Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5951

Search results for: convergence technique

5951 A Research Analysis on the Source Technology and Convergence Types

Authors: Kwounghee Choi


Technological convergence between the various sectors is expected to have a very large impact on future industrial and economy. This study attempts to do empirical approach between specific technologies’ classification. For technological convergence classification, it is necessary to set the target technology to be analyzed. This study selected target technology from national research and development plan. At first we found a source technology for analysis. Depending on the weight of source technology, NT-based, BT-based, IT-based, ET-based, CS-based convergence types were classified. This study aims to empirically show the concept of convergence technology and convergence types. If we use the source technology to classify convergence type, it will be useful to make practical strategies of convergence technology.

Keywords: technology convergence, source technology, convergence type, R&D strategy, technology classification

Procedia PDF Downloads 371
5950 L1-Convergence of Modified Trigonometric Sums

Authors: Sandeep Kaur Chouhan, Jatinderdeep Kaur, S. S. Bhatia


The existence of sine and cosine series as a Fourier series, their L1-convergence seems to be one of the difficult question in theory of convergence of trigonometric series in L1-metric norm. In the literature so far available, various authors have studied the L1-convergence of cosine and sine trigonometric series with special coefficients. In this paper, we present a modified cosine and sine sums and criterion for L1-convergence of these modified sums is obtained. Also, a necessary and sufficient condition for the L1-convergence of the cosine and sine series is deduced as corollaries.

Keywords: conjugate Dirichlet kernel, Dirichlet kernel, L1-convergence, modified sums

Procedia PDF Downloads 265
5949 Modified Newton's Iterative Method for Solving System of Nonlinear Equations in Two Variables

Authors: Sara Mahesar, Saleem M. Chandio, Hira Soomro


Nonlinear system of equations in two variables is a system which contains variables of degree greater or equal to two or that comprises of the transcendental functions. Mathematical modeling of numerous physical problems occurs as a system of nonlinear equations. In applied and pure mathematics it is the main dispute to solve a system of nonlinear equations. Numerical techniques mainly used for finding the solution to problems where analytical methods are failed, which leads to the inexact solutions. To find the exact roots or solutions in case of the system of non-linear equations there does not exist any analytical technique. Various methods have been proposed to solve such systems with an improved rate of convergence and accuracy. In this paper, a new scheme is developed for solving system of non-linear equation in two variables. The iterative scheme proposed here is modified form of the conventional Newton’s Method (CN) whose order of convergence is two whereas the order of convergence of the devised technique is three. Furthermore, the detailed error and convergence analysis of the proposed method is also examined. Additionally, various numerical test problems are compared with the results of its counterpart conventional Newton’s Method (CN) which confirms the theoretic consequences of the proposed method.

Keywords: conventional Newton’s method, modified Newton’s method, order of convergence, system of nonlinear equations

Procedia PDF Downloads 172
5948 Statistical Convergence of the Szasz-Mirakjan-Kantorovich-Type Operators

Authors: Rishikesh Yadav, Ramakanta Meher, Vishnu Narayan Mishra


The main aim of this article is to investigate the statistical convergence of the summation of integral type operators and to obtain the weighted statistical convergence. The rate of statistical convergence by means of modulus of continuity and function belonging to the Lipschitz class are also studied. We discuss the convergence of the defined operators by graphical representation and put a better rate of convergence than the Szasz-Mirakjan-Kantorovich operators. In the last section, we extend said operators into bivariate operators to study about the rate of convergence in sense of modulus of continuity and by means of Lipschitz class by using function of two variables.

Keywords: The Szasz-Mirakjan-Kantorovich operators, statistical convergence, modulus of continuity, Peeters K-functional, weighted modulus of continuity

Procedia PDF Downloads 107
5947 Homogenization of a Non-Linear Problem with a Thermal Barrier

Authors: Hassan Samadi, Mustapha El Jarroudi


In this work, we consider the homogenization of a non-linear problem in periodic medium with two periodic connected media exchanging a heat flux throughout their common interface. The interfacial exchange coefficient λ is assumed to tend to zero or to infinity following a rate λ=λ(ε) when the size ε of the basic cell tends to zero. Three homogenized problems are determined according to some critical value depending of λ and ε. Our method is based on Γ-Convergence techniques.

Keywords: variational methods, epiconvergence, homogenization, convergence technique

Procedia PDF Downloads 418
5946 Effect of Structural Change on Productivity Convergence: A Panel Unit Root Analysis

Authors: Amjad Naveed


This study analysed the role of structural change in the process of labour productivity convergence at country and regional levels. Many forms of structural changes occurred within the European Union (EU) countries i.e. variation in sectoral employment share, changes in demand for products, variations in trade patterns and advancement in technology which may have an influence on the process of convergence. Earlier studies on convergence have neglected the role of structural changes which can have resulted in different conclusion on the nature of convergence. The contribution of this study is to examine the role of structural change in testing labour productivity convergence at various levels. For the empirical purpose, the data of 19 EU countries, 259 regions and 6 industries is used for the period of 1991-2009. The results indicate that convergence varies across regional and country levels for different industries when considered the role of structural change.

Keywords: labor produvitivty, convergence, structural change, panel unit root

Procedia PDF Downloads 209
5945 Convergence Analysis of Cubic B-Spline Collocation Method for Time Dependent Parabolic Advection-Diffusion Equations

Authors: Bharti Gupta, V. K. Kukreja


A comprehensive numerical study is presented for the solution of time-dependent advection diffusion problems by using cubic B-spline collocation method. The linear combination of cubic B-spline basis, taken as approximating function, is evaluated using the zeros of shifted Chebyshev polynomials as collocation points in each element to obtain the best approximation. A comparison, on the basis of efficiency and accuracy, with the previous techniques is made which confirms the superiority of the proposed method. An asymptotic convergence analysis of technique is also discussed, and the method is found to be of order two. The theoretical analysis is supported with suitable examples to show second order convergence of technique. Different numerical examples are simulated using MATLAB in which the 3-D graphical presentation has taken at different time steps as well as different domain of interest.

Keywords: cubic B-spline basis, spectral norms, shifted Chebyshev polynomials, collocation points, error estimates

Procedia PDF Downloads 141
5944 Lambda-Levelwise Statistical Convergence of a Sequence of Fuzzy Numbers

Authors: F. Berna Benli, Özgür Keskin


Lately, many mathematicians have been studied the statistical convergence of a sequence of fuzzy numbers. We know that Lambda-statistically convergence is a kind of convergence between ordinary convergence and statistical convergence. In this paper, we will introduce the new kind of convergence such as λ-levelwise statistical convergence. Then, we will define the concept of the λ-levelwise statistical cluster and limit points of a sequence of fuzzy numbers. Also, we will discuss the relations between the sets of λ-levelwise statistical cluster points and λ-levelwise statistical limit points of sequences of fuzzy numbers. This work has been extended in this paper, where some relations have been considered such that when lambda-statistical limit inferior and lambda-statistical limit superior for lambda-statistically convergent sequences of fuzzy numbers are equal. Furthermore, lambda-statistical boundedness condition for different sequences of fuzzy numbers has been studied.

Keywords: fuzzy number, λ-levelwise statistical cluster points, λ-levelwise statistical convergence, λ-levelwise statistical limit points, λ-statistical cluster points, λ-statistical convergence, λ-statistical limit points

Procedia PDF Downloads 376
5943 Statistical Convergence for the Approximation of Linear Positive Operators

Authors: Neha Bhardwaj


In this paper, we consider positive linear operators and study the Voronovskaya type result of the operator then obtain an error estimate in terms of the higher order modulus of continuity of the function being approximated and its A-statistical convergence. Also, we compute the corresponding rate of A-statistical convergence for the linear positive operators.

Keywords: Poisson distribution, Voronovskaya, modulus of continuity, a-statistical convergence

Procedia PDF Downloads 242
5942 Formation of Convergence Culture in the Framework of Conventional Media and New Media

Authors: Berkay Buluş, Aytekin İşman, Kübra Yüzüncüyıl


Developments in media and communication technologies have changed the way we use media. The importance of convergence culture has been increasing day by day within the framework of these developments. With new media, it is possible to say that social networks are the most powerful platforms that are integrated to this digitalization process. Although social networks seem like the place that people can socialize, they can also be utilized as places of production. On the other hand, audience has become users within the framework of transformation from national to global broadcasting. User generated contents make conventional media and new media collide. In this study, these communication platforms will be examined not as platforms that replace one another but mediums that unify each other. In the light of this information, information that is produced by users regarding new media platforms and all new media use practices are called convergence culture. In other words, convergence culture means intersections of conventional and new media. In this study, examples of convergence culture will be analyzed in detail.

Keywords: new media, convergence culture, convergence, use of new media, user generated content

Procedia PDF Downloads 187
5941 Parallel Multisplitting Methods for Differential Systems

Authors: Malika El Kyal, Ahmed Machmoum


We prove the superlinear convergence of asynchronous multi-splitting methods applied to differential equations. This study is based on the technique of nested sets. It permits to specify kind of the convergence in the asynchronous mode.The main characteristic of an asynchronous mode is that the local algorithm not have to wait at predetermined messages to become available. We allow some processors to communicate more frequently than others, and we allow the communication delays to be substantial and unpredictable. Note that synchronous algorithms in the computer science sense are particular cases of our formulation of asynchronous one.

Keywords: parallel methods, asynchronous mode, multisplitting, ODE

Procedia PDF Downloads 425
5940 An Iterative Family for Solution of System of Nonlinear Equations

Authors: Sonia Sonia


This paper presents a family of iterative scheme for solving nonlinear systems of equations which have wide application in sciences and engineering. The proposed iterative family is based upon some parameters which generates many different iterative schemes. This family is completely derivative free and uses first of divided difference operator. Moreover some numerical experiments are performed and compared with existing methods. Analysis of convergence shows that the presented family has fourth-order of convergence. The dynamical behaviour of proposed family and local convergence have also been discussed. The numerical performance and convergence region comparison demonstrates that proposed family is efficient.

Keywords: convergence, divided difference operator, nonlinear system, Newton's method

Procedia PDF Downloads 154
5939 A New Modification of Nonlinear Conjugate Gradient Coefficients with Global Convergence Properties

Authors: Ahmad Alhawarat, Mustafa Mamat, Mohd Rivaie, Ismail Mohd


Conjugate gradient method has been enormously used to solve large scale unconstrained optimization problems due to the number of iteration, memory, CPU time, and convergence property, in this paper we find a new class of nonlinear conjugate gradient coefficient with global convergence properties proved by exact line search. The numerical results for our new βK give a good result when it compared with well-known formulas.

Keywords: conjugate gradient method, conjugate gradient coefficient, global convergence

Procedia PDF Downloads 330
5938 A Family of Distributions on Learnable Problems without Uniform Convergence

Authors: César Garza


In supervised binary classification and regression problems, it is well-known that learnability is equivalent to a uniform convergence of the hypothesis class, and if a problem is learnable, it is learnable by empirical risk minimization. For the general learning setting of unsupervised learning tasks, there are non-trivial learning problems where uniform convergence does not hold. We present here the task of learning centers of mass with an extra feature that “activates” some of the coordinates over the unit ball in a Hilbert space. We show that the learning problem is learnable under a stable RLM rule. We introduce a family of distributions over the domain space with some mild restrictions for which the sample complexity of uniform convergence for these problems must grow logarithmically with the dimension of the Hilbert space. If we take this dimension to infinity, we obtain a learnable problem for which the uniform convergence property fails for a vast family of distributions.

Keywords: statistical learning theory, learnability, uniform convergence, stability, regularized loss minimization

Procedia PDF Downloads 18
5937 Semilocal Convergence of a Three Step Fifth Order Iterative Method under Hölder Continuity Condition in Banach Spaces

Authors: Ramandeep Behl, Prashanth Maroju, S. S. Motsa


In this paper, we study the semilocal convergence of a fifth order iterative method using recurrence relation under the assumption that first order Fréchet derivative satisfies the Hölder condition. Also, we calculate the R-order of convergence and provide some a priori error bounds. Based on this, we give existence and uniqueness region of the solution for a nonlinear Hammerstein integral equation of the second kind.

Keywords: Holder continuity condition, Frechet derivative, fifth order convergence, recurrence relations

Procedia PDF Downloads 185
5936 A Case Study on the Long-Term Stability Monitoring of Underground Powerhouse Complex Using Geotechnical Instrumentation

Authors: Sudhakar Kadiyala, Sripad R. Naik


Large cavern in Bhutan Himalayas is being monitored since the construction period. The behavior of the cavern is being monitored for last 16 years. Instrumentation includes measurement of convergence of high walls by geodetic monitoring, load on the support systems with load cells and instrumented bolts. Analysis of the results of instrumentation showed that during the construction period of the cavern, the convergence of the cavern varied from 181 - 233 mm in the unit bay area with maximum convergence rate of 2.80mm/day. Whereas during the operational period the total convergence observed was in the range of 21 to 45 mm during a period of 11.30 years with convergence rate of 0.005 to 0.011 mm/day. During the last five years, there were no instances of high tensile stress recorded by the instrumented bolts. Load on the rock bolts have shown stabilization trend at most of the locations. This paper discusses in detail the results of long-term monitoring using the geotechnical instruments and how the data is being used in 3D numerical model to confirm the stability of the cavern.

Keywords: convergence, displacements, geodetic monitoring, long-term stability

Procedia PDF Downloads 90
5935 Evaluation of Quasi-Newton Strategy for Algorithmic Acceleration

Authors: T. Martini, J. M. Martínez


An algorithmic acceleration strategy based on quasi-Newton (or secant) methods is displayed for address the practical problem of accelerating the convergence of the Newton-Lagrange method in the case of convergence to critical multipliers. Since the Newton-Lagrange iteration converges locally at a linear rate, it is natural to conjecture that quasi-Newton methods based on the so called secant equation and some minimal variation principle, could converge superlinearly, thus restoring the convergence properties of Newton's method. This strategy can also be applied to accelerate the convergence of algorithms applied to fixed-points problems. Computational experience is reported illustrating the efficiency of this strategy to solve fixed-point problems with linear convergence rate.

Keywords: algorithmic acceleration, fixed-point problems, nonlinear programming, quasi-newton method

Procedia PDF Downloads 423
5934 Multi-Objective Random Drift Particle Swarm Optimization Algorithm Based on RDPSO and Crowding Distance Sorting

Authors: Yiqiong Yuan, Jun Sun, Dongmei Zhou, Jianan Sun


In this paper, we presented a Multi-Objective Random Drift Particle Swarm Optimization algorithm (MORDPSO-CD) based on RDPSO and crowding distance sorting to improve the convergence and distribution with less computation cost. MORDPSO-CD makes the most of RDPSO to approach the true Pareto optimal solutions fast. We adopt the crowding distance sorting technique to update and maintain the archived optimal solutions. Introducing the crowding distance technique into MORDPSO can make the leader particles find the true Pareto solution ultimately. The simulation results reveal that the proposed algorithm has better convergence and distribution

Keywords: multi-objective optimization, random drift particle swarm optimization, crowding distance sorting, pareto optimal solution

Procedia PDF Downloads 183
5933 Random Walks and Option Pricing for European and American Options

Authors: Guillaume Leduc


In this paper, we describe a broad setting under which the error of the approximation can be quantified, controlled, and for which convergence occurs at a speed of n⁻¹ for European and American options. We describe how knowledge of the error allows for arbitrarily fast acceleration of the convergence.

Keywords: random walk approximation, European and American options, rate of convergence, option pricing

Procedia PDF Downloads 375
5932 Convergence Analysis of Training Two-Hidden-Layer Partially Over-Parameterized ReLU Networks via Gradient Descent

Authors: Zhifeng Kong


Over-parameterized neural networks have attracted a great deal of attention in recent deep learning theory research, as they challenge the classic perspective of over-fitting when the model has excessive parameters and have gained empirical success in various settings. While a number of theoretical works have been presented to demystify properties of such models, the convergence properties of such models are still far from being thoroughly understood. In this work, we study the convergence properties of training two-hidden-layer partially over-parameterized fully connected networks with the Rectified Linear Unit activation via gradient descent. To our knowledge, this is the first theoretical work to understand convergence properties of deep over-parameterized networks without the equally-wide-hidden-layer assumption and other unrealistic assumptions. We provide a probabilistic lower bound of the widths of hidden layers and proved linear convergence rate of gradient descent. We also conducted experiments on synthetic and real-world datasets to validate our theory.

Keywords: over-parameterization, rectified linear units ReLU, convergence, gradient descent, neural networks

Procedia PDF Downloads 62
5931 CFD Study for Normal and Rifled Tube with a Convergence Check

Authors: Sharfi Dirar, Shihab Elhaj, Ahmed El Fatih


Computational fluid dynamics were used to simulate and study the heated water boiler tube for both normal and rifled tube with a refinement of the mesh to check the convergence. The operation condition was taken from GARRI power station and used in a boundary condition accordingly. The result indicates the rifled tube has higher heat transfer efficiency than the normal tube.

Keywords: boiler tube, convergence check, normal tube, rifled tube

Procedia PDF Downloads 247
5930 Improving the Performance of Back-Propagation Training Algorithm by Using ANN

Authors: Vishnu Pratap Singh Kirar


Artificial Neural Network (ANN) can be trained using backpropagation (BP). It is the most widely used algorithm for supervised learning with multi-layered feed-forward networks. Efficient learning by the BP algorithm is required for many practical applications. The BP algorithm calculates the weight changes of artificial neural networks, and a common approach is to use a two-term algorithm consisting of a learning rate (LR) and a momentum factor (MF). The major drawbacks of the two-term BP learning algorithm are the problems of local minima and slow convergence speeds, which limit the scope for real-time applications. Recently the addition of an extra term, called a proportional factor (PF), to the two-term BP algorithm was proposed. The third increases the speed of the BP algorithm. However, the PF term also reduces the convergence of the BP algorithm, and criteria for evaluating convergence are required to facilitate the application of the three terms BP algorithm. Although these two seem to be closely related, as described later, we summarize various improvements to overcome the drawbacks. Here we compare the different methods of convergence of the new three-term BP algorithm.

Keywords: neural network, backpropagation, local minima, fast convergence rate

Procedia PDF Downloads 411
5929 Divergence of Innovation Capabilities within the EU

Authors: Vishal Jaunky, Jonas Grafström


The development of the European Union’s (EU) single economic market and rapid technological change has resulted in major structural changes in EU’s member states economies. The general liberalization process that the countries has undergone together has convinced the governments of the member states of need to upgrade their economic and training systems in order to be able to face the economic globalization. Several signs of economic convergence have been found but less is known about the knowledge production. This paper addresses the convergence pattern of technological innovation in 13 European Union (EU) states over the time period 1990-2011 by means of parametric and non-parametric techniques. Parametric approaches revolve around the neoclassical convergence theories. This paper reveals divergence of both the β and σ types. Further, we found evidence of stochastic divergence and non-parametric convergence approach such as distribution dynamics shows a tendency towards divergence. This result is supported with the occurrence of γ-divergence. The policies of the EU to reduce technological gap among its member states seem to be missing its target, something that can have negative long run consequences for the market.

Keywords: convergence, patents, panel data, European union

Procedia PDF Downloads 203
5928 Convergence of Generalized Jacobi, Gauss-Seidel and Successive Overrelaxation Methods for Various Classes of Matrices

Authors: Manideepa Saha, Jahnavi Chakrabarty


Generalized Jacobi (GJ) and Generalized Gauss-Seidel (GGS) methods are most effective than conventional Jacobi and Gauss-Seidel methods for solving linear system of equations. It is known that GJ and GGS methods converge for strictly diagonally dominant (SDD) and for M-matrices. In this paper, we study the convergence of GJ and GGS converge for symmetric positive definite (SPD) matrices, L-matrices and H-matrices. We introduce a generalization of successive overrelaxation (SOR) method for solving linear systems and discuss its convergence for the classes of SDD matrices, SPD matrices, M-matrices, L-matrices and for H-matrices. Advantages of generalized SOR method are established through numerical experiments over GJ, GGS, and SOR methods.

Keywords: convergence, Gauss-Seidel, iterative method, Jacobi, SOR

Procedia PDF Downloads 95
5927 A Fast Convergence Subband BSS Structure

Authors: Salah Al-Din I. Badran, Samad Ahmadi, Ismail Shahin


A blind source separation method is proposed; in this method we use a non-uniform filter bank and a novel normalisation. This method provides a reduced computational complexity and increased convergence speed comparing to the full-band algorithm. Recently, adaptive sub-band scheme has been recommended to solve two problems: reduction of computational complexity and increase the convergence speed of the adaptive algorithm for correlated input signals. In this work the reduction in computational complexity is achieved with the use of adaptive filters of orders less than the full-band adaptive filters, which operate at a sampling rate lower than the sampling rate of the input signal. The decomposed signals by analysis bank filter are less correlated in each sub-band than the input signal at full bandwidth, and can promote better rates of convergence.

Keywords: blind source separation, computational complexity, subband, convergence speed, mixture

Procedia PDF Downloads 467
5926 A Conjugate Gradient Method for Large Scale Unconstrained Optimization

Authors: Mohammed Belloufi, Rachid Benzine, Badreddine Sellami


Conjugate gradient methods is useful for solving large scale optimization problems in scientific and engineering computation, characterized by the simplicity of their iteration and their low memory requirements. It is well known that the search direction plays a main role in the line search method. In this paper, we propose a search direction with the Wolfe line search technique for solving unconstrained optimization problems. Under the above line searches and some assumptions, the global convergence properties of the given methods are discussed. Numerical results and comparisons with other CG methods are given.

Keywords: unconstrained optimization, conjugate gradient method, strong Wolfe line search, global convergence

Procedia PDF Downloads 322
5925 A Subband BSS Structure with Reduced Complexity and Fast Convergence

Authors: Salah Al-Din I. Badran, Samad Ahmadi, Ismail Shahin


A blind source separation method is proposed; in this method, we use a non-uniform filter bank and a novel normalisation. This method provides a reduced computational complexity and increased convergence speed comparing to the full-band algorithm. Recently, adaptive sub-band scheme has been recommended to solve two problems: reduction of computational complexity and increase the convergence speed of the adaptive algorithm for correlated input signals. In this work, the reduction in computational complexity is achieved with the use of adaptive filters of orders less than the full-band adaptive filters, which operate at a sampling rate lower than the sampling rate of the input signal. The decomposed signals by analysis bank filter are less correlated in each subband than the input signal at full bandwidth, and can promote better rates of convergence.

Keywords: blind source separation, computational complexity, subband, convergence speed, mixture

Procedia PDF Downloads 504
5924 Fast Terminal Synergetic Converter Control

Authors: Z. Bouchama, N. Essounbouli, A. Hamzaoui, M. N. Harmas


A new robust finite time synergetic controller is presented based on recently developed synergetic control methodology and a terminal attractor technique. A Fast Terminal Synergetic Control (FTSC) is proposed for controlling DC-DC buck converter. Unlike Synergetic Control (SC) and sliding mode control, the proposed control scheme has the characteristics of finite time convergence and chattering free phenomena. Simulation of stabilization and reference tracking for buck converter systems illustrates the approach effectiveness while stability is assured in the Lyapunov sense and converse Lyapunov results involving scalar differential inequalities are given for finite-time stability.

Keywords: dc-dc buck converter, synergetic control, finite time convergence, terminal synergetic control, fast terminal synergetic control, Lyapunov

Procedia PDF Downloads 315
5923 Relaxing Convergence Constraints in Local Priority Hysteresis Switching Logic

Authors: Mubarak Alhajri


This paper addresses certain inherent limitations of local priority hysteresis switching logic. Our main result establishes that under persistent excitation assumption, it is possible to relax constraints requiring strict positivity of local priority and hysteresis switching constants. Relaxing these constraints allows the adaptive system to reach optimality which implies the performance improvement. The unconstrained local priority hysteresis switching logic is examined and conditions for global convergence are derived.

Keywords: adaptive control, convergence, hysteresis constant, hysteresis switching

Procedia PDF Downloads 305
5922 Aliasing Free and Additive Error in Spectra for Alpha Stable Signals

Authors: R. Sabre


This work focuses on the symmetric alpha stable process with continuous time frequently used in modeling the signal with indefinitely growing variance, often observed with an unknown additive error. The objective of this paper is to estimate this error from discrete observations of the signal. For that, we propose a method based on the smoothing of the observations via Jackson polynomial kernel and taking into account the width of the interval where the spectral density is non-zero. This technique allows avoiding the “Aliasing phenomenon” encountered when the estimation is made from the discrete observations of a process with continuous time. We have studied the convergence rate of the estimator and have shown that the convergence rate improves in the case where the spectral density is zero at the origin. Thus, we set up an estimator of the additive error that can be subtracted for approaching the original signal without error.

Keywords: spectral density, stable processes, aliasing, non parametric

Procedia PDF Downloads 64