Search results for: long-term polymer degradation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3065

Search results for: long-term polymer degradation

2495 Stimuli Responsives of Crosslinked Poly on 2-HydroxyEthyl MethAcrylate – Optimization of Parameters by Experimental Design

Authors: Tewfik Bouchaour, Salah Hamri, Yasmina Houda Bendahma, Ulrich Maschke

Abstract:

Stimuli-responsive materials based on UV crosslinked acrylic polymer networks are fabricated. A various kinds of polymeric systems, hydrophilic polymers based on 2-Hydroxyethyl methacrylate have been widely studied because of their ability to simulate biological tissues, which leads to many applications. The acrylic polymer network PHEMA developed by UV photopolymerization has been used for dye retention. For these so-called smart materials, the properties change in response to an external stimulus. In this contribution, we report the influence of some parameters (initial composition, temperature, and nature of components) in the properties of final materials. Optimization of different parameters is examined by experimental design.

Keywords: UV photo-polymerization, PHEMA, external stimulus, optimization

Procedia PDF Downloads 242
2494 Investigating the Thermal Characteristics of Reclaimed Solid Waste from a Landfill Site Using Thermogravimetry

Authors: S. M. Al-Salem, G.A. Leeke, H. J. Karam, R. Al-Enzi, A. T. Al-Dhafeeri, J. Wang

Abstract:

Thermogravimetry has been popularized as a thermal characterization technique since the 1950s. It aims at investigating the weight loss against both reaction time and temperature, whilst being able to characterize the evolved gases from the volatile components of the organic material being tested using an appropriate hyphenated analytical technique. In an effort to characterize and identify the reclaimed waste from an unsanitary landfill site, this approach was initiated. Solid waste (SW) reclaimed from an active landfill site in the State of Kuwait was collected and prepared for characterization in accordance with international protocols. The SW was segregated and its major components were identified after washing and air drying. Shredding and cryomilling was conducted on the plastic solid waste (PSW) component to yield a material that is representative for further testing and characterization. The material was subjected to five heating rates (b) with minimal repeatable weight for high accuracy thermogravimetric analysis (TGA) following the recommendation of the International Confederation for Thermal Analysis and Calorimetry (ICTAC). The TGA yielded thermograms that showed an off-set from typical behavior of commercial grade resin which was attributed to contact of material with soil and thermal/photo-degradation.

Keywords: polymer, TGA, pollution, landfill, waste, plastic

Procedia PDF Downloads 121
2493 Review of Suitable Advanced Oxidation Processes for Degradation of Organic Compounds in Produced Water during Enhanced Oil Recovery

Authors: Smita Krishnan, Krittika Chandran, Chandra Mohan Sinnathambi

Abstract:

Produced water and its treatment and management are growing challenges in all producing regions. This water is generally considered as a nonrevenue product, but it can have significant value in enhanced oil recovery techniques if it meets the required quality standards. There is also an interest in the beneficial uses of produced water for agricultural and industrial applications. Advanced Oxidation Process is a chemical technology that has been growing recently in the wastewater treatment industry, and it is highly recommended for non-easily removal of organic compounds. The efficiency of AOPs is compound specific, therefore, the optimization of each process should be done based on different aspects.

Keywords: advanced oxidation process, photochemical processes, degradation, organic contaminants

Procedia PDF Downloads 495
2492 Synthesis and Gas Transport Properties of Polynorbornene Dicarboximides Bearing Trifluoromethyl Isomer Moieties

Authors: Jorge A. Cruz-Morales, Joel Vargas, Arlette A. Santiago, Mikhail A. Tlenkopatchev

Abstract:

In industrial processes such as oil extraction and refining, products are handled or generated in the gas phase, which represents a challenge in terms of treatment and purification. During the past three decades, new scientific findings and technological advances in separation based on the use of membranes have led to simpler and more efficient gas separation processes, optimizing the use of energy and generating less pollution. This work reports the synthesis and ring-opening metathesis polymerization (ROMP) of new structural isomers based on norbornene dicarboximides bearing trifluoromethyl moieties, specifically N-2-trifluoromethylphenyl-exo,endo-norbornene-5,6-dicarboximide (2a) and N-3-trifluoromethylphenyl-exo,endo-norbornene-5,6-dicarboximide (2b), using tricyclohexylphosphine [1,3-bis(2,4,6-trimethylphenyl)-4,5-dihydroimidazol-2-ylidene][benzylidene] ruthenium dichloride (I), bis(tricyclohexylphosphine) benzylidene ruthenium (IV) dichloride (II), and bis(tricyclohexylphosphine) p-fluorophenylvinylidene ruthenium (II) dichloride (III). It was observed that the -CF3 moiety attached at the ortho position of the aromatic ring increases thermal and mechanical properties of the polymer, whereas meta substitution has the opposite effect. A comparative study of gas transportation in membranes, based on these fluorinated polynorbornenes, showed that -CF3 ortho substitution increases permeability of the polymer membrane as a consequence of the increase in both gas solubility and gas diffusion. In contrast, gas permeability coefficients of the meta-substituted polymer membrane are rather similar to those of that which is non-fluorinated; this can be attributed to a lower fractional free volume. The meta-substituted polymer membrane, besides showing the largest permselectivity coefficients of all the isomers studied here, was also found to have one of the largest permselectivity coefficients for separating H2/C3H6 into glassy polynorbornene dicarboximides.

Keywords: gas transport membranes, polynorbornene dicarboximide, ROMP, structural isomers

Procedia PDF Downloads 245
2491 Ultrasonic Micro Injection Molding: Manufacturing of Micro Plates of Biomaterials

Authors: Ariadna Manresa, Ines Ferrer

Abstract:

Introduction: Ultrasonic moulding process (USM) is a recent injection technology used to manufacture micro components. It is able to melt small amounts of material so the waste of material is certainly reduced comparing to microinjection molding. This is an important advantage when the materials are expensive like medical biopolymers. Micro-scaled components are involved in a variety of uses, such as biomedical applications. It is required replication fidelity so it is important to stabilize the process and minimize the variability of the responses. The aim of this research is to investigate the influence of the main process parameters on the filling behaviour, the dimensional accuracy and the cavity pressure when a micro-plate is manufactured by biomaterials such as PLA and PCL. Methodology or Experimental Procedure: The specimens are manufactured using a Sonorus 1G Ultrasound Micro Molding Machine. The used geometry is a rectangular micro-plate of 15x5mm and 1mm of thickness. The materials used for the investigation are PLA and PCL due to biocompatible and degradation properties. The experimentation is divided into two phases. Firstly, the influence of process parameters (vibration amplitude, sonotrodo velocity, ultrasound time and compaction force) on filling behavior is analysed, in Phase 1. Next, when filling cavity is assured, the influence of both cooling time and force compaction on the cavity pressure, part temperature and dimensional accuracy is instigated, which is done in Phase. Results and Discussion: Filling behavior depends on sonotrodo velocity and vibration amplitude. When the ultrasonic time is higher, more ultrasonic energy is applied and the polymer temperature increases. Depending on the cooling time, it is possible that when mold is opened, the micro-plate temperature is too warm. Consequently, the polymer relieve its stored internal energy (ultrasonic and thermal) expanding through the easier direction. This fact is reflected on dimensional accuracy, causing micro-plates thicker than the mold. It has also been observed the most important fact that affects cavity pressure is the compaction configuration during the manufacturing cycle. Conclusions: This research demonstrated the influence of process parameters on the final micro-plated manufactured. Future works will be focused in manufacturing other geometries and analysing the mechanical properties of the specimens.

Keywords: biomaterial, biopolymer, micro injection molding, ultrasound

Procedia PDF Downloads 275
2490 A Crystallization Kinetic Model for Long Fiber-Based Composite with Thermoplastic Semicrystalline Polymer Matrix

Authors: Nicolas Bigot, M'hamed Boutaous, Nahiene Hamila, Shihe Xin

Abstract:

Composite materials with polymer matrices are widely used in most industrial areas, particularly in aeronautical and automotive ones. Thanks to the development of a high-performance thermoplastic semicrystalline polymer matrix, those materials exhibit more and more efficient properties. The polymer matrix in composite materials can manifest a specific crystalline structure characteristic of crystallization in a fibrous medium. In order to guarantee a good mechanical behavior of structures and to optimize their performances, it is necessary to define realistic mechanical constitutive laws of such materials considering their physical structure. The interaction between fibers and matrix is a key factor in the mechanical behavior of composite materials. Transcrystallization phenomena which develops in the matrix around the fibers constitute the interphase which greatly affects and governs the nature of the fiber-matrix interaction. Hence, it becomes fundamental to quantify its impact on the thermo-mechanical behavior of composites material in relationship with processing conditions. In this work, we propose a numerical model coupling the thermal and crystallization kinetics in long fiber-based composite materials, considering both the spherulitic and transcrystalline types of the induced structures. After validation of the model with comparison to results from the literature and noticing a good correlation, a parametric study has been led on the effects of the thermal kinetics, the fibers volume fractions, the deformation, and the pressure on the crystallization rate in the material, under processing conditions. The ratio of the transcrystallinity is highlighted and analyzed with regard to the thermal kinetics and gradients in the material. Experimental results on the process are foreseen and pave the way to establish a mechanical constitutive law describing, with the introduction of the role on the crystallization rates and types on the thermo-mechanical behavior of composites materials.

Keywords: composite materials, crystallization, heat transfer, modeling, transcrystallization

Procedia PDF Downloads 184
2489 A Comparative Study on Creep Modeling in Composites

Authors: Roham Rafiee, Behzad Mazhari

Abstract:

Composite structures, having incredible properties, have gained considerable popularity in the last few decades. Among all types, polymer matrix composites are being used extensively due to their unique characteristics including low weight, convenient fabrication process and low cost. Having polymer as matrix, these type of composites show different creep behavior when compared to metals and even other types of composites since most polymers undergo creep even in room temperature. One of the most challenging topics in creep is to introduce new techniques for predicting long term creep behavior of materials. Depending on the material which is being studied the appropriate method would be different. Methods already proposed for predicting long term creep behavior of polymer matrix composites can be divided into five categories: (1) Analytical Modeling, (2) Empirical Modeling, (3) Superposition Based Modeling (Semi-empirical), (4) Rheological Modeling, (5) Finite Element Modeling. Each of these methods has individual characteristics. Studies have shown that none of the mentioned methods can predict long term creep behavior of all PMC composites in all circumstances (loading, temperature, etc.) but each of them has its own priority in different situations. The reason to this issue can be found in theoretical basis of these methods. In this study after a brief review over the background theory of each method, they are compared in terms of their applicability in predicting long-term behavior of composite structures. Finally, the explained materials are observed through some experimental studies executed by other researchers.

Keywords: creep, comparative study, modeling, composite materials

Procedia PDF Downloads 426
2488 Effects of an Added Foaming Agent on Hydro-Mechanical Properties of Soil

Authors: Moez Selmi, Mariem Kacem, Mehrez Jamei, Philippe Dubujet

Abstract:

Earth pressure balance (EPB) tunnel boring machines are designed for digging in different types of soil, especially clay soils. This operation requires the treatment of soil by lubricants to facilitate the procedure of excavation. A possible use of this soil is limited by the effect of treatment on the hydro-mechanical properties of the soil. This work aims to study the effect of a foaming agent on the hydro-mechanical properties of clay soil. The injection of the foam agent in the soil leads to create a soil matrix in which they are incorporated gas bubbles. The state of the foam in the soil is scalable thanks to the degradation of the gas bubbles in the soil.

Keywords: EPB, clay soils, foam agent, hydro-mechanical properties, degradation

Procedia PDF Downloads 355
2487 Dynamics Characterizations of Dielectric Electro- Active Polymer Pull Actuator for Vibration Control


Authors: Abdul Malek Abdul Wahab, Emiliano Rustighi

Abstract:

The elastomeric dielectric material has become a new alternative for actuator technology recently. The characteristic of dielectric elastomer that induces significant strain by applying voltage attracts the attention of many researchers to study this material in actuator technology. Thus, for a couple of years, Danfoss Ventures A/S has established their dielectric electro-active polymer (DEAP), which called Polypower. The main objective of this work was to investigate the characterization of PolyPower folded actuator as a ‘pull’ actuator for vibration control. A range of experiment was carried out on folded actuator including passive (without electrical stimulate) and active (with electrical stimulate) testing. For both categories static and dynamic testing have been done to determine the behavior of folded DEAP actuator. Voltage-Strain experiment determines that DEAP folded actuator is the non-linear system. The voltage supplied has no effect on the natural frequency which shows by ongoing dynamic testing. Finally, varies AC voltage with different amplitude and frequency has been provided to DEAP folded actuator. This experiment shows the parameter that influences the performance of DEAP folded actuator. As a result, the actuator performance dominated by the frequency dependence of the elastic response and was less influenced by dielectric properties.

Keywords: elastomeric dielectric, dielectric electro-active polymer, folded actuator, voltage-strain

Procedia PDF Downloads 309
2486 Non Destructive Testing for Evaluation of Defects and Interfaces in Metal Carbon Fiber Reinforced Polymer Hybrids

Authors: H.-G. Herrmann, M. Schwarz, J. Summa, F. Grossmann

Abstract:

In this work, different non-destructive testing methods for the characterization of defects and interfaces are presented. It is shown that, by means of active thermography, defects in the interface and in the carbon fiber reinforced polymer (CFRP) itself can be detected and determined. The bonding of metal and thermoplastic can be characterized very well by ultrasonic testing with electromagnetic acoustic transducers (EMAT). Mechanical testing is combined with passive thermography to correlate mechanical values with the defect-size. There is also a comparison between active and passive thermography. Mechanical testing shows the influence of different defects. Furthermore, a correlation of defect-size and loading to rupture was performed.

 

Keywords: defect evaluation, EMAT, mechanical testing, thermography

Procedia PDF Downloads 412
2485 Efficiency of Visible Light Induced Photocatalytic Oxidation of Toluene and Benzene by a Photocatalytic Textile

Authors: Z. Younsi, L. Koufi, H. Gidik, D. Lahem, W. Wim Thielemans

Abstract:

This study investigated the efficiency of photocatalytic textile to remove the Volatile Organic Compounds (VOCs) present in indoor air. Functionalization of the fabric was achieved by adding a photocatalyst material active in the visible spectrum of light. This is a modified titanium dioxide photocatalyst doped with non-metal ions synthesized via sol-gel process, which should allow the degradation of the pollutants – ideally into H₂O and CO₂ – using photocatalysis based on visible light and no additionnal external energy source. The visible light photocatalytic activity of textile sample was evaluated for toluene and benzene gaseous removal, under the visible irradiation, in a test chamber with the total volume of 1m³. The suggested approach involves experimental investigations of the global behavior of the photocatalytic textile. The experimental apparatus permits simultaneous measurements of the degradation of pollutants and presence of eventually formed by-products. It also allows imposing and measuring concentration variations with respect to selected time scales in the test chamber. The observed results showed that the amount of TiO₂ incorporation improved the photocatalytic efficiency of functionalized textile significantly under visible light. The results obtained with such textile are very promising.

Keywords: benzene, C₆H₆, efficiency, photocatalytic degradation, textile fabrics, titanium dioxide, TiO₂, toluene, C₇H₈, visible light

Procedia PDF Downloads 165
2484 Recovery of Polymers from Electronic Waste - An Analysis

Authors: Anis A. Ansari, Syed Javed Arif

Abstract:

From the last two-three decades, all countries are continuously generating huge quantities of electronic waste in the form of obsolete computers, gadgets and other discarded electronic instruments mainly due to evolution of newer technologies as a result of constant efforts in research and development in this area. This is the primary reason why waste from the electronic industry is increasing exponentially day by day. Thermoset and thermoplastic polymers, which are the major constituents in every electronic waste, may create a new business opportunity if these are recovered and recycled properly. This may reduce our directly dependency on petroleum and petro-products for polymer materials and also create a potential market for recycled polymers to improve economy. The main theme of this paper is to evolve the potential of recovery and recycling of polymers from the waste being generated globally in the form of discarded electronic products.

Keywords: polymer recovery, electronic waste, petroleum, thermoplastics

Procedia PDF Downloads 494
2483 Swelling Behavior of Cross-Linked Poly (2-hydroxyethyl methacrylate)

Authors: Salah Hamri, Tewfik Bouchaour, Ulrich Maschke

Abstract:

The aim of this works is the study of swelling ratio of cross-linked polymer networks poly (2-hydroxyethyl methacrylate) (PHEMA). The system composed of erythrosine and Triethanolamine, in aqueous medium, is used as photo-initiator and 1,6-Hexanediol diacrylate as cross-linker. The analysis of UV-visible and infrared spectra, which were taken at different times during polymerization/cross linking, makes it possible to obtain useful information on the reaction mechanism. The swelling behavior was study by changing the nature of solvent, dye sensitizer (erythrosine, rose Bengal and eosin), and pH of the medium. The exploitation of experimental results using Fick diffusion model is also expected and shows a good correlation between theoretical and experimental results.

Keywords: cross-linker, photo-sensitizer, polymer network, swelling ratio

Procedia PDF Downloads 301
2482 A Study of the Resistance of Protective Glove Materials to Metalworking Fluids

Authors: Nguyen-Tri Phuong, Triki Ennouri, Gauvin Chantal, Tuduri Ludovic, Vu-Khanh Toan

Abstract:

Hand injuries due to mechanical hazards such as cuts and punctures are major risks and concerns for several occupational groups, particularly for workers in the metal manufacturing sector and mechanical automotive services. Personal protective equipment such as gloves or clothing is necessary for many professionals to protect against a variety of occupational hazards, which arise daily in their work environments. In many working places such as metal manufacturing or automotive services, mechanical hazards often occur together with industrial contaminants, particularly metalworking fluids (MWFs). The presence of these contaminants could modify the properties of gloves made from polymeric materials and thus increase the risk of hand injuries for workers. The focus of this study is to determine the swelling characteristics and the resistance of six polymer membranes when they are contaminated with several industrial metalworking fluids. These polymer membranes, commonly used in protective gloves, are nitrile, neoprene, vinyl, butyl, polyurethane and latex rubbers. Changes swelling index were continuously followed during the contamination procedure to compare the performance of each polymer under different conditions. The modification of the samples surface, tensile properties during the contamination process was also investigated. The effect of temperature on mechanical properties and morphology of material was also examined.

Keywords: metalworking fluid, swelling behavior, protective glove materials, elastomers

Procedia PDF Downloads 384
2481 Nano Sol Based Solar Responsive Smart Window for Aircraft

Authors: K. A. D. D. Kuruppu, R. M. De Silva, K. M. N. De Silva

Abstract:

This research work was based on developing a solar responsive aircraft window panel which can be used as a self-cleaning surface and also a surface which degrade Volatile Organic compounds (VOC) available in the aircraft cabin areas. Further, this surface has the potential of harvesting energy from Solar. The transparent inorganic nano sol solution was prepared. The obtained sol solution was characterized using X-ray diffraction, Particle size analyzer and FT-IR. The existing nano material which shows the similar characteristics was also used to compare the efficiencies with the newly prepared nano sol. Nano sol solution was coated on cleaned four aircraft window pieces separately using a spin coater machine. The existing nano material was dissolved and prepared a solution having the similar concentration as nano sol solution. Pre-cleaned four aircraft window pieces were coated with this solution and the rest cleaned four aircraft window pieces were considered as control samples. The control samples were uncoated from anything. All the window pieces were allowed to dry at room temperature. All the twelve aircraft window pieces were uniform in all the factors other than the type of coating. The surface morphologies of the samples were analyzed using SEM. The photocatalytic degradation of VOC was determined after incorporating gas of Toluene to each sample followed by the analysis done by UV-VIS spectroscopy. The self- cleaning capabilities were analyzed after adding of several types of stains on the window pieces. The self-cleaning property of each sample was analyzed using UV-VIS spectroscopy. The highest photocatalytic degradation of Volatile Organic compound and the highest photocatalytic degradation of stains were obtained for the samples which were coated by the nano sol solution. Therefore, the experimental results clearly show that there is a potential of using this nano sol in aircraft window pieces which favors the self-cleaning property as well as efficient photocatalytic degradation of VOC gases. This will ensure safer environment inside aircraft cabins.

Keywords: aircraft, nano, smart windows, solar

Procedia PDF Downloads 243
2480 Effect of the Binary and Ternary Exchanges on Crystallinity and Textural Properties of X Zeolites

Authors: H. Hammoudi, S. Bendenia, K. Marouf-Khelifa, R. Marouf, J. Schott, A. Khelifa

Abstract:

The ionic exchange of the NaX zeolite by Cu2+ and/or Zn2+ cations is progressively driven while following the development of some of its characteristic: crystallinity by XR diffraction, profile of isotherms, RI criterion, isosteric adsorption heat and microporous volume using both the Dubinin–Radushkevich (DR) equation and the t-plot through the Lippens–de Boer method which also makes it possible to determine the external surface area. Results show that the cationic exchange process, in the case of Cu2+ introduced at higher degree, is accompanied by crystalline degradation for Cu(x)X, in contrast to Zn2+-exchanged zeolite X. This degradation occurs without significant presence of mesopores, because the RI criterion values were found to be much lower than 2.2. A comparison between the binary and ternary exchanges shows that the curves of CuZn(x)X are clearly below those of Zn(x)X and Cu(x)X, whatever the examined parameter. On the other hand, the curves relating to CuZn(x)X tend towards those of Cu(x)X. This would again confirm the sensitivity of the crystalline structure of CuZn(x)X with respect to the introduction of Cu2+ cations. An original result is the distortion of the zeolitic framework of X zeolites at middle exchange degree, when Cu2+ competes with another divalent cation, such as Zn2+, for the occupancy of sites distributed within zeolitic cavities. In other words, the ternary exchange accentuates the crystalline degradation of X zeolites. An unexpected result also is the no correlation between crystal damage and the external surface area.

Keywords: adsorption, crystallinity, ion exchange, zeolite

Procedia PDF Downloads 246
2479 Reinforcing Fibre Reinforced Polymer (FRP) Bridge Decks with Steel Plates

Authors: M. Alpaslan Koroglu

Abstract:

Fibre reinforced polymer (FRP) bridge decks have become an innovative alternative, and they have offered many advantages, and this has been increasing attention for applications in not only reinforcement of existing bridges decks but also construction of new bridges decks. The advantages of these FRP decks are; lightweight, high-strength FRP materials, corrosion resistance. However, this high strength deck is not ductile. In this study, the behaviour of hybrid FRP-steel decks are investigated. All FRP decks was analysed with the commercial package ABAQUS. In the FE model, the webs and flanges were discretised by 4 nodes shell elements. A full composite action between the steel and the FRP composite was assumed in the FE analysis because the bond-slip behaviour was unknown at that time. The performance of the proposed hybrid FRP deck panel with steel plates was evaluated by means of FE analysis.

Keywords: FRP, deck, bridge, finite element

Procedia PDF Downloads 468
2478 Effect of Iron Contents on Rheological Properties of Syndiotactic Polypropylene/iron Composites

Authors: Naveed Ahmad, Farooq Ahmad, Abdul Aal

Abstract:

The effect of iron contents on the rheological behavior of sPP/iron composites in the melt phase was investigated using a series of syndiotactic polypropylene/iron (sPP/iron) composite samples. Using the Advanced Rheometric Expansion System, studies with small amplitude oscillatory shear were conducted (ARES). It was discovered that the plateau modulus rose along with the iron loading. Also it was found that both entanglement molecular weight and packing length decrease with increase in iron loading.. This finding demonstrates how iron content in polymer/iron composites affects chain parameters and dimensions, which in turn affects the entire chain dynamics.

Keywords: plateau modulus, packing lenght, polymer/iron composites, rheology, entanglement molecular weight

Procedia PDF Downloads 146
2477 Optimization of Hydrogel Conductive Nanocomposite as Solar Cell

Authors: Shimaa M. Elsaeed, Reem K. Farag, Ibrahim M. Nassar

Abstract:

Hydrogel conductive polymer nanocomposite fabricated via in-situ polymerization of polyaniline (PANI) inside thermosensitive hydrogels based on hydroxy ethyl meth acrylate (HEMA) copolymer with 2-acrylamido-2-methyl propane sulfonic acid (AMPS). SEM micrographs show the nanometric size of the conductive material (polyaniline, PANI) dispersed in the hydrogel matrix. The swelling parameters of hydrogel are measured. The incorporation of PANI improves the mechanical properties and swelling up to 30,000% without breaking. X-ray diffraction shows that typical polyaniline crystallization is formed in composite, which is advantageous to increase the electrical conductivity of the composite hydrogel. Open-circuit voltage (I-V) curve fill factor of the highest photo-conversion efficiency and enhanced to use in solar cell.

Keywords: hydrogel, solar cell, conductive polymer, nanocomposite

Procedia PDF Downloads 390
2476 Modeling of the Thermal Exchanges of an Intelligent Polymer Film for the Development of New Generations of Greenhouses

Authors: Ziani Zakarya, Mahdad Moustafa Yassine

Abstract:

Greenhouse farming has greatly contributed to the development of modern agriculture by optimizing crops, especially market gardening, ornamental horticulture, and recently, fruit species ... Greenhouse cultivation has enabled farmers to produce fruits and vegetables out of season while guaranteeing them a good production, and therefore a considerable gain throughout the year. However, this mode of production has shown its limits, especially in extreme conditions, such as the continental steppe climate and the Saharan climate, which are characterized by significant thermal amplitudes and strong winds, making it impossible to use conventional greenhouses for several months, of the year. In Algeria and precisely in the highlands, the use of greenhouses by farmers is very rare or occasional, especially in spring, because the limiting factors mentioned above are frequent there, causing significant damage to the plant product and to the environment. infrastructure. The same observation is observed in the Saharan regions but with less frequencies. Certainly, the use of controlled multi-chapel greenhouses would solve the problem, but at what cost? These hi-tech infrastructures are very expensive to purchase but also to maintain, so few farmers have the financial means to obtain them. In addition, the existence of intelligent and less expensive polymer films, whose properties could control greenhouse production parameters, in particular, the temperature parameter, maybe a judicious solution for the development of new generations of greenhouses that can be used in extreme conditions and normal.

Keywords: greenhouse, polymer film, modern agriculture, optimizing crops

Procedia PDF Downloads 163
2475 Hydroxyapatite from Biowaste for the Reinforcement of Polymer

Authors: John O. Akindoyo, M. D. H. Beg, Suriati Binti Ghazali, Nitthiyah Jeyaratnam

Abstract:

Regeneration of bone due to the many health challenges arising from traumatic effects of bone loss, bone tumours and other bone infections is fast becoming indispensable. Over the period of time, some approaches have been undertaken to mitigate this challenge. This includes but not limited to xenografts, allografts, autografts as well as artificial substitutions like bioceramics, synthetic cements and metals. However, most of these techniques often come along with peculiar limitation and problems such as morbidity, availability, disease transmission, collateral site damage or absolute rejection by the body as the case may be. Hydroxyapatite (HA) is very compatible and suitable for this application. However, most of the common methods for HA synthesis are expensive and environmentally unfriendly. Extraction of HA from bio-wastes have been perceived not only to be cost effective, but also environment-friendly. In this research, HA was produced from bio-waste: namely bovine bones through a combination of hydrothermal chemical processes and ordinary calcination techniques. Structure and property of the HA was carried out through different characterization techniques (such as TGA, FTIR, DSC, XRD and BET). The synthesized HA was found to possess similar properties to stoichiometric HA with highly desirable thermal, degradation, structural and porous properties. This material is unique for its potential minimal cost, environmental friendliness and property controllability. It is also perceived to be suitable for tissue and bone engineering applications.

Keywords: biomaterial, biopolymer, bone, hydroxyapatite

Procedia PDF Downloads 309
2474 Treatment of Grey Water from Different Restaurants in FUTA Using Fungi

Authors: F. A. Ogundolie, F. Okogue, D. V. Adegunloye

Abstract:

Greywater samples were obtained from three restaurants in the Federal University of Technology; Akure coded SSR, MGR and GGR. Fungi isolates obtained include Rhizopus stolonifer, Aspergillus niger, Mucor mucedo, Aspergillus flavus, Saccharomyces cerevisiae. Of these fungi isolates obtained, R. stolonifer, A. niger and A. flavus showed significant degradation ability on grey water and was used for this research. A simple bioreactor was constructed using biodegradation process in purification of waste water samples. Waste water undergoes primary treatment; secondary treatment involves the introduction of the isolated organisms into the waste water sample and the tertiary treatment which involved the use of filter candle and the sand bed filtration process to achieve the end product without the use of chemicals. A. niger brought about significant reduction in both the bacterial load and the fungi load of the greywater samples of the three respective restaurants with a reduction of (1.29 × 108 to 1.57 × 102 cfu/ml; 1.04 × 108 to 1.12 × 102 cfu/ml and 1.72 × 108 to 1.60 × 102 cfu/ml) for bacterial load in SSR, MGR and GGR respectively. Reduction of 2.01 × 104 to 1.2 × 101; 1.72 × 104 to 1.1 × 101, and 2.50 × 104 to 1.5 × 101 in fungi load from SSR, MGR and GGR respectively. Result of degradation of these selected waste water by the fungi showed that A. niger was probably more potent in the degradation of organic matter and hence, A. niger could be used in the treatment of wastewater.

Keywords: Aspergillus niger, greywater, bacterial, fungi, microbial load, bioreactor, biodegradation, purification, organic matter and filtration

Procedia PDF Downloads 300
2473 Improved Intracellular Protein Degradation System for Rapid Screening and Quantitative Study of Essential Fungal Proteins in Biopharmaceutical Development

Authors: Patarasuda Chaisupa, R. Clay Wright

Abstract:

The selection of appropriate biomolecular targets is a crucial aspect of biopharmaceutical development. The Auxin-Inducible Degron Degradation (AID) technology has demonstrated remarkable potential in efficiently and rapidly degrading target proteins, thereby enabling the identification and acquisition of drug targets. The AID system also offers a viable method to deplete specific proteins, particularly in cases where the degradation pathway has not been exploited or when the adaptation of proteins, including the cell environment, occurs to compensate for the mutation or gene knockout. In this study, we have engineered an improved AID system tailored to deplete proteins of interest. This AID construct combines the auxin-responsive E3 ubiquitin ligase binding domain, AFB2, and the substrate degron, IAA17, fused to the target genes. Essential genes of fungi with the lowest percent amino acid similarity to human and plant orthologs, according to the Basic Local Alignment Search Tool (BLAST), were cloned into the AID construct in S. cerevisiae (AID-tagged strains) using a modular yeast cloning toolkit for multipart assembly and direct genetic modification. Each E3 ubiquitin ligase and IAA17 degron was fused to a fluorescence protein, allowing for real-time monitoring of protein levels in response to different auxin doses via cytometry. Our AID system exhibited high sensitivity, with an EC50 value of 0.040 µM (SE = 0.016) for AFB2, enabling the specific promotion of IAA17::target protein degradation. Furthermore, we demonstrate how this improved AID system enhances quantitative functional studies of various proteins in fungi. The advancements made in auxin-inducible protein degradation in this study offer a powerful approach to investigating critical target protein viability in fungi, screening protein targets for drugs, and regulating intracellular protein abundance, thus revolutionizing the study of protein function underlying a diverse range of biological processes.

Keywords: synthetic biology, bioengineering, molecular biology, biotechnology

Procedia PDF Downloads 77
2472 An Initial Assessment of the Potential Contibution of 'Community Empowerment' to Mitigating the Drivers of Deforestation and Forest Degradation, in Giam Siak Kecil-Bukit Batu Biosphere Reserve

Authors: Arzyana Sunkar, Yanto Santosa, Siti Badriyah Rushayati

Abstract:

Indonesia has experienced annual forest fires that have rapidly destroyed and degraded its forests. Fires in the peat swamp forests of Riau Province, have set the stage for problems to worsen, this being the ecosystem most prone to fires (which are also the most difficult, to extinguish). Despite various efforts to curb deforestation, and forest degradation processes, severe forest fires are still occurring. To find an effective solution, the basic causes of the problems must be identified. It is therefore critical to have an in-depth understanding of the underlying causal factors that have contributed to deforestation and forest degradation as a whole, in order to attain reductions in their rates. An assessment of the drivers of deforestation and forest degradation was carried out, in order to design and implement measures that could slow these destructive processes. Research was conducted in Giam Siak Kecil–Bukit Batu Biosphere Reserve (GSKBB BR), in the Riau Province of Sumatera, Indonesia. A biosphere reserve was selected as the study site because such reserves aim to reconcile conservation with sustainable development. A biosphere reserve should promote a range of local human activities, together with development values that are in line spatially and economically with the area conservation values, through use of a zoning system. Moreover, GSKBB BR is an area with vast peatlands, and is experiencing forest fires annually. Various factors were analysed to assess the drivers of deforestation and forest degradation in GSKBB BR; data were collected from focus group discussions with stakeholders, key informant interviews with key stakeholders, field observation and a literature review. Landsat satellite imagery was used to map forest-cover changes for various periods. Analysis of landsat images, taken during the period 2010-2014, revealed that within the non-protected area of core zone, there was a trend towards decreasing peat swamp forest areas, increasing land clearance, and increasing areas of community oil-palm and rubber plantations. Fire was used for land clearing and most of the forest fires occurred in the most populous area (the transition area). The study found a relationship between the deforested/ degraded areas, and certain distance variables, i.e. distance from roads, villages and the borders between the core area and the buffer zone. The further the distance from the core area of the reserve, the higher was the degree of deforestation and forest degradation. Research findings suggested that agricultural expansion may be the direct cause of deforestation and forest degradation in the reserve, whereas socio-economic factors were the underlying driver of forest cover changes; such factors consisting of a combination of socio-cultural, infrastructural, technological, institutional (policy and governance), demographic (population pressure) and economic (market demand) considerations. These findings indicated that local factors/problems were the critical causes of deforestation and degradation in GSKBB BR. This research therefore concluded that reductions in deforestation and forest degradation in GSKBB BR could be achieved through ‘local actor’-tailored approaches such as community empowerment

Keywords: Actor-led solution, community empowerment, drivers of deforestation and forest degradation, Giam Siak Kecil – Bukit Batu Biosphere Reserve

Procedia PDF Downloads 342
2471 Swastika Shape Multiband Patch Antenna for Wireless Applications on Low Cost Substrate

Authors: Md. Samsuzzaman, M. T. Islam, J. S. Mandeep, N. Misran

Abstract:

In this article, a compact simple structure modified Swastika shape patch multiband antenna on a substrate of available low cost polymer resin composite material is designed for Wi-Fi and WiMAX applications. The substrate material consists of an epoxy matrix reinforced by woven glass. The designed micro-strip line fed compact antenna comprises of a planar wide square slot ground with four slits and Swastika shape radiation patch with a rectangular slot. The effect of the different substrate materials on the reflection coefficients of the proposed antennas was also analyzed. It can be clearly seen that the proposed antenna provides a wider bandwidth and acceptable return loss value compared to other reported materials. The simulation results exhibits that the antenna has an impedance bandwidth with -10 dB return loss at 3.01-3.89 GHz and 4.88-6.10 GHz which can cover both the WLAN, WiMAX and public safety WLAN bands. The proposed swastika shape antenna was designed and analyzed by using a finite element method based simulator HFSS and designed on a low cost FR4 (polymer resin composite material) printed circuit board. The electrical performances and superior frequency characteristics make the proposed material antenna desirable for wireless communications.

Keywords: epoxy resin polymer, multiband, swastika shaped, wide slot, WLAN/WiMAX

Procedia PDF Downloads 440
2470 Synthesis of CeF3:Sm3+ Nanophosphor for Biological Applications

Authors: Mayuri Gandhi, Nayan Agrawal, Harshita Bhatia

Abstract:

In the present work, cerium fluoride (CeF3) was selected as the host material because of its high density, fast response and high radiation resistance, efficient absorption and energy transfer by host (to activator). For the synthesis of CeF3 nanoparticles doped with Sm3+ ion, co-precipitation route was employed. Thus for optimum results, concentration dependent studies of the fluorescence of Sm3+ was carried out. The photoluminescence gave emissions in both visible as well as the NIR region and therefore it can have its application in solar cells, where it can absorb a large spectrum of energy. CeF3:Sm3+ nanoparticles were carefully incorporated in a suitable polymer matrix in order to demonstrate a variety of applications to improve the performance of the polymer materials and use it to develop high grade optoelectronic devices such as LEDs, security labelling, lasers, displays, biological imaging, etc.

Keywords: bioimaging, cerium fluoride, NIR emission, samarium

Procedia PDF Downloads 398
2469 A Study on Bonding Strength, Waterproofing and Flexibility of Environment Friendly, and Cost Effective Cementitious Grout Mixture for Tile Joints

Authors: Gowthamraj Vungarala

Abstract:

This paper presents the experimental investigation on the bond strength, waterproofing abilities and flexibility of tile joint when Ordinary Portland Cement (OPC) or White Portland Cement (WPC) CEM II A-LL 42.5N and porcelain powder graded between 200 microns and 75 microns is mixed with vinyl acetate monomer (VAM), hydroxypropyl methyl cellulose ether, ethylene co-polymer rubber powder and Styrene butyl rubber (SBR). Use of porcelain powder which is tough to decompose as a form of industrial refuse which helps environmental safety and waste usage.

Keywords: styrene butane rubber, hydroxypropyl methyl cellulose ether, vinyl acetate monomer, polymer modified cement, polyethylene, porcelain powder

Procedia PDF Downloads 84
2468 Biobased Facade: Illuminated Natural Fibre Polymer with Cardboard Core

Authors: Ralf Gliniorz, Carolin Petzoldt, Andreas Ehrlich, Sandra Gelbrich, Lothar Kroll

Abstract:

The building envelope is integral part of buildings, and renewable resources have a key role in energy consumption. So our aim was the development and implementation of a free forming facade system, consisting of fibre-reinforced polymer, which is built up of commercial biobased resin systems and natural fibre reinforcement. The field of application is aimed in modern architecture, like the office block 'Fachagentur Nachwachsende Rohstoffe e.V.' with its oak wood recyclate facade. The build-up of our elements is a classically sandwich-structured composite: face sheets as fibre-reinforced composite using polymer matrix, here a biobased epoxy, and natural fibres. The biobased core consists of stuck cardboard structure (BC-flute). Each element is manufactured from two shells in a counterpart, via hand lay-up laminate. These natural fibre skins and cardboard core have adhered 'wet-on-wet'. As a result, you get the effect of translucent face sheets with matrix illumination. Each created pixel can be controlled in RGB-colours and form together a screen at buildings. A 10 x 5 m² area 'NFP-BIO' with 25 elements is planned as a reference object in Chemnitz. The resolution is about 100 x 50 pixels. Specials are also the efficient technology of production and the possibility to extensively 3D-formed elements for buildings, replacing customary facade systems, which can give out information or advertising.

Keywords: biobased facade, cardboard core, natural fibre skins, sandwich element

Procedia PDF Downloads 200
2467 Low-Density Polyethylene Film Biodegradation Potential by Fungal Species From Thailand

Authors: Patcharee Pripdeevech, Sarunpron Khruengsai

Abstract:

Thirty fungi were tested for their degradation ability on low-density polyethylene (LDPE) plastic film. Biodegradation of all fungi was screened in mineral salt medium broth containing LDPE film as the sole carbon source for 30 days. Diaporthe italiana, Thyrostroma jaczewskii, Colletotrichum fructicola, and Stagonosporopsis citrulli were able to colonize and cover the surface of LDPE film in media. The degradation test result was compared to those obtained from Aspergillus niger. LDPE films cocultured with D. italiana, T. jaczewskii, C. fructicola, S. citrulli, A. niger, and control showed weight loss of 43.90%, 46.34%, 48.78%, 45.12%, 28.78%, and 10.85%, respectively. The tensile strength of degraded LDPE films cocultured with D. italiana, T. jaczewskii, C. fructicola, S. citrulli, A. niger, and control also reduced significantly by 1.56 MPa, 1.78 MPa, 0.43 MPa, 1.86 MPa, 3.34 MPa, and 9.98 MPa, respectively. Analysis of LDPE films by Fourier transform infrared spectroscopy and scanning electron microscopy confirmed the biodegradation by the presence of morphological changes such as cracks, scions, and holes on the surface of the film. These fungi have the ability to break down and consume the LDPE film, especially C. fructicola. These findings showed the potential of fungi in Thailand that play an important role in LDPE film degradation.

Keywords: plastic biodegradation, LDPE film, fungi, Fourier transform infrared, scanning electron microscopy

Procedia PDF Downloads 117
2466 Mechanical Properties of the Sugarcane Bagasse Reinforced Polypropylene Composites

Authors: R. L. M. Paiva, M. R. Capri, D. R. Mulinari, C. F. Bandeira, S. R. Montoro

Abstract:

Natural fibers are used in polymer composites to improve mechanical properties, substituting inorganic reinforcing agents produced by non renewable resources. The present study investigates the tensile, flexural and impact behaviors of sugarcane bagasse fibers-polypropylene composite as a function of volume fraction. The surface of the fibers was modified by mercerization treatments to improve the wetting behavior of the apolar polypropylene. The treatment characterization was obtained by infrared spectroscopy and scanning electron microscopy. Results evidence that a good adhesion interfacial between fibers-matrix causing an increase strength and modulus flexural as well as impact strength in the modified fibers/PP composites when compared to the pure PP and unmodified fibers reinforced composites.

Keywords: sugarcane bagasse, polymer composites, mechanical properties, fibers

Procedia PDF Downloads 612