Search results for: interface waves
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2077

Search results for: interface waves

1507 Design of Photonic Crystal with Defect Layer to Eliminate Interface Corrugations for Obtaining Unidirectional and Bidirectional Beam Splitting under Normal Incidence

Authors: Evrim Colak, Andriy E. Serebryannikov, Pavel V. Usik, Ekmel Ozbay

Abstract:

Working with a dielectric photonic crystal (PC) structure which does not include surface corrugations, unidirectional transmission and dual-beam splitting are observed under normal incidence as a result of the strong diffractions caused by the embedded defect layer. The defect layer has twice the period of the regular PC segments which sandwich the defect layer. Although the PC has even number of rows, the structural symmetry is broken due to the asymmetric placement of the defect layer with respect to the symmetry axis of the regular PC. The simulations verify that efficient splitting and occurrence of strong diffractions are related to the dispersion properties of the Floquet-Bloch modes of the photonic crystal. Unidirectional and bi-directional splitting, which are associated with asymmetric transmission, arise due to the dominant contribution of the first positive and first negative diffraction orders. The effect of the depth of the defect layer is examined by placing single defect layer in varying rows, preserving the asymmetry of PC. Even for deeply buried defect layer, asymmetric transmission is still valid even if the zeroth order is not coupled. This transmission is due to evanescent waves which reach to the deeply embedded defect layer and couple to higher order modes. In an additional selected performance, whichever surface is illuminated, i.e., in both upper and lower surface illumination cases, incident beam is split into two beams of equal intensity at the output surface where the intensity of the out-going beams are equal for both illumination cases. That is, although the structure is asymmetric, symmetric bidirectional transmission with equal transmission values is demonstrated and the structure mimics the behavior of symmetric structures. Finally, simulation studies including the examination of a coupled-cavity defect for two different permittivity values (close to the permittivity values of GaAs or Si and alumina) reveal unidirectional splitting for a wider band of operation in comparison to the bandwidth obtained in the case of a single embedded defect layer. Since the dielectric materials that are utilized are low-loss and weakly dispersive in a wide frequency range including microwave and optical frequencies, the studied structures should be scalable to the mentioned ranges.

Keywords: asymmetric transmission, beam deflection, blazing, bi-directional splitting, defect layer, dual beam splitting, Floquet-Bloch modes, isofrequency contours, line defect, oblique incidence, photonic crystal, unidirectionality

Procedia PDF Downloads 165
1506 Field-Free Orbital Hall Current-Induced Deterministic Switching in the MO/Co₇₁Gd₂₉/Ru Structure

Authors: Zelalem Abebe Bekele, Kun Lei, Xiukai Lan, Xiangyu Liu, Hui Wen, Kaiyou Wang

Abstract:

Spin-polarized currents offer an efficient means of manipulating the magnetization of a ferromagnetic layer for big data and neuromorphic computing. Research has shown that the orbital Hall effect (OHE) can produce orbital currents, potentially surpassing the counter spin currents induced by the spin Hall effect. However, it’s essential to note that orbital currents alone cannot exert torque directly on a ferromagnetic layer, necessitating a conversion process from orbital to spin currents. Here, we present an efficient method for achieving perpendicularly magnetized spin-orbit torque (SOT) switching by harnessing the localized orbital Hall current generated from a Mo layer within a Mo/CoGd device. Our investigation reveals a remarkable enhancement in the interface-induced planar Hall effect (PHE) within the Mo/CoGd bilayer, resulting in the generation of a z-polarized planar current for manipulating the magnetization of CoGd layer without the need for an in-plane magnetic field. Furthermore, the Mo layer induces out-of-plane orbital current, boosting the in-plane and out-of-plane spin polarization by converting the orbital current into spin current within the dual-property CoGd layer. At the optimal Mo layer thickness, a low critical magnetization switching current density of 2.51×10⁶ A cm⁻² is achieved. This breakthrough opens avenues for all-electrical control energy-efficient magnetization switching through orbital current, advancing the field of spin-orbitronics.

Keywords: spin-orbit torque, orbital hall effect, spin hall current, orbital hall current, interface-generated planar hall current, anisotropic magnetoresistance

Procedia PDF Downloads 24
1505 On the Strong Solutions of the Nonlinear Viscous Rotating Stratified Fluid

Authors: A. Giniatoulline

Abstract:

A nonlinear model of the mathematical fluid dynamics which describes the motion of an incompressible viscous rotating fluid in a homogeneous gravitational field is considered. The model is a generalization of the known Navier-Stokes system with the addition of the Coriolis parameter and the equations for changeable density. An explicit algorithm for the solution is constructed, and the proof of the existence and uniqueness theorems for the strong solution of the nonlinear problem is given. For the linear case, the localization and the structure of the spectrum of inner waves are also investigated.

Keywords: Galerkin method, Navier-Stokes equations, nonlinear partial differential equations, Sobolev spaces, stratified fluid

Procedia PDF Downloads 284
1504 The Effects of Inferior Tilt Fixation on a Glenoid Components in Reverse Shoulder-Arthroplasty

Authors: Soo Min Kim, Soo-Won Chae, Soung-Yon Kim, Haea Lee, Ju Yong Kang, Juneyong Lee, Seung-Ho Han

Abstract:

Reverse total shoulder arthroplasty (RTSA) has become an effective treatment option for cuff tear arthropathy and massive, irreparable rotator cuff tears and indications for its use are expanding. Numerous methods for optimal fixation of the glenoid component have been suggested, such as inferior overhang, inferior tilt, to maximize initial fixation and prevent glenoid component loosening. The inferior tilt fixation of a glenoid component has been suggested, which is expected to decrease scapular notching and to improve the stability of a glenoid component fixation in reverse total shoulder arthroplasty. Inferior tilt fixation of the glenoid component has been suggested, which can improve stability and, because it provides the most uniform compressive forces and imparts the least amount of tensile forces and micromotion, reduce the likelihood of mechanical failure. Another study reported that glenoid component inferior tilt improved impingement-free range of motion as well as minimized the scapular notching. Several authors have shown that inferior tilt of a glenoid component reduces scapular notching. However, controversy still exists regarding its importance in the literature. In this study the influence of inferior tilt fixation on the primary stability of a glenoid component has been investigated. Finite element models were constructed from cadaveric scapulae and glenoid components were implanted with neutral and 10° inferior tilts. Most previous biomechanical studies regarding the effect of glenoid component inferior tilt used a solid rigid polyurethane foam or sawbones block, not cadaveric scapulae, to evaluate the stability of the RTSA. Relative micromotions at the bone-glenoid component interface, and the distribution of bone stresses under the glenoid component and around the screws were analyzed and compared between neutral and 10° inferior tilt groups. Contact area between bone and screws and cut surface area of the cancellous bone exposed after reaming of the glenoid have also been investigated because of the fact that cancellous and cortical bone thickness vary depending on the resection level of the inferior glenoid bone. The greater relative micromotion of the bone-glenoid component interface occurred in the 10° inferior tilt group than in the neutral tilt group, especially at the inferior area of the bone-glenoid component interface. Bone stresses under the glenoid component and around the screws were also higher in the 10° inferior tilt group than in the neutral tilt group, especially at the inferior third of the glenoid bone surface under the glenoid component and inferior scapula. Thus inferior tilt fixation of the glenoid component may adversely affect the primary stability and longevity of the reverse total shoulder arthroplasty.

Keywords: finite element analysis, glenoid component, inferior tilt, reverse total shoulder arthroplasty

Procedia PDF Downloads 271
1503 The Functional Rehabilitation of Peri-Implant Tissue Defects: A Case Report

Authors: Özgür Öztürk, Cumhur Sipahi, Hande Yeşil

Abstract:

Implant retained restorations commonly consist of a metal-framework veneered with ceramic or composite facings. The increasing and expanding use of indirect resin composites in dentistry is a result of innovations in materials and processing techniques. Of special interest to the implant restorative field is the possibility that composites present significantly lower peak vertical and transverse forces transmitted at the peri-implant level compared to metal-ceramic supra structures in implant-supported restorations. A 43-year-old male patient referred to the department of prosthodontics for an implant retained fixed prosthesis. The clinical and radiographic examination of the patient demonstrated the presence of an implant in the right mandibular first molar tooth region. A considerable amount of marginal bone loss around the implant was detected in radiographic examinations combined with a remarkable peri-implant soft tissue deficiency. To minimize the chewing loads transmitted to the implant-bone interface it was decided to fabricate an indirect composite resin veneered single metal crown over a screw-retained abutment. At the end of the treatment, the functional and aesthetic deficiencies were fully compensated. After a 6 months clinical and radiographic follow-up period the not any additional pathologic invasion was detected in the implant-bone interface and implant retained restoration did not reveal any vehement complication.

Keywords: dental implant, fixed partial dentures, indirect composite resin, peri-implant defects

Procedia PDF Downloads 240
1502 Interaction between Trapezoidal Hill and Subsurface Cavity under SH Wave Incidence

Authors: Yuanrui Xu, Zailin Yang, Yunqiu Song, Guanxixi Jiang

Abstract:

It is an important subject of seismology on the influence of local topography on ground motion during earthquake. In mountainous areas with complex terrain, the construction of the tunnel is often the most effective transportation scheme. In these projects, the local terrain can be simplified into hills with different shapes, and the underground tunnel structure can be regarded as a subsurface cavity. The presence of the subsurface cavity affects the strength of the rock mass and changes the deformation and failure characteristics. Moreover, the scattering of the elastic waves by underground structures usually interacts with local terrains, which leads to a significant influence on the surface displacement of the terrains. Therefore, it is of great practical significance to study the surface displacement of local terrains with underground tunnels in earthquake engineering and seismology. In this work, the region is divided into three regions by the method of region matching. By using the fractional Bessel function and Hankel function, the complex function method, and the wave function expansion method, the wavefield expression of SH waves is introduced. With the help of a constitutive relation between the displacement and the stress components, the hoop stress and radial stress is obtained subsequently. Then, utilizing the continuous condition at different region boundaries, the undetermined coefficients in wave fields are solved by the Fourier series expansion and truncation of the finite term. Finally, the validity of the method is verified, and the surface displacement amplitude is calculated. The surface displacement amplitude curve is discussed in the numerical results. The results show that different parameters, such as radius and buried depth of the tunnel, wave number, and incident angle of the SH wave, have a significant influence on the amplitude of surface displacement. For the underground tunnel, the increase of buried depth will make the response of surface displacement amplitude increases at first and then decreases. However, the increase of radius leads the response of surface displacement amplitude to appear an opposite phenomenon. The increase of SH wave number can enlarge the amplitude of surface displacement, and the change of incident angle can obviously affect the amplitude fluctuation.

Keywords: method of region matching, scattering of SH wave, subsurface cavity, trapezoidal hill

Procedia PDF Downloads 113
1501 Enhanced Performance of Perovskite Solar Cells by Modifying Interfacial Properties Using MoS2 Nanoflakes

Authors: Kusum Kumari, Ramesh Banoth, V. S. Reddy Channu

Abstract:

Organic-inorganic perovskite solar cells (PrSCs) have emerged as a promising solar photovoltaic technology in terms of realizing high power conversion efficiency (PCE). However, their limited lifetime and poor device stability limits their commercialization in future. In this regard, interface engineering of the electron transport layer (ETL) using 2D materials have been currently used owing to their high carrier mobility, high thermal stability and tunable work function, which in turn enormously impact the charge carrier dynamics. In this work, we report an easy and effective way of simultaneously enhancing the efficiency of PrSCs along with the long-term stability through interface engineering via the incorporation of 2D-Molybdenum disulfide (2D-MoS₂, few layered nanoflakes) in mesoporous-Titanium dioxide (mp-TiO₂)scaffold electron transport buffer layer, and using poly 3-hexytheophene (P3HT) as hole transport layers. The PSCs were fabricated in ambient air conditions in device configuration, FTO/c-TiO₂/mp-TiO₂:2D-MoS₂/CH3NH3PbI3/P3HT/Au, with an active area of 0.16 cm². The best device using c-TiO₂/mp-TiO₂:2D-MoS₂ (0.5wt.%) ETL exhibited a substantial increase in PCE ~13.04% as compared to PCE ~8.75% realized in reference device fabricated without incorporating MoS₂ in mp-TiO₂ buffer layer. The incorporation of MoS₂ nanoflakes in mp-TiO₂ ETL not only enhances the PCE to ~49% but also leads to better device stability in ambient air conditions without encapsulation (retaining PCE ~86% of its initial value up to 500 hrs), as compared to ETLs without MoS₂.

Keywords: perovskite solar cells, MoS₂, nanoflakes, electron transport layer

Procedia PDF Downloads 47
1500 Applying Concurrent Development Process for the Web Using Aspect-Oriented Approach

Authors: Hiroaki Fukuda

Abstract:

This paper shows a concurrent development process for modern web application, called Rich Internet Application (RIA), and describes its effect using a non-trivial application development. In the last years, RIAs such as Ajax and Flex have become popular based mainly on high-speed network. RIA provides sophisticated interfaces and user experiences, therefore, the development of RIA requires two kinds of engineer: a developer who implements business logic, and a designer who designs interface and experiences. Although collaborative works are becoming important for the development of RIAs, shared resources such as source code make it difficult. For example, if a design of interface is modified after developers have finished business logic implementations, they need to repeat the same implementations, and also tests to verify application’s behavior. MVC architecture and Object-oriented programming (OOP) enables to dividing an application into modules such as interfaces and logic, however, developers and/or designers have to write pieces of code (e.g., event handlers) that make these modules work as an application. On the other hand, Aspect-oriented programming (AOP) is ex- pected to solve complexity of application software development nowadays. AOP provides methods to separate crosscutting concerns that are scattered pieces of code from primary concerns. In this paper, we provide a concurrent development process for RIAs by introducing AOP concept. This process makes it possible to reduce shared resources between developers and designers, therefore they can perform their tasks concurrently. In addition, we describe experiences of development for a practical application using our proposed development process to show its availability.

Keywords: aspect-oriented programming, concurrent, development process, rich internet application

Procedia PDF Downloads 284
1499 Gravitational Wave Solutions in Modified Gravity Theories

Authors: Hafiza Rizwana Kausar

Abstract:

In this paper, we formulate the wave equation in modified theories, particularly in f(R) theory, scalar-tensor theory, and metric palatine f(X) theory. We solve the wave equation in each case and try to find maximum possible solutions in the form polarization modes. It is found that modified theories present at most six modes however the mentioned metric theories allow four polarization modes, two of which are tensor in nature and other two are scalars.

Keywords: gravitational waves, modified theories, polariozation modes, scalar tensor theories

Procedia PDF Downloads 342
1498 Dynamic Wetting and Solidification

Authors: Yulii D. Shikhmurzaev

Abstract:

The modelling of the non-isothermal free-surface flows coupled with the solidification process has become the topic of intensive research with the advent of additive manufacturing, where complex 3-dimensional structures are produced by successive deposition and solidification of microscopic droplets of different materials. The issue is that both the spreading of liquids over solids and the propagation of the solidification front into the fluid and along the solid substrate pose fundamental difficulties for their mathematical modelling. The first of these processes, known as ‘dynamic wetting’, leads to the well-known ‘moving contact-line problem’ where, as shown recently both experimentally and theoretically, the contact angle formed by the free surfac with the solid substrate is not a function of the contact-line speed but is rather a functional of the flow field. The modelling of the propagating solidification front requires generalization of the classical Stefan problem, which would be able to describe the onset of the process and the non-equilibrium regime of solidification. Furthermore, given that both dynamic wetting and solification occur concurrently and interactively, they should be described within the same conceptual framework. The present work addresses this formidable problem and presents a mathematical model capable of describing the key element of additive manufacturing in a self-consistent and singularity-free way. The model is illustrated simple examples highlighting its main features. The main idea of the work is that both dynamic wetting and solidification, as well as some other fluid flows, are particular cases in a general class of flows where interfaces form and/or disappear. This conceptual framework allows one to derive a mathematical model from first principles using the methods of irreversible thermodynamics. Crucially, the interfaces are not considered as zero-mass entities introduced using Gibbsian ‘dividing surface’ but the 2-dimensional surface phases produced by the continuum limit in which the thickness of what physically is an interfacial layer vanishes, and its properties are characterized by ‘surface’ parameters (surface tension, surface density, etc). This approach allows for the mass exchange between the surface and bulk phases, which is the essence of the interface formation. As shown numerically, the onset of solidification is preceded by the pure interface formation stage, whilst the Stefan regime is the final stage where the temperature at the solidification front asymptotically approaches the solidification temperature. The developed model can also be applied to the flow with the substrate melting as well as a complex flow where both types of phase transition take place.

Keywords: dynamic wetting, interface formation, phase transition, solidification

Procedia PDF Downloads 45
1497 Chemical and Biomolecular Detection at a Polarizable Electrical Interface

Authors: Nicholas Mavrogiannis, Francesca Crivellari, Zachary Gagnon

Abstract:

Development of low-cost, rapid, sensitive and portable biosensing systems are important for the detection and prevention of disease in developing countries, biowarfare/antiterrorism applications, environmental monitoring, point-of-care diagnostic testing and for basic biological research. Currently, the most established commercially available and widespread assays for portable point of care detection and disease testing are paper-based dipstick and lateral flow test strips. These paper-based devices are often small, cheap and simple to operate. The last three decades in particular have seen an emergence in these assays in diagnostic settings for detection of pregnancy, HIV/AIDS, blood glucose, Influenza, urinary protein, cardiovascular disease, respiratory infections and blood chemistries. Such assays are widely available largely because they are inexpensive, lightweight, and portable, are simple to operate, and a few platforms are capable of multiplexed detection for a small number of sample targets. However, there is a critical need for sensitive, quantitative and multiplexed detection capabilities for point-of-care diagnostics and for the detection and prevention of disease in the developing world that cannot be satisfied by current state-of-the-art paper-based assays. For example, applications including the detection of cardiac and cancer biomarkers and biothreat applications require sensitive multiplexed detection of analytes in the nM and pM range, and cannot currently be satisfied with current inexpensive portable platforms due to their lack of sensitivity, quantitative capabilities and often unreliable performance. In this talk, inexpensive label-free biomolecular detection at liquid interfaces using a newly discovered electrokinetic phenomenon known as fluidic dielectrophoresis (fDEP) is demonstrated. The electrokinetic approach involves exploiting the electrical mismatches between two aqueous liquid streams forced to flow side-by-side in a microfluidic T-channel. In this system, one fluid stream is engineered to have a higher conductivity relative to its neighbor which has a higher permittivity. When a “low” frequency (< 1 MHz) alternating current (AC) electrical field is applied normal to this fluidic electrical interface the fluid stream with high conductivity displaces into the low conductive stream. Conversely, when a “high” frequency (20MHz) AC electric field is applied, the high permittivity stream deflects across the microfluidic channel. There is, however, a critical frequency sensitive to the electrical differences between each fluid phase – the fDEP crossover frequency – between these two events where no fluid deflection is observed, and the interface remains fixed when exposed to an external field. To perform biomolecular detection, two streams flow side-by-side in a microfluidic T-channel: one fluid stream with an analyte of choice and an adjacent stream with a specific receptor to the chosen target. The two fluid streams merge and the fDEP crossover frequency is measured at different axial positions down the resulting liquid

Keywords: biodetection, fluidic dielectrophoresis, interfacial polarization, liquid interface

Procedia PDF Downloads 425
1496 On an Experimental Method for Investigating the Dynamic Parameters of Multi-Story Buildings at Vibrating Seismic Loadings

Authors: Shakir Mamedov, Tukezban Hasanova

Abstract:

Research of dynamic properties of various materials and elements of structures at shock affecting and on the waves so many scientific works of the Azerbaijani scientists are devoted. However, Experimental definition of dynamic parameters of fluctuations of constructions and buildings while carries estimated character. The purpose of the present experimental researches is definition of parameters of fluctuations of installation of observations. In this case, a mockup of four floor buildings and sixteen floor skeleton-type buildings built in the Baku with the stiffening diaphragm at natural vibrating seismic affectings.

Keywords: fluctuations, seismoreceivers, dynamic experiments, acceleration

Procedia PDF Downloads 369
1495 Beam Deflection with Unidirectionality Due to Zeroth Order and Evanescent Wave Coupling in a Photonic Crystal with a Defect Layer without Corrugations under Oblique Incidence

Authors: Evrim Colak, Andriy E. Serebryannikov, Thore Magath, Ekmel Ozbay

Abstract:

Single beam deflection and unidirectional transmission are examined for oblique incidence in a Photonic Crystal (PC) structure which employs defect layer instead of surface corrugations at the interfaces. In all of the studied cases, the defect layer is placed such that the symmetry is broken. Two types of deflection are observed depending on whether the zeroth order is coupled or not. These two scenarios can be distinguished from each other by considering the simulated field distribution in PC. In the first deflection type, Floquet-Bloch mode enables zeroth order coupling. The energy of the zeroth order is redistributed between the diffraction orders at the defect layer, providing deflection. In the second type, when zeroth order is not coupled, strong diffractions cause blazing and the evanescent waves deliver energy to higher order diffraction modes. Simulated isofrequency contours can be utilized to estimate the coupling behavior. The defect layer is placed at varying rows, preserving the asymmetry of PC while evancescent waves can still couple to higher order modes. Even for deeply buried defect layer, asymmetric transmission and beam deflection are still encountered when the zeroth order is not coupled. We assume ε=11.4 (refractive index close to that of GaAs and Si) for the PC rods. A possible operation wavelength can be within microwave and infrared range. Since the suggested material is low loss, the structure can be scaled down to operate higher frequencies. Thus, a sample operation wavelength is selected as 1.5μm. Although the structure employs no surface corrugations transmission value T≈0.97 can be achieved by means of diffraction order m=-1. Moreover, utilizing an extra line defect, T value can be increased upto 0.99, under oblique incidence even if the line defect layer is deeply embedded in the photonic crystal. The latter configuration can be used to obtain deflection in one frequency range and can also be utilized for the realization of another functionality like defect-mode wave guiding in another frequency range but still using the same structure.

Keywords: asymmetric transmission, beam deflection, blazing, bi-directional splitting, defect layer, dual beam splitting, Floquet-Bloch modes, isofrequency contours, line defect, oblique incidence, photonic crystal, unidirectionality

Procedia PDF Downloads 243
1494 The Healing 'Touch' of Music: A Neuro-Acoustics Approach to Understand Its Therapeutic Effect

Authors: Jagmeet S. Kanwal, Julia F. Langley

Abstract:

Music can heal the body, but a mechanistic understanding of this phenomenon is lacking. This study explores the effects of music presentation on neurologic and physiologic responses leading to metabolic changes in the human body. The mind and body co-exist in a corporeal entity and within this framework, sickness ensues when the mind-body balance goes awry. It is further hypothesized that music has the capacity to directly reset this balance. Two lines of inquiry taken together can provide a mechanistic understanding of this phenomenon 1) Empirical evidence for a sound-sensitive pressure sensor system in the body, and 2) The notion of a “healing center” within the brain that is activated by specific patterns of sounds. From an acoustics perspective, music is spatially distributed as pressure waves ranging from a few cm to several meters in wavelength. These waves interact and propagate in three-dimensions in unique ways, depending on the wavelength. Furthermore, music creates dynamically changing wave-fronts. Frequencies between 200 Hz and 1 kHz generate wavelengths that range from 5'6" to 1 foot. These dimensions are in the range of the body size of most people making it plausible that these pressure waves can geometrically interact with the body surface and create distinct patterns of pressure stimulation across the skin surface. For humans, short wavelength, high frequency (> 200 Hz) sounds are best received via cochlear receptors. For low frequency (< 200 Hz), long wavelength sound vibrations, however, the whole body may act as an ideal receiver. A vast array of highly sensitive pressure receptors (Pacinian corpuscles) is present just beneath the skin surface, as well as in the tendons, bones, several organs in the abdomen, and the sexual organs. Per the available empirical evidence, these receptors contribute to music perception by allowing the whole body to function as a sound receiver, and knowledge of how they function is essential to fully understanding the therapeutic effect of music. Neuroscientific studies have established that music stimulates the limbic system that can trigger states of anxiety, arousal, fear, and other emotions. These emotional states of brain activity play a crucial role in filtering top-down feedback from thoughts and bottom-up sensory inputs to the autonomic system, which automatically regulates bodily functions. Music likely exerts its pleasurable and healing effects by enhancing functional and effective connectivity and feedback mechanisms between brain regions that mediate reward, autonomic, and cognitive processing. Stimulation of pressure receptors under the skin by low-frequency music-induced sensations can activate multiple centers in the brain, including the amygdala, the cingulate cortex, and nucleus accumbens. Melodies in music in the low (< 600 Hz) frequency range may augment auditory inputs after convergence of the pressure-sensitive inputs from the vagus nerve onto emotive processing regions within the limbic system. The integration of music-generated auditory and somato-visceral inputs may lead to a synergistic input to the brain that promotes healing. Thus, music can literally heal humans through “touch” as it energizes the brain’s autonomic system for restoring homeostasis.

Keywords: acoustics, brain, music healing, pressure receptors

Procedia PDF Downloads 142
1493 Design and Development of Ssvep-Based Brain-Computer Interface for Limb Disabled Patients

Authors: Zerihun Ketema Tadesse, Dabbu Suman Reddy

Abstract:

Brain-Computer Interfaces (BCIs) give the possibility for disabled people to communicate and control devices. This work aims at developing steady-state visual evoked potential (SSVEP)-based BCI for patients with limb disabilities. In hospitals, devices like nurse emergency call devices, lights, and TV sets are what patients use most frequently, but these devices are operated manually or using the remote control. Thus, disabled patients are not able to operate these devices by themselves. Hence, SSVEP-based BCI system that can allow disabled patients to control nurse calling device and other devices is proposed in this work. Portable LED visual stimulator that flickers at specific frequencies of 7Hz, 8Hz, 9Hz and 10Hz were developed as part of this project. Disabled patients can stare at specific flickering LED of visual stimulator and Emotiv EPOC used to acquire EEG signal in a non-invasive way. The acquired EEG signal can be processed to generate various control signals depending upon the amplitude and duration of signal components. MATLAB software is used for signal processing and analysis and also for command generation. Arduino is used as a hardware interface device to receive and transmit command signals to the experimental setup. Therefore, this study is focused on the design and development of Steady-state visually evoked potential (SSVEP)-based BCI for limb disabled patients, which helps them to operate and control devices in the hospital room/wards.

Keywords: SSVEP-BCI, Limb Disabled Patients, LED Visual Stimulator, EEG signal, control devices, hospital room/wards

Procedia PDF Downloads 203
1492 Identification Algorithm of Critical Interface, Modelling Perils on Critical Infrastructure Subjects

Authors: Jiří. J. Urbánek, Hana Malachová, Josef Krahulec, Jitka Johanidisová

Abstract:

The paper deals with crisis situations investigation and modelling within the organizations of critical infrastructure. Every crisis situation has an origin in the emergency event occurrence in the organizations of energetic critical infrastructure especially. Here, the emergency events can be both the expected events, then crisis scenarios can be pre-prepared by pertinent organizational crisis management authorities towards their coping or the unexpected event (Black Swan effect) – without pre-prepared scenario, but it needs operational coping of crisis situations as well. The forms, characteristics, behaviour and utilization of crisis scenarios have various qualities, depending on real critical infrastructure organization prevention and training processes. An aim is always better organizational security and continuity obtainment. This paper objective is to find and investigate critical/ crisis zones and functions in critical situations models of critical infrastructure organization. The DYVELOP (Dynamic Vector Logistics of Processes) method is able to identify problematic critical zones and functions, displaying critical interfaces among actors of crisis situations on the DYVELOP maps named Blazons. Firstly, for realization of this ability is necessary to derive and create identification algorithm of critical interfaces. The locations of critical interfaces are the flags of crisis situation in real organization of critical infrastructure. Conclusive, the model of critical interface will be displayed at real organization of Czech energetic crisis infrastructure subject in Black Out peril environment. The Blazons need live power Point presentation for better comprehension of this paper mission.

Keywords: algorithm, crisis, DYVELOP, infrastructure

Procedia PDF Downloads 387
1491 Effect of Gas Boundary Layer on the Stability of a Radially Expanding Liquid Sheet

Authors: Soumya Kedia, Puja Agarwala, Mahesh Tirumkudulu

Abstract:

Linear stability analysis is performed for a radially expanding liquid sheet in the presence of a gas medium. A liquid sheet can break up because of the aerodynamic effect as well as its thinning. However, the study of the aforementioned effects is usually done separately as the formulation becomes complicated and is difficult to solve. Present work combines both, aerodynamic effect and thinning effect, ignoring the non-linearity in the system. This is done by taking into account the formation of the gas boundary layer whilst neglecting viscosity in the liquid phase. Axisymmetric flow is assumed for simplicity. Base state analysis results in a Blasius-type system which can be solved numerically. Perturbation theory is then applied to study the stability of the liquid sheet, where the gas-liquid interface is subjected to small deformations. The linear model derived here can be applied to investigate the instability for sinuous as well as varicose modes, where the former represents displacement in the centerline of the sheet and the latter represents modulation in sheet thickness. Temporal instability analysis is performed for sinuous modes, which are significantly more unstable than varicose modes, for a fixed radial distance implying local stability analysis. The growth rates, measured for fixed wavenumbers, predicated by the present model are significantly lower than those obtained by the inviscid Kelvin-Helmholtz instability and compare better with experimental results. Thus, the present theory gives better insight into understanding the stability of a thin liquid sheet.

Keywords: boundary layer, gas-liquid interface, linear stability, thin liquid sheet

Procedia PDF Downloads 205
1490 Influence of Rotation on Rayleigh-Type Wave in Piezoelectric Plate

Authors: Soniya Chaudhary, Sanjeev Sahu

Abstract:

Propagation of Rayleigh-type waves in a rotating piezoelectric plate is investigated. The materials are assumed to be transversely isotropic crystals. The frequency equation have been derived for electrically open and short cases. Effect of rotation and piezoelectricity have been shown. It is also found that piezoelectric material properties have an important effect on Rayleigh wave propagation. The result is relevant to the analysis and design of various acoustic surface wave devices constructed from piezoelectric materials also in SAW devices.

Keywords: rotation, frequency equation, piezoelectricity, rayleigh-type wave

Procedia PDF Downloads 289
1489 Collocation Method Using Quartic B-Splines for Solving the Modified RLW Equation

Authors: A. A. Soliman

Abstract:

The Modified Regularized Long Wave (MRLW) equation is solved numerically by giving a new algorithm based on collocation method using quartic B-splines at the mid-knot points as element shape. Also, we use the fourth Runge-Kutta method for solving the system of first order ordinary differential equations instead of finite difference method. Our test problems, including the migration and interaction of solitary waves, are used to validate the algorithm which is found to be accurate and efficient. The three invariants of the motion are evaluated to determine the conservation properties of the algorithm. The temporal evaluation of a Maxwellian initial pulse is then studied.

Keywords: collocation method, MRLW equation, Quartic B-splines, solitons

Procedia PDF Downloads 280
1488 Multidimensional Modeling of Solidification Process of Multi-Crystalline Silicon under Magnetic Field for Solar Cell Technology

Authors: Mouhamadou Diop, Mohamed I. Hassan

Abstract:

Molten metallic flow in metallurgical plant is highly turbulent and presents a complex coupling with heat transfer, phase transfer, chemical reaction, momentum transport, etc. Molten silicon flow has significant effect in directional solidification of multicrystalline silicon by affecting the temperature field and the emerging crystallization interface as well as the transport of species and impurities during casting process. Owing to the complexity and limits of reliable measuring techniques, computational models of fluid flow are useful tools to study and quantify these problems. The overall objective of this study is to investigate the potential of a traveling magnetic field for an efficient operating control of the molten metal flow. A multidimensional numerical model will be developed for the calculations of Lorentz force, molten metal flow, and the related phenomenon. The numerical model is implemented in a laboratory-scale silicon crystallization furnace. This study presents the potential of traveling magnetic field approach for an efficient operating control of the molten flow. A numerical model will be used to study the effects of magnetic force applied on the molten flow, and their interdependencies. In this paper, coupled and decoupled, steady and unsteady models of molten flow and crystallization interface will be compared. This study will allow us to retrieve the optimal traveling magnetic field parameter range for crystallization furnaces and the optimal numerical simulations strategy for industrial application.

Keywords: multidimensional, numerical simulation, solidification, multicrystalline, traveling magnetic field

Procedia PDF Downloads 221
1487 Simulation of the Evacuation of Ships Carrying Dangerous Goods from Tsunami

Authors: Yoshinori Matsuura, Saori Iwanaga

Abstract:

The Great East Japan Earthquake occurred at 14:46 on Friday, March 11, 2011. It was the most powerful known earthquake to have hit Japan. The earthquake triggered extremely destructive tsunami waves of up to 40.5 meters in height. We focus on the ship’s evacuation from tsunami. Then we analyze about ships evacuation from tsunami using multi-agent simulation and we want to prepare for a coming earthquake. We developed a simulation model of ships that set sail from the port in order to evacuate from the tsunami considering the ship carrying dangerous goods.

Keywords: Ship’s evacuation, multi-agent simulation, tsunami

Procedia PDF Downloads 437
1486 Analytical and Numerical Study of Formation of Sporadic E Layer with Taking into Account Horizontal and Vertical In-Homogeneity of the Horizontal Wind

Authors: Giorgi Dalakishvili, Goderdzi G. Didebulidze, Maya Todua

Abstract:

The possibility of sporadic E (Es) layer formation in the mid-latitude nighttime lower thermosphere by horizontal homogeneous and inhomogeneous (vertically and horizontally changing) winds is investigated in 3D by analytical and numerical solutions of continuity equation for dominant heavy metallic ions Fe+. The theory of influence of wind velocity direction, value, and its shear on formation of sporadic E is developed in case of presence the effect of horizontally changing wind (the effect of horizontal convergence). In this case, the horizontal wind with horizontal shear, characterized by compressibility and/or vortices, can provide an additional influence on heavy metallic ions Fe+ horizontal convergence and Es layers density, which can be formed by their vertical convergence caused as by wind direction and values and by its horizontal shear as well. The horizontal wind value and direction have significant influence on ion vertical drift velocity and its minimal negative values of divergence necessary for development of ion vertical convergence into sporadic E type layer. The horizontal wind horizontal shear, in addition to its vertical shear, also influences the ion drift velocity value and its vertical changes and correspondingly on formation of sporadic E layer and its density. The atmospheric gravity waves (AGWs), with relatively smaller horizontal wave length than planetary waves and tidal motion, can significantly influence location of ion vertical drift velocity nodes (where Es layers formation expectable) and its vertical and horizontal shear providing ion vertical convergence into thin layer. Horizontal shear can cause additional influence in the Es layers density than in the case of only wind value and vertical shear only. In this case, depending on wind direction and value in the height region of the lower thermosphere about 90-150 km occurs heavy metallic ions (Fe+) vertical convergence into thin sporadic E type layer. The horizontal wind horizontal shear also can influence on ions horizontal convergence and density and location Es layers. The AGWs modulate the horizontal wind direction and values and causes ion additional horizontal convergence, while the vertical changes (shear) causes additional vertical convergence than in the case without vertical shear. Influence of horizontal shear on sporadic E density and the importance of vertical compressibility of the lower thermosphere, which also can be influenced by AGWs, is demonstrated numerically. For the given wavelength and background wind, the predictability of formation Es layers and its possible location regions are shown. Acknowledgements: This study was funded by Georgian Shota Rustaveli National Science Foundation Grant no. FR17-357.

Keywords: in-homogeneous, sporadic E, thermosphere, wind

Procedia PDF Downloads 128
1485 Hydrodynamics and Hydro-acoustics of Fish Schools: Insights from Computational Models

Authors: Ji Zhou, Jung Hee Seo, Rajat Mittal

Abstract:

Fish move in groups for foraging, reproduction, predator protection, and hydrodynamic efficiency. Schooling's predator protection involves the "many eyes" theory, which increases predator detection probability in a group. Reduced visual signature in a group scales with school size, offering per-capita protection. The ‘confusion effect’ makes it hard for predators to target prey in a group. These benefits, however, all focus on vision-based sensing, overlooking sound-based detection. Fish, including predators, possess sophisticated sensory systems for pressure waves and underwater sound. The lateral line system detects acoustic waves, while otolith organs sense infrasound, and sharks use an auditory system for low-frequency sounds. Among sound generation mechanisms of fish, the mechanism of dipole sound relates to hydrodynamic pressure forces on the body surface of the fish and this pressure would be affected by group swimming. Thus, swimming within a group could affect this hydrodynamic noise signature of fish and possibly serve as an additional protection afforded by schooling, but none of the studies to date have explored this effect. BAUVs with fin-like propulsors could reduce acoustic noise without compromising performance, addressing issues of anthropogenic noise pollution in marine environments. Therefore, in this study, we used our in-house immersed-boundary method flow and acoustic solver, ViCar3D, to simulate fish schools consisting of four swimmers in the classic ‘diamond’ configuration and discussed the feasibility of yielding higher swimming efficiency and controlling far-field sound signature of the school. We examine the effects of the relative phase of fin flapping of the swimmers and the simulation results indicate that the phase of the fin flapping is a dominant factor in both thrust enhancement and the total sound radiated into the far-field by a group of swimmers. For fish in the “diamond” configuration, a suitable combination of the relative phase difference between pairs of leading fish and trailing fish can result in better swimming performance with significantly lower hydroacoustic noise.

Keywords: fish schooling, biopropulsion, hydrodynamics, hydroacoustics

Procedia PDF Downloads 36
1484 Homogenization of a Non-Linear Problem with a Thermal Barrier

Authors: Hassan Samadi, Mustapha El Jarroudi

Abstract:

In this work, we consider the homogenization of a non-linear problem in periodic medium with two periodic connected media exchanging a heat flux throughout their common interface. The interfacial exchange coefficient λ is assumed to tend to zero or to infinity following a rate λ=λ(ε) when the size ε of the basic cell tends to zero. Three homogenized problems are determined according to some critical value depending of λ and ε. Our method is based on Γ-Convergence techniques.

Keywords: variational methods, epiconvergence, homogenization, convergence technique

Procedia PDF Downloads 499
1483 Analysis of a Generalized Sharma-Tasso-Olver Equation with Variable Coefficients

Authors: Fadi Awawdeh, O. Alsayyed, S. Al-Shará

Abstract:

Considering the inhomogeneities of media, the variable-coefficient Sharma-Tasso-Olver (STO) equation is hereby investigated with the aid of symbolic computation. A newly developed simplified bilinear method is described for the solution of considered equation. Without any constraints on the coefficient functions, multiple kink solutions are obtained. Parametric analysis is carried out in order to analyze the effects of the coefficient functions on the stabilities and propagation characteristics of the solitonic waves.

Keywords: Hirota bilinear method, multiple kink solution, Sharma-Tasso-Olver equation, inhomogeneity of media

Procedia PDF Downloads 489
1482 Dual Band Shared Aperture Antenna for 5G Communications

Authors: Zunnurain Ahmad

Abstract:

This work presents design of a dual band antenna for the 5G communications in the millimeter wave band. As opposed to conventional patch antennas which are limited to single narrow band operation a shared aperture concept is utilized for this antenna. The patch aperture is coupled through two rectangular slots etched on a thin printed circuit board (100μm). The patch is elevated in air thus avoiding excitation of surface waves and minimizing dielectric losses at millimeter wave frequencies. With this approach the radiator can cover lower band of 28 GHz and upper band of 37/ 39 GHz dedicated for the fifth generation communications. The simulated radiation efficiency of the antenna stays above 90%.

Keywords: antenna, millimeter wave, 5G, 3D

Procedia PDF Downloads 33
1481 Development of a Web-Based Application for Intelligent Fertilizer Management in Rice Cultivation

Authors: Hao-Wei Fu, Chung-Feng Kao

Abstract:

In the era of rapid technological advancement, information technology (IT) has become integral to modern life, exerting significant influence across diverse sectors and serving as a catalyst for development in various industries. Within agriculture, the integration of IT offers substantial benefits, notably enhancing operational efficiency. Real-time monitoring systems, for instance, have been widely embraced in agriculture, effectively improving crop management practices. This study specifically addresses the management of rice panicle fertilizer, presenting the development of a web application tailored to handle data associated with rice panicle fertilizer management. Leveraging the normalized difference red edge index, this application optimizes the quantity of rice panicle fertilizer used, providing recommendations to agricultural stakeholders and service providers in the agricultural information sector. The overarching objective is to minimize costs while maximizing yields. Furthermore, a robust database system has been established to store and manage relevant data for future reference in rice cultivation management. Additionally, the study utilizes the Representational State Transfer software architectural style to construct an application programming interface (API), facilitating data creation, retrieval, updating, and deletion for users via the HyperText Transfer Protocol methods. Future plans involve integrating this API with third-party services to incorporate it into larger frameworks, thus catering to the diverse requirements of various third-party services.

Keywords: application programming interface, HyperText Transfer Protocol, nitrogen fertilizer intelligent management, web-based application

Procedia PDF Downloads 37
1480 Numerical Investigation of Flow Boiling within Micro-Channels in the Slug-Plug Flow Regime

Authors: Anastasios Georgoulas, Manolia Andredaki, Marco Marengo

Abstract:

The present paper investigates the hydrodynamics and heat transfer characteristics of slug-plug flows under saturated flow boiling conditions within circular micro-channels. Numerical simulations are carried out, using an enhanced version of the open-source CFD-based solver ‘interFoam’ of OpenFOAM CFD Toolbox. The proposed user-defined solver is based in the Volume Of Fluid (VOF) method for interface advection, and the mentioned enhancements include the implementation of a smoothing process for spurious current reduction, the coupling with heat transfer and phase change as well as the incorporation of conjugate heat transfer to account for transient solid conduction. In all of the considered cases in the present paper, a single phase simulation is initially conducted until a quasi-steady state is reached with respect to the hydrodynamic and thermal boundary layer development. Then, a predefined and constant frequency of successive vapour bubbles is patched upstream at a certain distance from the channel inlet. The proposed numerical simulation set-up can capture the main hydrodynamic and heat transfer characteristics of slug-plug flow regimes within circular micro-channels. In more detail, the present investigation is focused on exploring the interaction between subsequent vapour slugs with respect to their generation frequency, the hydrodynamic characteristics of the liquid film between the generated vapour slugs and the channel wall as well as of the liquid plug between two subsequent vapour slugs. The proposed investigation is carried out for the 3 different working fluids and three different values of applied heat flux in the heated part of the considered microchannel. The post-processing and analysis of the results indicate that the dynamics of the evolving bubbles in each case are influenced by both the upstream and downstream bubbles in the generated sequence. In each case a slip velocity between the vapour bubbles and the liquid slugs is evident. In most cases interfacial waves appear close to the bubble tail that significantly reduce the liquid film thickness. Finally, in accordance with previous investigations vortices that are identified in the liquid slugs between two subsequent vapour bubbles can significantly enhance the convection heat transfer between the liquid regions and the heated channel walls. The overall results of the present investigation can be used to enhance the present understanding by providing better insight of the complex, underpinned heat transfer mechanisms in saturated boiling within micro-channels in the slug-plug flow regime.

Keywords: slug-plug flow regime, micro-channels, VOF method, OpenFOAM

Procedia PDF Downloads 242
1479 A Preparatory Method for Building Construction Implemented in a Case Study in Brazil

Authors: Aline Valverde Arroteia, Tatiana Gondim do Amaral, Silvio Burrattino Melhado

Abstract:

During the last twenty years, the construction field in Brazil has evolved significantly in response to its market growing and competitiveness. However, this evolving path has faced many obstacles such as cultural barriers and the lack of efforts to achieve quality at the construction site. At the same time, the greatest amount of information generated on the designing or construction phases is lost due to the lack of an effective coordination of these activities. Face this problem, the aim of this research was to implement a French method named PEO which means preparation for building construction (in Portuguese) seeking to understand the design management process and its interface with the building construction phase. The research method applied was qualitative, and it was carried out through two case studies in the city of Goiania, in Goias, Brazil. The research was divided into two stages called pilot study at Company A and implementation of PEO at Company B. After the implementation; the results demonstrated the PEO method's effectiveness and feasibility while a booster on the quality improvement of design management. The analysis showed that the method has a purpose to improve the design and allow the reduction of failures, errors and rework commonly found in the production of buildings. Therefore, it can be concluded that the PEO is feasible to be applied to real estate and building companies. But, companies need to believe in the contribution they can make to the discovery of design failures in conjunction with other stakeholders forming a construction team. The result of PEO can be maximized when adopting the principles of simultaneous engineering and insertion of new computer technologies, which use a three-dimensional model of the building with BIM process.

Keywords: communication, design and construction interface management, preparation for building construction (PEO), proactive coordination (CPA)

Procedia PDF Downloads 139
1478 Experimental Simulation Set-Up for Validating Out-Of-The-Loop Mitigation when Monitoring High Levels of Automation in Air Traffic Control

Authors: Oliver Ohneiser, Francesca De Crescenzio, Gianluca Di Flumeri, Jan Kraemer, Bruno Berberian, Sara Bagassi, Nicolina Sciaraffa, Pietro Aricò, Gianluca Borghini, Fabio Babiloni

Abstract:

An increasing degree of automation in air traffic will also change the role of the air traffic controller (ATCO). ATCOs will fulfill significantly more monitoring tasks compared to today. However, this rather passive role may lead to Out-Of-The-Loop (OOTL) effects comprising vigilance decrement and less situation awareness. The project MINIMA (Mitigating Negative Impacts of Monitoring high levels of Automation) has conceived a system to control and mitigate such OOTL phenomena. In order to demonstrate the MINIMA concept, an experimental simulation set-up has been designed. This set-up consists of two parts: 1) a Task Environment (TE) comprising a Terminal Maneuvering Area (TMA) simulator as well as 2) a Vigilance and Attention Controller (VAC) based on neurophysiological data recording such as electroencephalography (EEG) and eye-tracking devices. The current vigilance level and the attention focus of the controller are measured during the ATCO’s active work in front of the human machine interface (HMI). The derived vigilance level and attention trigger adaptive automation functionalities in the TE to avoid OOTL effects. This paper describes the full-scale experimental set-up and the component development work towards it. Hence, it encompasses a pre-test whose results influenced the development of the VAC as well as the functionalities of the final TE and the two VAC’s sub-components.

Keywords: automation, human factors, air traffic controller, MINIMA, OOTL (Out-Of-The-Loop), EEG (Electroencephalography), HMI (Human Machine Interface)

Procedia PDF Downloads 360