

Abstract:

One of the main problems of the glass industry is the still high consumption of energy needed to produce glass mass, as well as the increase in prices, fuels, and raw materials. Therefore, comprehensive actions are taken to improve the entire production process. The key element of these activities, starting from filling the set to receiving the finished product, is the melting process, whose task is, among others, dissolving the components of the set, removing bubbles from the resulting melt, and obtaining a chemically homogeneous glass melt. This solution avoids dust formation during filling and is available on the market. This process consumes over 90% of the total energy needed in the production process. The processes occurring in the set during its conversion have a significant impact on the further stages and speed of the melting process and, thus, on its overall effectiveness. The speed of the reactions occurring and their course depend on the chemical nature of the raw materials, the degree of their fragmentation, thermal treatment as well as the form of the introduced set. An opportunity to minimize segregation and accelerate the conversion of glass sets may be the development of new technologies for preparing and dosing sets. The previously preferred traditional method of melting the set, based on mixing all glass raw materials together in loose form, can be replaced with a set in a thickened form. The aim of the project was to develop a glass set in a selectively or completely densified form and to examine the influence of set processing on the melting process and the properties of the glass.

Keywords: glass, melting process, glass set, raw materials

Procedia PDF Downloads 60
16701 Evaluation of Free Technologies as Tools for Business Process Management

Authors: Julio Sotomayor, Daniel Yucra, Jorge Mayhuasca

Abstract:

The article presents an evaluation of free technologies for business process automation, with emphasis only on tools compatible with the general public license (GPL). The compendium of technologies was based on promoting a service-oriented enterprise architecture (SOA) and the establishment of a business process management system (BPMS). The methodology for the selection of tools was Agile UP. This proposal allows businesses to achieve technological sovereignty and independence, in addition to the promotion of service orientation and the development of free software based on components.

Keywords: BPM, BPMS suite, open-source software, SOA, enterprise architecture, business process management

Procedia PDF Downloads 288
16700 A Gauge Repeatability and Reproducibility Study for Multivariate Measurement Systems

Authors: Jeh-Nan Pan, Chung-I Li

Abstract:

Measurement system analysis (MSA) plays an important role in helping organizations to improve their product quality. Generally speaking, the gauge repeatability and reproducibility (GRR) study is performed according to the MSA handbook stated in QS9000 standards. Usually, GRR study for assessing the adequacy of gauge variation needs to be conducted prior to the process capability analysis. Traditional MSA only considers a single quality characteristic. With the advent of modern technology, industrial products have become very sophisticated with more than one quality characteristic. Thus, it becomes necessary to perform multivariate GRR analysis for a measurement system when collecting data with multiple responses. In this paper, we take the correlation coefficients among tolerances into account to revise the multivariate precision-to-tolerance (P/T) ratio as proposed by Majeske (2008). We then compare the performance of our revised P/T ratio with that of the existing ratios. The simulation results show that our revised P/T ratio outperforms others in terms of robustness and proximity to the actual value. Moreover, the optimal allocation of several parameters such as the number of quality characteristics (v), sample size of parts (p), number of operators (o) and replicate measurements (r) is discussed using the confidence interval of the revised P/T ratio. Finally, a standard operating procedure (S.O.P.) to perform the GRR study for multivariate measurement systems is proposed based on the research results. Hopefully, it can be served as a useful reference for quality practitioners when conducting such study in industries. Measurement system analysis (MSA) plays an important role in helping organizations to improve their product quality. Generally speaking, the gauge repeatability and reproducibility (GRR) study is performed according to the MSA handbook stated in QS9000 standards. Usually, GRR study for assessing the adequacy of gauge variation needs to be conducted prior to the process capability analysis. Traditional MSA only considers a single quality characteristic. With the advent of modern technology, industrial products have become very sophisticated with more than one quality characteristic. Thus, it becomes necessary to perform multivariate GRR analysis for a measurement system when collecting data with multiple responses. In this paper, we take the correlation coefficients among tolerances into account to revise the multivariate precision-to-tolerance (P/T) ratio as proposed by Majeske (2008). We then compare the performance of our revised P/T ratio with that of the existing ratios. The simulation results show that our revised P/T ratio outperforms others in terms of robustness and proximity to the actual value. Moreover, the optimal allocation of several parameters such as the number of quality characteristics (v), sample size of parts (p), number of operators (o) and replicate measurements (r) is discussed using the confidence interval of the revised P/T ratio. Finally, a standard operating procedure (S.O.P.) to perform the GRR study for multivariate measurement systems is proposed based on the research results. Hopefully, it can be served as a useful reference for quality practitioners when conducting such study in industries.

Keywords: gauge repeatability and reproducibility, multivariate measurement system analysis, precision-to-tolerance ratio, Gauge repeatability

Procedia PDF Downloads 262
16699 Effect of Constant and Variable Temperature on the Morphology of TiO₂ Nanotubes Prepared by Two-Step Anodization Method

Authors: Tayyaba Ghani, Mazhar Mehmood, Mohammad Mujahid

Abstract:

TiO₂ nanotubes are receiving immense attraction in the field of dye-sensitized solar cells due to their well-defined nanostructures, efficient electron transport and large surface area as compared to other one dimensional structures. In the present work, we have investigated the influence of temperature on the morphology of anodically produced self-organized Titanium oxide nanotubes (TiNTs). TiNTs are synthesized by two-step anodization method in an ethylene glycol based electrolytes containing ammonium fluoride. Experiments are performed at constant anodization voltage for two hours. An investigation by the SEM images reveals that if the temperature is kept constant during the anodizing experiment, variation in the average tube diameter is significantly reduced. However, if the temperature is not controlled then due to the exothermic nature of reactions for the formation of TiNTs, the temperature of electrolyte keep on increasing. This variation in electrolyte bath temperature introduced strong variations in tube diameter (20 nm to 160 nm) along the length of tubes. Current profiles, recorded during the anodization experiment, predict the effect of constant and varying experimental temperatures as well. In both cases, XRD results show the complete anatase crystal structure of nanotube upon annealing at 450 °C. Present work highlights the importance of constant temperature during the anodization experiments in order to develop an ordered array of nanotubes with a uniform tube diameter.

Keywords: anodization, ordering, temperature, TiO₂ nanotubes

Procedia PDF Downloads 171
16698 Optimal Design of Shape for Increasing the Bonding Pressure Drawing of Hot Clad Pipes by Finite Element Method Analysis

Authors: Seok-Hyeon Park, Joon-Hong Park, Mok-Tan-Ahn, Seong-Hun Ha

Abstract:

Clad Pipe is made of a different kind of material, which is different from the internal and external materials, for the corrosive crude oil transportation tube. Most of the clad pipes are produced by hot rolling. However, problems arise due to high product prices and excessive process numbers. Therefore, in this study, the hot drawing process with excellent product cost, process number and productivity is applied. Due to the nature of the drawing process, the shape of the mold greatly influences the formability of the material and the bonding pressure of the two materials because it is a process of drawing the material to the die and reducing the cross-sectional area. Also, in case of hot drawing, if the mold shape is not suitable due to the increased fluidity of the material, it may cause problems such as tearing and stretching. Therefore, in this study, we try to find the shape of the mold which suppresses the occurrence of defects in the hot drawing process and maximizes the bonding pressure between the two materials through the mold shape optimization design by FEM analysis.

Keywords: clad pipe, hot drawing, bonding pressure, mold shape

Procedia PDF Downloads 305
16697 Evaluation of Soil Erosion Risk and Prioritization for Implementation of Management Strategies in Morocco

Authors: Lahcen Daoudi, Fatima Zahra Omdi, Abldelali Gourfi

Abstract:

In Morocco, as in most Mediterranean countries, water scarcity is a common situation because of low and unevenly distributed rainfall. The expansions of irrigated lands, as well as the growth of urban and industrial areas and tourist resorts, contribute to an increase of water demand. Therefore in the 1960s Morocco embarked on an ambitious program to increase the number of dams to boost water retention capacity. However, the decrease in the capacity of these reservoirs caused by sedimentation is a major problem; it is estimated at 75 million m3/year. Dams and reservoirs became unusable for their intended purposes due to sedimentation in large rivers that result from soil erosion. Soil erosion presents an important driving force in the process affecting the landscape. It has become one of the most serious environmental problems that raised much interest throughout the world. Monitoring soil erosion risk is an important part of soil conservation practices. The estimation of soil loss risk is the first step for a successful control of water erosion. The aim of this study is to estimate the soil loss risk and its spatial distribution in the different fields of Morocco and to prioritize areas for soil conservation interventions. The approach followed is the Revised Universal Soil Loss Equation (RUSLE) using remote sensing and GIS, which is the most popular empirically based model used globally for erosion prediction and control. This model has been tested in many agricultural watersheds in the world, particularly for large-scale basins due to the simplicity of the model formulation and easy availability of the dataset. The spatial distribution of the annual soil loss was elaborated by the combination of several factors: rainfall erosivity, soil erodability, topography, and land cover. The average annual soil loss estimated in several basins watershed of Morocco varies from 0 to 50t/ha/year. Watersheds characterized by high-erosion-vulnerability are located in the North (Rif Mountains) and more particularly in the Central part of Morocco (High Atlas Mountains). This variation of vulnerability is highly correlated to slope variation which indicates that the topography factor is the main agent of soil erosion within these basin catchments. These results could be helpful for the planning of natural resources management and for implementing sustainable long-term management strategies which are necessary for soil conservation and for increasing over the projected economic life of the dam implemented.

Keywords: soil loss, RUSLE, GIS-remote sensing, watershed, Morocco

Procedia PDF Downloads 461
16696 The Effect of AMBs Number of a Dynamics Behavior of a Spur Gear Reducer in Non-Stationary Regime

Authors: Najib Belhadj Messaoud, Slim Souissi

Abstract:

The non-linear dynamic behavior of a single stage spur gear reducer is studied in this paper in transient regime. Driving and driver rotors are, respectively, powered by a motor torque Cm and loaded by a resistive torque Cr. They are supported by two identical Active Magnetic Bearings (AMBs). Gear excitation is induced by the motor torque and load variation in addition to the fluctuation of meshing stiff-ness due to the variation of input rotational speed. Three models of AMBs were used with four, six and eight magnets. They are operated by P.D controller and powered by control and bias currents. The dynamic parameters of the AMBs are modeled by stiffness and damping matrices computed by the derivation of the electromagnetic forces. The equations of motion are solved iteratively using Newmark time integration method. In the first part of the study, the model is powered by an electric motor and by a four strokes four cylinders diesel engine in the second part. The numerical results of the dynamic responses of the system come to confirm the significant effect of the transient regime on the dynamic behavior of a gear set, particularly in the case of engine acyclism condition. Results also confirm the influence of the magnet number by AMBs on the dynamic behavior of the system. Indeed, vibrations were more important in the case of gear reducer supported by AMBs with four magnets.

Keywords: motor, stiffness, gear, acyclism, fluctuation, torque

Procedia PDF Downloads 459
16695 Comparative Study of Bending Angle in Laser Forming Process Using Artificial Neural Network and Fuzzy Logic System

Authors: M. Hassani, Y. Hassani, N. Ajudanioskooei, N. N. Benvid

Abstract:

Laser Forming process as a non-contact thermal forming process is widely used to forming and bending of metallic and non-metallic sheets. In this process, according to laser irradiation along a specific path, sheet is bent. One of the most important output parameters in laser forming is bending angle that depends on process parameters such as physical and mechanical properties of materials, laser power, laser travel speed and the number of scan passes. In this paper, Artificial Neural Network and Fuzzy Logic System were used to predict of bending angle in laser forming process. Inputs to these models were laser travel speed and laser power. The comparison between artificial neural network and fuzzy logic models with experimental results has been shown both of these models have high ability to prediction of bending angles with minimum errors.

Keywords: artificial neural network, bending angle, fuzzy logic, laser forming

Procedia PDF Downloads 597