Search results for: genetic similarity
1637 Optimizing Glycemic Control with AI-Guided Dietary Supplements: A Randomized Trial in Type 2 Diabetes
Authors: Evgeny Pokushalov, Claire Garcia, Andrey Ponomarenko, John Smith, Michael Johnson, Inessa Pak, Evgenya Shrainer, Dmitry Kudlay, Leila Kasimova, Richard Miller
Abstract:
This study evaluated the efficacy of an AI-guided dietary supplement regimen compared to a standard physician-guided regimen in managing Type 2 diabetes (T2D). A total of 160 patients were randomly assigned to either the AI-guided group (n=80) or the physician-guided group (n=80) and followed over 90 days. The AI-guided group received 5.3 ± 1.2 supplements per patient, while the physician-guided group received 2.7 ± 0.6 supplements per patient. The AI system personalized supplement types and dosages based on individual genetic and metabolic profiles. The AI-guided group showed a significant reduction in HbA1c levels from 7.5 ± 0.8% to 7.1 ± 0.7%, compared to a reduction from 7.6 ± 0.9% to 7.4 ± 0.8% in the physician-guided group (mean difference: -0.3%, 95% CI: -0.5% to -0.1%; p < 0.01). Secondary outcomes, including fasting plasma glucose, HOMA-IR, and insulin levels, also improved more in the AI-guided group. Subgroup analyses revealed that the AI-guided regimen was particularly effective in patients with specific genetic polymorphisms and elevated metabolic markers. Safety profiles were comparable between both groups, with no serious adverse events reported. In conclusion, the AI-guided dietary supplement regimen significantly improved glycemic control and metabolic health in T2D patients compared to the standard physician-guided approach, demonstrating the potential of personalized AI-driven interventions in diabetes management.Keywords: Type 2 diabetes, AI-guided supplementation, personalized medicine, glycemic control, metabolic health, genetic polymorphisms, dietary supplements, HbA1c, fasting plasma glucose, HOMA-IR, personalized nutrition
Procedia PDF Downloads 51636 Numerical Optimization of Trapezoidal Microchannel Heat Sinks
Authors: Yue-Tzu Yang, Shu-Ching Liao
Abstract:
This study presents the numerical simulation of three-dimensional incompressible steady and laminar fluid flow and conjugate heat transfer of a trapezoidal microchannel heat sink using water as a cooling fluid in a silicon substrate. Navier-Stokes equations with conjugate energy equation are discretized by finite-volume method. We perform numerical computations for a range of 50 ≦ Re ≦ 600, 0.05W ≦ P ≦ 0.8W, 20W/cm2 ≦ ≦ 40W/cm2. The present study demonstrates the numerical optimization of a trapezoidal microchannel heat sink design using the response surface methodology (RSM) and the genetic algorithm method (GA). The results show that the average Nusselt number increases with an increase in the Reynolds number or pumping power, and the thermal resistance decreases as the pumping power increases. The thermal resistance of a trapezoidal microchannel is minimized for a constant heat flux and constant pumping power.Keywords: microchannel heat sinks, conjugate heat transfer, optimization, genetic algorithm method
Procedia PDF Downloads 3181635 Identification of a Lead Compound for Selective Inhibition of Nav1.7 to Treat Chronic Pain
Authors: Sharat Chandra, Zilong Wang, Ru-Rong Ji, Andrey Bortsov
Abstract:
Chronic pain (CP) therapeutic approaches have limited efficacy. As a result, doctors are prescribing opioids for chronic pain, leading to opioid overuse, abuse, and addiction epidemic. Therefore, the development of effective and safe CP drugs remains an unmet medical need. Voltage-gated sodium (Nav) channels act as cardiovascular and neurological disorder’s molecular targets. Nav channels selective inhibitors are hard to design because there are nine closely-related isoforms (Nav1.1-1.9) that share the protein sequence segments. We are targeting the Nav1.7 found in the peripheral nervous system and engaged in the perception of pain. The objective of this project was to screen a 1.5 million compound library for identification of inhibitors for Nav1.7 with analgesic effect. In this study, we designed a protocol for identification of isoform-selective inhibitors of Nav1.7, by utilizing the prior information on isoform-selective antagonists. First, a similarity search was performed; then the identified hits were docked into a binding site on the fourth voltage-sensor domain (VSD4) of Nav1.7. We used the FTrees tool for similarity searching and library generation; the generated library was docked in the VSD4 domain binding site using FlexX and compounds were shortlisted using a FlexX score and SeeSAR hyde scoring. Finally, the top 25 compounds were tested with molecular dynamics simulation (MDS). We reduced our list to 9 compounds based on the MDS root mean square deviation plot and obtained them from a vendor for in vitro and in vivo validation. Whole-cell patch-clamp recordings in HEK-293 cells and dorsal root ganglion neurons were conducted. We used patch pipettes to record transient Na⁺ currents. One of the compounds reduced the peak sodium currents in Nav1.7-HEK-293 stable cell line in a dose-dependent manner, with IC50 values at 0.74 µM. In summary, our computer-aided analgesic discovery approach allowed us to develop pre-clinical analgesic candidate with significant reduction of time and cost.Keywords: chronic pain, voltage-gated sodium channel, isoform-selective antagonist, similarity search, virtual screening, analgesics development
Procedia PDF Downloads 1221634 Pattern Synthesis of Nonuniform Linear Arrays Including Mutual Coupling Effects Based on Gaussian Process Regression and Genetic Algorithm
Authors: Ming Su, Ziqiang Mu
Abstract:
This paper proposes a synthesis method for nonuniform linear antenna arrays that combine Gaussian process regression (GPR) and genetic algorithm (GA). In this method, the GPR model can be used to calculate the array radiation pattern in the presence of mutual coupling effects, and then the GA is used to optimize the excitations and locations of the elements so as to generate the desired radiation pattern. In this paper, taking a 9-element nonuniform linear array as an example and the desired radiation pattern corresponding to a Chebyshev distribution as the optimization objective, optimize the excitations and locations of the elements. Finally, the optimization results are verified by electromagnetic simulation software CST, which shows that the method is effective.Keywords: nonuniform linear antenna arrays, GPR, GA, mutual coupling effects, active element pattern
Procedia PDF Downloads 1061633 Functional Analysis of Thyroid Peroxidase (TPO) Gene Mutations Detected in Patients with Thyroid Dyshormonogenesis
Authors: Biswabandhu Bankura, Srikanta Guria, Madhusudan Das
Abstract:
Purpose: Thyroid peroxidase (TPO) is the key enzyme in the biosynthesis of thyroid hormones. We aimed to identify the spectrum of mutations in the TPO gene leading to hypothyroidism in the population of West Bengal to establish the genetic etiology of the disease. Methods: 200 hypothyroid patients (case) and their corresponding sex and age matched 200 normal individuals (control) were screened depending on their clinical manifestations. Genomic DNA was isolated from peripheral blood samples and TPO gene (Exon 7 to Exon 14) was amplified by PCR. The PCR products were subjected to sequencing to identify mutations. Results: Single nucleotide changes such as Glu 641 Lys, Asp 668 Asn, Thr 725 Pro, Asp 620 Asn, Ser 398 Thr, and Ala 373 Ser were found. Changes in the TPO were assayed in vitro to compare mutant and wild-type activities. Five mutants were enzymatically inactive in the guaiacol and iodide assays. This is a strong indication that the mutations are present at crucial positions of the TPO gene, resulting in inactivated TPO. Key Findings: The results of this study may help to develop a genetic screening protocol for goiter and hypothyroidism in the population of West Bengal.Keywords: thyroid peroxidase, hypothyroidism, mutation, in vitro assay, transfection
Procedia PDF Downloads 3421632 Functional Analysis of Thyroid Peroxidase Gene Mutations Detected in Patients with Thyroid Dyshormonogenesis
Authors: Biswabandhu Bankura, Srikanta Guria, Madhusudan Das
Abstract:
Purpose: Thyroid peroxidase (TPO) is the key enzyme in the biosynthesis of thyroid hormones. We aimed to identify the spectrum of mutations in the TPO gene leading to hypothyroidism in the population of West Bengal to establish the genetic etiology of the disease. Methods: 200 hypothyroid patients (case) and their corresponding sex and age matched 200 normal individuals (control) were screened depending on their clinical manifestations. Genomic DNA was isolated from peripheral blood samples and TPO gene (Exon 7 to Exon 14) was amplified by PCR. The PCR products were subjected to sequencing to identify mutations. Results: Single nucleotide changes such as Glu 641 Lys, Asp 668 Asn, Thr 725 Pro, Asp 620 Asn, Ser 398 Thr, and Ala 373 Ser were found. Changes in the TPO were assayed in vitro to compare mutant and wild-type activities. Five mutants were enzymatically inactive in the guaiacol and iodide assays. This is a strong indication that the mutations are present at crucial positions of the TPO gene, resulting in inactivated TPO. Key Findings: The results of this study may help to develop a genetic screening protocol for goiter and hypothyroidism in the population of West Bengal.Keywords: thyroid peroxidase, hypothyroidism, mutation, in vitro assay, transfection
Procedia PDF Downloads 3311631 An Approach to Building a Recommendation Engine for Travel Applications Using Genetic Algorithms and Neural Networks
Authors: Adrian Ionita, Ana-Maria Ghimes
Abstract:
The lack of features, design and the lack of promoting an integrated booking application are some of the reasons why most online travel platforms only offer automation of old booking processes, being limited to the integration of a smaller number of services without addressing the user experience. This paper represents a practical study on how to improve travel applications creating user-profiles through data-mining based on neural networks and genetic algorithms. Choices made by users and their ‘friends’ in the ‘social’ network context can be considered input data for a recommendation engine. The purpose of using these algorithms and this design is to improve user experience and to deliver more features to the users. The paper aims to highlight a broader range of improvements that could be applied to travel applications in terms of design and service integration, while the main scientific approach remains the technical implementation of the neural network solution. The motivation of the technologies used is also related to the initiative of some online booking providers that have made the fact that they use some ‘neural network’ related designs public. These companies use similar Big-Data technologies to provide recommendations for hotels, restaurants, and cinemas with a neural network based recommendation engine for building a user ‘DNA profile’. This implementation of the ‘profile’ a collection of neural networks trained from previous user choices, can improve the usability and design of any type of application.Keywords: artificial intelligence, big data, cloud computing, DNA profile, genetic algorithms, machine learning, neural networks, optimization, recommendation system, user profiling
Procedia PDF Downloads 1621630 A Robust Spatial Feature Extraction Method for Facial Expression Recognition
Authors: H. G. C. P. Dinesh, G. Tharshini, M. P. B. Ekanayake, G. M. R. I. Godaliyadda
Abstract:
This paper presents a new spatial feature extraction method based on principle component analysis (PCA) and Fisher Discernment Analysis (FDA) for facial expression recognition. It not only extracts reliable features for classification, but also reduces the feature space dimensions of pattern samples. In this method, first each gray scale image is considered in its entirety as the measurement matrix. Then, principle components (PCs) of row vectors of this matrix and variance of these row vectors along PCs are estimated. Therefore, this method would ensure the preservation of spatial information of the facial image. Afterwards, by incorporating the spectral information of the eigen-filters derived from the PCs, a feature vector was constructed, for a given image. Finally, FDA was used to define a set of basis in a reduced dimension subspace such that the optimal clustering is achieved. The method of FDA defines an inter-class scatter matrix and intra-class scatter matrix to enhance the compactness of each cluster while maximizing the distance between cluster marginal points. In order to matching the test image with the training set, a cosine similarity based Bayesian classification was used. The proposed method was tested on the Cohn-Kanade database and JAFFE database. It was observed that the proposed method which incorporates spatial information to construct an optimal feature space outperforms the standard PCA and FDA based methods.Keywords: facial expression recognition, principle component analysis (PCA), fisher discernment analysis (FDA), eigen-filter, cosine similarity, bayesian classifier, f-measure
Procedia PDF Downloads 4231629 Genodata: The Human Genome Variation Using BigData
Authors: Surabhi Maiti, Prajakta Tamhankar, Prachi Uttam Mehta
Abstract:
Since the accomplishment of the Human Genome Project, there has been an unparalled escalation in the sequencing of genomic data. This project has been the first major vault in the field of medical research, especially in genomics. This project won accolades by using a concept called Bigdata which was earlier, extensively used to gain value for business. Bigdata makes use of data sets which are generally in the form of files of size terabytes, petabytes, or exabytes and these data sets were traditionally used and managed using excel sheets and RDBMS. The voluminous data made the process tedious and time consuming and hence a stronger framework called Hadoop was introduced in the field of genetic sciences to make data processing faster and efficient. This paper focuses on using SPARK which is gaining momentum with the advancement of BigData technologies. Cloud Storage is an effective medium for storage of large data sets which is generated from the genetic research and the resultant sets produced from SPARK analysis.Keywords: human genome project, Bigdata, genomic data, SPARK, cloud storage, Hadoop
Procedia PDF Downloads 2581628 Cochlear Implants and the Emerging Therapies for Managing Hearing Loss
Authors: Hesham Kozou
Abstract:
Sensorineural hearing loss (SNHL) poses a significant challenge due to limited access to the inner ear for therapies. Emerging treatments such as regenerative, genetic, and pharmacotherapies offer hope for addressing this condition. This study aims to highlight the potential of cochlear implants and emerging therapies in managing sensorineural hearing loss by improving access to the inner ear. The study is conducted through a review of relevant literature and research articles in the field of cochlear implants and emerging therapies for hearing loss. It outlines how advancements in cochlear implant technologies, electrodes, and surgical techniques can facilitate the delivery of therapies to the inner ear, potentially revolutionizing the treatment of sensorineural hearing loss. The study underscores the potential of cochlear implants and emerging therapies in revolutionizing the treatment landscape for sensorineural hearing loss, emphasizing the feasibility of curing this condition by leveraging technological advancements.Keywords: therapies for hearing loss management, future of CI as a cochlear delivery channel, regenerative, genetic and pharmacotherapeutic management of hearing loss
Procedia PDF Downloads 471627 Polyhydroxybutyrate Production in Bacteria Isolated from Estuaries along the Eastern Coast of India
Authors: Shubhashree Mahalik, Dhanesh Kumar, Jatin Kumar Pradhan
Abstract:
Odisha is one of the coastal states situated on the eastern part of India with 480 km long coastline. The coastal Odisha is referred to as "Gift of Six Rivers". Balasore, a major coastal district of Odisha is bounded by Bay of Bengal in the East having 26 km long seashore. It is lined with several estuaries rich in biodiversity.Several studies have been carried out on the macro flora and fauna of this area but very few documented information are available regarding microbial biodiversity. In the present study, an attempt has been made to isolate and identify bacteria found along the estuaries of Balasore.Many marine microorganisms are sources of natural products which makes them potential industrial organisms. So the ability of the isolated bacteria to secrete one such industrially significant product, PHB (Polyhydroxybutyrate) has been elucidated. Several rounds of sampling, pure culture, morphological, biochemical and phylogenetic screening led to the identification of two PHB producing strains. Isolate 5 was identified to be Brevibacillus sp. and has maximum similarity to Brevibacillus parabrevis (KX83268). The isolate was named as Brevibacillus sp.KEI-5. Isolate 8 was identified asLysinibacillus sp. having closest similarity withLysinibacillus boroni-tolerance (KP314269) and named as Lysinibacillus sp. KEI-8.Media, temperature, carbon, nitrogen and salinity requirement were optimized for both isolates. Submerged fermentation of both isolates in Terrific Broth media supplemented with optimized carbon and nitrogen source at 37°C led to significant accumulation of PHB as detected by colorimetric method.Keywords: Bacillus, estuary, marine, Odisha, polyhydroxy butyrate
Procedia PDF Downloads 3481626 Optimization of Solar Rankine Cycle by Exergy Analysis and Genetic Algorithm
Authors: R. Akbari, M. A. Ehyaei, R. Shahi Shavvon
Abstract:
Nowadays, solar energy is used for energy purposes such as the use of thermal energy for domestic, industrial and power applications, as well as the conversion of the sunlight into electricity by photovoltaic cells. In this study, the thermodynamic simulation of the solar Rankin cycle with phase change material (paraffin) was first studied. Then energy and exergy analyses were performed. For optimization, a single and multi-objective genetic optimization algorithm to maximize thermal and exergy efficiency was used. The parameters discussed in this paper included the effects of input pressure on turbines, input mass flow to turbines, the surface of converters and collector angles on thermal and exergy efficiency. In the organic Rankin cycle, where solar energy is used as input energy, the fluid selection is considered as a necessary factor to achieve reliable and efficient operation. Therefore, silicon oil is selected for a high-temperature cycle and water for a low-temperature cycle as an operating fluid. The results showed that increasing the mass flow to turbines 1 and 2 would increase thermal efficiency, while it reduces and increases the exergy efficiency in turbines 1 and 2, respectively. Increasing the inlet pressure to the turbine 1 decreases the thermal and exergy efficiency, and increasing the inlet pressure to the turbine 2 increases the thermal efficiency and exergy efficiency. Also, increasing the angle of the collector increased thermal efficiency and exergy. The thermal efficiency of the system was 22.3% which improves to 33.2 and 27.2% in single-objective and multi-objective optimization, respectively. Also, the exergy efficiency of the system was 1.33% which has been improved to 1.719 and 1.529% in single-objective and multi-objective optimization, respectively. These results showed that the thermal and exergy efficiency in a single-objective optimization is greater than the multi-objective optimization.Keywords: exergy analysis, genetic algorithm, rankine cycle, single and multi-objective function
Procedia PDF Downloads 1461625 Machine Vision System for Measuring the Quality of Bulk Sun-dried Organic Raisins
Authors: Navab Karimi, Tohid Alizadeh
Abstract:
An intelligent vision-based system was designed to measure the quality and purity of raisins. A machine vision setup was utilized to capture the images of bulk raisins in ranges of 5-50% mixed pure-impure berries. The textural features of bulk raisins were extracted using Grey-level Histograms, Co-occurrence Matrix, and Local Binary Pattern (a total of 108 features). Genetic Algorithm and neural network regression were used for selecting and ranking the best features (21 features). As a result, the GLCM features set was found to have the highest accuracy (92.4%) among the other sets. Followingly, multiple feature combinations of the previous stage were fed into the second regression (linear regression) to increase accuracy, wherein a combination of 16 features was found to be the optimum. Finally, a Support Vector Machine (SVM) classifier was used to differentiate the mixtures, producing the best efficiency and accuracy of 96.2% and 97.35%, respectively.Keywords: sun-dried organic raisin, genetic algorithm, feature extraction, ann regression, linear regression, support vector machine, south azerbaijan.
Procedia PDF Downloads 721624 Isolation and Identification Fibrinolytic Protease Endophytic Fungi from Hibiscus Leaves in Shah Alam
Authors: Mohd Sidek Ahmad, Zainon Mohd Noor, Zaidah Zainal Ariffin
Abstract:
Fibrin degradation is an important part in prevention or treatment of intravascular thrombosis and cardiovascular diseases. Plasmin like fibrinolytic enzymes has given new hope to patient with cardiovascular diseases by treating fibrin aggregation related diseases with traditional plasminogen activator which have many side effects. Various researches involving wide range of sources for production of fibrinolytic proteases, from bacteria, fungi, insects and fermented foods. But few have looked into endophytic fungi as a potential source. Sixteen (16) endophytic fungi were isolated from Hibiscus sp. leaves from six different locations in Shah Alam, Selangor. Only two endophytic fungi, FH3 and S13 showed positive fibrinolytic protease activities. FH3 produced 5.78cm and S13 produced 4.48cm on Skim Milk Agar after 4 days of incubation at 27°C. Fibrinolytic activity was observed; 3.87cm and 1.82cm diameter clear zone on fibrin plate of FH3 and S13 respectively. 18srRNA was done for identification of the isolated fungi with positive fibrinolytic protease. S13 had the highest similarity (100%) to that of Penicillium citrinum strain TG2 and FH3 had the highest similarity (99%) to that of Fusarium sp. FW2PhC1, Fusarium sp. 13002, Fusarium sp. 08006, Fusarium equiseti strain Salicorn 8 and Fungal sp. FCASAn-2. Media composition variation showed the effects of carbon nitrogen on protein concentration, where the decrement of 50% of media composition caused drastic decrease in protease of FH3 from 1.081 to 0.056 and also S13 from 2.946 to 0.198.Keywords: isolation, identification, fibrinolytic protease, endophytic fungi, Hibiscus leaves
Procedia PDF Downloads 4311623 Effect of Forging Pressure on Mechanical Properties and Microstructure of Similar and Dissimilar Friction Welded Joints (Aluminium, Copper, Steel)
Authors: Sagar Pandit
Abstract:
The present work focuses on the effect of various process parameters on the mechanical properties and microstructure of joints produced by continuous drive friction welding and linear friction welding. An attempt is made to investigate the feasibility of obtaining an acceptable weld joint between similar as well as dissimilar components and the microstructural changes have also been assessed once the good weld joints were considered (using Optical Microscopy and Scanning Electron Microscopy techniques). The impact of forging pressure in the microstructure of the weld joint has been studied and the variation in joint strength with varying forge pressure is analyzed. The weld joints were obtained two pair of dissimilar materials and one pair of similar materials, which are listed respectively as: Al-AA5083 & Cu-C101 (dissimilar), Aluminium alloy-3000 series & Mild Steel (dissimilar) and High Nitrogen Austenitic Stainless Steel pair (similar). Intermetallic phase formation was observed at the weld joints in the Al-Cu joint, which consequently harmed the properties of the joint (less tensile strength). It was also concluded that the increase in forging pressure led to both increment and decrement in the tensile strength of the joint depending on the similarity or dissimilarity of the components. The hardness was also observed to possess maximum as well as minimum values at the weld joint depending on the similarity or dissimilarity of workpieces. It was also suggested that a higher forging pressure is needed to obtain complete joining for the formation of the weld joint.Keywords: forging pressure, friction welding, mechanical properties, microstructure
Procedia PDF Downloads 1171622 Genetics of Birth and Weaning Weight of Holstein, Friesians in Sudan
Authors: Safa A. Mohammed Ali, Ammar S. Ahamed, Mohammed Khair Abdalla
Abstract:
The objectives of this study were to estimate the means and genetic parameters of birth and weaning weight of calves of pure Holstein-Friesian cows raised in Sudan. The traits studied were:*Weight at birth *Weight at weaning. The study also included some of the important factors that affected these traits. The data were analyzed using Harvey’s Least Squares and Maximum Likelihood programme. The results obtained showed that the overall mean weight at birth of the calves under study was 34.36±0.94kg. Male calves were found to be heavier than females; the difference between the sexes was highly significant (P<0.001). The mean weight at birth of male calves was 34.27±1.17 kg while that of females was 32.51±1.14kg. The effect of sex of calves, sire and parity of dam were highly significant (P<0.001). The overall mean of weight at weaning was 67.10 ± 5.05 kg, weight at weaning was significantly (p<0.001) effected by sex of calves, sire, year and season of birth have highly significant (P<0.001) effect on either trait. Also estimates heritabilities of birth weight was (0.033±0.015) lower than heritabilities of weaning weight (0.224±0.039), and genetic correlation was 0.563, the phenotypic correlation 0.281, and the environmental correlation 0.268.Keywords: birth, weaning, weight, friesian
Procedia PDF Downloads 6631621 Non-Destructive Static Damage Detection of Structures Using Genetic Algorithm
Authors: Amir Abbas Fatemi, Zahra Tabrizian, Kabir Sadeghi
Abstract:
To find the location and severity of damage that occurs in a structure, characteristics changes in dynamic and static can be used. The non-destructive techniques are more common, economic, and reliable to detect the global or local damages in structures. This paper presents a non-destructive method in structural damage detection and assessment using GA and static data. Thus, a set of static forces is applied to some of degrees of freedom and the static responses (displacements) are measured at another set of DOFs. An analytical model of the truss structure is developed based on the available specification and the properties derived from static data. The damages in structure produce changes to its stiffness so this method used to determine damage based on change in the structural stiffness parameter. Changes in the static response which structural damage caused choose to produce some simultaneous equations. Genetic Algorithms are powerful tools for solving large optimization problems. Optimization is considered to minimize objective function involve difference between the static load vector of damaged and healthy structure. Several scenarios defined for damage detection (single scenario and multiple scenarios). The static damage identification methods have many advantages, but some difficulties still exist. So it is important to achieve the best damage identification and if the best result is obtained it means that the method is Reliable. This strategy is applied to a plane truss. This method is used for a plane truss. Numerical results demonstrate the ability of this method in detecting damage in given structures. Also figures show damage detections in multiple damage scenarios have really efficient answer. Even existence of noise in the measurements doesn’t reduce the accuracy of damage detections method in these structures.Keywords: damage detection, finite element method, static data, non-destructive, genetic algorithm
Procedia PDF Downloads 2341620 Low Cost Webcam Camera and GNSS Integration for Updating Home Data Using AI Principles
Authors: Mohkammad Nur Cahyadi, Hepi Hapsari Handayani, Agus Budi Raharjo, Ronny Mardianto, Daud Wahyu Imani, Arizal Bawazir, Luki Adi Triawan
Abstract:
PDAM (local water company) determines customer charges by considering the customer's building or house. Charges determination significantly affects PDAM income and customer costs because the PDAM applies a subsidy policy for customers classified as small households. Periodic updates are needed so that pricing is in line with the target. A thorough customer survey in Surabaya is needed to update customer building data. However, the survey that has been carried out so far has been by deploying officers to conduct one-by-one surveys for each PDAM customer. Surveys with this method require a lot of effort and cost. For this reason, this research offers a technology called moblie mapping, a mapping method that is more efficient in terms of time and cost. The use of this tool is also quite simple, where the device will be installed in the car so that it can record the surrounding buildings while the car is running. Mobile mapping technology generally uses lidar sensors equipped with GNSS, but this technology requires high costs. In overcoming this problem, this research develops low-cost mobile mapping technology using a webcam camera sensor added to the GNSS and IMU sensors. The camera used has specifications of 3MP with a resolution of 720 and a diagonal field of view of 78⁰. The principle of this invention is to integrate four camera sensors, a GNSS webcam, and GPS to acquire photo data, which is equipped with location data (latitude, longitude) and IMU (roll, pitch, yaw). This device is also equipped with a tripod and a vacuum cleaner to attach to the car's roof so it doesn't fall off while running. The output data from this technology will be analyzed with artificial intelligence to reduce similar data (Cosine Similarity) and then classify building types. Data reduction is used to eliminate similar data and maintain the image that displays the complete house so that it can be processed for later classification of buildings. The AI method used is transfer learning by utilizing a trained model named VGG-16. From the analysis of similarity data, it was found that the data reduction reached 50%. Then georeferencing is done using the Google Maps API to get address information according to the coordinates in the data. After that, geographic join is done to link survey data with customer data already owned by PDAM Surya Sembada Surabaya.Keywords: mobile mapping, GNSS, IMU, similarity, classification
Procedia PDF Downloads 811619 Distangling Biological Noise in Cellular Images with a Focus on Explainability
Authors: Manik Sharma, Ganapathy Krishnamurthi
Abstract:
The cost of some drugs and medical treatments has risen in recent years, that many patients are having to go without. A classification project could make researchers more efficient. One of the more surprising reasons behind the cost is how long it takes to bring new treatments to market. Despite improvements in technology and science, research and development continues to lag. In fact, finding new treatment takes, on average, more than 10 years and costs hundreds of millions of dollars. If successful, we could dramatically improve the industry's ability to model cellular images according to their relevant biology. In turn, greatly decreasing the cost of treatments and ensure these treatments get to patients faster. This work aims at solving a part of this problem by creating a cellular image classification model which can decipher the genetic perturbations in cell (occurring naturally or artificially). Another interesting question addressed is what makes the deep-learning model decide in a particular fashion, which can further help in demystifying the mechanism of action of certain perturbations and paves a way towards the explainability of the deep-learning model.Keywords: cellular images, genetic perturbations, deep-learning, explainability
Procedia PDF Downloads 1101618 CT Medical Images Denoising Based on New Wavelet Thresholding Compared with Curvelet and Contourlet
Authors: Amir Moslemi, Amir movafeghi, Shahab Moradi
Abstract:
One of the most important challenging factors in medical images is nominated as noise.Image denoising refers to the improvement of a digital medical image that has been infected by Additive White Gaussian Noise (AWGN). The digital medical image or video can be affected by different types of noises. They are impulse noise, Poisson noise and AWGN. Computed tomography (CT) images are subjected to low quality due to the noise. The quality of CT images is dependent on the absorbed dose to patients directly in such a way that increase in absorbed radiation, consequently absorbed dose to patients (ADP), enhances the CT images quality. In this manner, noise reduction techniques on the purpose of images quality enhancement exposing no excess radiation to patients is one the challenging problems for CT images processing. In this work, noise reduction in CT images was performed using two different directional 2 dimensional (2D) transformations; i.e., Curvelet and Contourlet and Discrete wavelet transform(DWT) thresholding methods of BayesShrink and AdaptShrink, compared to each other and we proposed a new threshold in wavelet domain for not only noise reduction but also edge retaining, consequently the proposed method retains the modified coefficients significantly that result in good visual quality. Data evaluations were accomplished by using two criterions; namely, peak signal to noise ratio (PSNR) and Structure similarity (Ssim).Keywords: computed tomography (CT), noise reduction, curve-let, contour-let, signal to noise peak-peak ratio (PSNR), structure similarity (Ssim), absorbed dose to patient (ADP)
Procedia PDF Downloads 4381617 Investigation of Soil Slopes Stability
Authors: Nima Farshidfar, Navid Daryasafar
Abstract:
In this paper, the seismic stability of reinforced soil slopes is studied using pseudo-dynamic analysis. Equilibrium equations that are applicable to the every kind of failure surface are written using Horizontal Slices Method. In written equations, the balance of the vertical and horizontal forces and moment equilibrium is fully satisfied. Failure surface is assumed to be log-spiral, and non-linear equilibrium equations obtained for the system are solved using Newton-Raphson Method. Earthquake effects are applied as horizontal and vertical pseudo-static coefficients to the problem. To solve this problem, a code was developed in MATLAB, and the critical failure surface is calculated using genetic algorithm. At the end, comparing the results obtained in this paper, effects of various parameters and the effect of using pseudo - dynamic analysis in seismic forces modeling is presented.Keywords: soil slopes, pseudo-dynamic, genetic algorithm, optimization, limit equilibrium method, log-spiral failure surface
Procedia PDF Downloads 3361616 Microarray Gene Expression Data Dimensionality Reduction Using PCA
Authors: Fuad M. Alkoot
Abstract:
Different experimental technologies such as microarray sequencing have been proposed to generate high-resolution genetic data, in order to understand the complex dynamic interactions between complex diseases and the biological system components of genes and gene products. However, the generated samples have a very large dimension reaching thousands. Therefore, hindering all attempts to design a classifier system that can identify diseases based on such data. Additionally, the high overlap in the class distributions makes the task more difficult. The data we experiment with is generated for the identification of autism. It includes 142 samples, which is small compared to the large dimension of the data. The classifier systems trained on this data yield very low classification rates that are almost equivalent to a guess. We aim at reducing the data dimension and improve it for classification. Here, we experiment with applying a multistage PCA on the genetic data to reduce its dimensionality. Results show a significant improvement in the classification rates which increases the possibility of building an automated system for autism detection.Keywords: PCA, gene expression, dimensionality reduction, classification, autism
Procedia PDF Downloads 5591615 Profile of Programmed Death Ligand-1 (PD-L1) Expression and PD-L1 Gene Amplification in Indonesian Colorectal Cancer Patients
Authors: Akterono Budiyati, Gita Kusumo, Teguh Putra, Fritzie Rexana, Antonius Kurniawan, Aru Sudoyo, Ahmad Utomo, Andi Utama
Abstract:
The presence of the programmed death ligand-1 (PD-L1) has been used in multiple clinical trials and approved as biomarker for selecting patients more likely to respond to immune checkpoint inhibitors. However, the expression of PD-L1 is regulated in different ways, which leads to a different significance of its presence. Positive PD-L1 within tumors may result from two mechanisms, induced PD-L1 expression by T-cell presence or genetic mechanism that lead to constitutive PD-L1 expression. Amplification of PD-L1 genes was found as one of genetic mechanism which causes an increase in PD-L1 expression. In case of colorectal cancer (CRC), targeting immune checkpoint inhibitor has been recommended for patients with microsatellite instable (MSI). Although the correlation between PD-L1 expression and MSI status has been widely studied, so far the precise mechanism of PD-L1 gene activation in CRC patients, particularly in MSI population have yet to be clarified. In this present study we have profiled 61 archived formalin fixed paraffin embedded CRC specimens of patients from Medistra Hospital, Jakarta admitted in 2010 - 2016. Immunohistochemistry was performed to measure expression of PD-L1 in tumor cells as well as MSI status using antibodies against PD-L1 and MMR (MLH1, MSH2, PMS2 and MSH6), respectively. PD-L1 expression was measured on tumor cells with cut off of 1% whereas loss of nuclear MMR protein expressions in tumor cells but not in normal or stromal cells indicated presence of MSI. Subset of PD-L1 positive patients was then assessed for copy number variations (CNVs) using single Tube TaqMan Copy Number Assays Gene CD247PD-L1. We also observed KRAS mutation to profile possible genetic mechanism leading to the presence or absence of PD-L1 expression. Analysis of 61 CRC patients revealed 15 patients (24%) expressed PD-L1 on their tumor cell membranes. The prevalence of surface membrane PD-L1 was significantly higher in patients with MSI (87%; 7/8) compared to patients with microsatellite stable (MSS) (15%; 8/53) (P=0.001). Although amplification of PD-L1 gene was not found among PD-L1 positive patients, low-level amplification of PD-L1 gene was commonly observed in MSS patients (75%; 6/8) than in MSI patients (43%; 3/7). Additionally, we found 26% of CRC patients harbored KRAS mutations (16/61), so far the distribution of KRAS status did not correlate with PD-L1 expression. Our data suggest genetic mechanism through amplification of PD-L1 seems not to be the mechanism underlying upregulation of PD-L1 expression in CRC patients. However, further studies are warranted to confirm the results.Keywords: colorectal cancer, gene amplification, microsatellite instable, programmed death ligand-1
Procedia PDF Downloads 2211614 The Impact of Undisturbed Flow Speed on the Correlation of Aerodynamic Coefficients as a Function of the Angle of Attack for the Gyroplane Body
Authors: Zbigniew Czyz, Krzysztof Skiba, Miroslaw Wendeker
Abstract:
This paper discusses the results of aerodynamic investigation of the Tajfun gyroplane body designed by a Polish company, Aviation Artur Trendak. This gyroplane has been studied as a 1:8 scale model. Scaling objects for aerodynamic investigation is an inherent procedure in any kind of designing. If scaling, the criteria of similarity need to be satisfied. The basic criteria of similarity are geometric, kinematic and dynamic. Despite the results of aerodynamic research are often reduced to aerodynamic coefficients, one should pay attention to how values of coefficients behave if certain criteria are to be satisfied. To satisfy the dynamic criterion, for example, the Reynolds number should be focused on. This is the correlation of inertial to viscous forces. With the multiplied flow speed by the specific dimension as a numerator (with a constant kinematic viscosity coefficient), flow speed in a wind tunnel research should be increased as many times as an object is decreased. The aerodynamic coefficients specified in this research depend on the real forces that act on an object, its specific dimension, medium speed and variations in its density. Rapid prototyping with a 3D printer was applied to create the research object. The research was performed with a T-1 low-speed wind tunnel (its diameter of the measurement volume is 1.5 m) and a six-element aerodynamic internal scales, WDP1, at the Institute of Aviation in Warsaw. This T-1 wind tunnel is low-speed continuous operation with open space measurement. The research covered a number of the selected speeds of undisturbed flow, i.e. V = 20, 30 and 40 m/s, corresponding to the Reynolds numbers (as referred to 1 m) Re = 1.31∙106, 1.96∙106, 2.62∙106 for the angles of attack ranging -15° ≤ α ≤ 20°. Our research resulted in basic aerodynamic characteristics and observing the impact of undisturbed flow speed on the correlation of aerodynamic coefficients as a function of the angle of attack of the gyroplane body. If the speed of undisturbed flow in the wind tunnel changes, the aerodynamic coefficients are significantly impacted. At speed from 20 m/s to 30 m/s, drag coefficient, Cx, changes by 2.4% up to 9.9%, whereas lift coefficient, Cz, changes by -25.5% up to 15.7% if the angle of attack of 0° excluded or by -25.5% up to 236.9% if the angle of attack of 0° included. Within the same speed range, the coefficient of a pitching moment, Cmy, changes by -21.1% up to 7.3% if the angles of attack -15° and -10° excluded or by -142.8% up to 618.4% if the angle of attack -15° and -10° included. These discrepancies in the coefficients of aerodynamic forces definitely need to consider while designing the aircraft. For example, if load of certain aircraft surfaces is calculated, additional correction factors definitely need to be applied. This study allows us to estimate the discrepancies in the aerodynamic forces while scaling the aircraft. This work has been financed by the Polish Ministry of Science and Higher Education.Keywords: aerodynamics, criteria of similarity, gyroplane, research tunnel
Procedia PDF Downloads 3911613 DNA Fingerprinting of Some Major Genera of Subterranean Termites (Isoptera) (Anacanthotermes, Psammotermes and Microtermes) from Western Saudi Arabia
Authors: AbdelRahman A. Faragalla, Mohamed H. Alqhtani, Mohamed M. M.Ahmed
Abstract:
Saudi Arabia has currently been beset by a barrage of bizarre assemblages of subterranean termite fauna, inflicting heavy catastrophic havocs on human valued properties in various homes, storage facilities, warehouses, agricultural and horticultural crops including okra, sweet pepper, tomatoes, sorghum, date palm trees, citruses and many forest domains and green lush desert oases. The most pressing urgent priority is to use modern technologies to alleviate the painstaking obstacle of taxonomic identification of these injurious noxious pests that might lead to effective pest control in both infested agricultural commodities and field crops. Our study has indicated the use of DNA fingerprinting technologies, in order to generate basic information of the genetic similarity between 3 predominant families containing the most destructive termite species. The methodologies included extraction and DNA isolation from members of the major families and the use of randomly selected primers and PCR amplifications with the nucleotide sequences. GC content and annealing temperatures for all primers, PCR amplifications and agarose gel electrophoresis were also conducted in addition to the scoring and analysis of Random Amplification Polymorphic DNA-PCR (RAPDs). A phylogenetic analysis for different species using statistical computer program on the basis of RAPD-DNA results, represented as a dendrogram based on the average of band sharing ratio between different species. Our study aims to shed more light on this intriguing subject, which may lead to an expedited display of the kinship and relatedness of species in an ambitious undertaking to arrive at correct taxonomic classification of termite species, discover sibling species, so that a logistic rational pest management strategy could be delineated.Keywords: DNA fingerprinting, Western Saudi Arabia, DNA primers, RAPD
Procedia PDF Downloads 4281612 Organotin (IV) Based Complexes as Promiscuous Antibacterials: Synthesis in vitro, in Silico Pharmacokinetic, and Docking Studies
Authors: Wajid Rehman, Sirajul Haq, Bakhtiar Muhammad, Syed Fahad Hassan, Amin Badshah, Muhammad Waseem, Fazal Rahim, Obaid-Ur-Rahman Abid, Farzana Latif Ansari, Umer Rashid
Abstract:
Five novel triorganotin (IV) compounds have been synthesized and characterized. The tin atom is penta-coordinated to assume trigonal-bipyramidal geometry. Using in silico derived parameters; the objective of our study is to design and synthesize promiscuous antibacterials potent enough to combat resistance. Among various synthesized organotin (IV) complexes, compound 5 was found as potent antibacterial agent against various bacterial strains. Further lead optimization of drug-like properties was evaluated through in silico predictions. Data mining and computational analysis were utilized to derive compound promiscuity phenomenon to avoid drug attrition rate in designing antibacterials. Xanthine oxidase and human glucose- 6-phosphatase were found as only true positive off-target hits by ChEMBL database and others utilizing similarity ensemble approach. Propensity towards a-3 receptor, human macrophage migration factor and thiazolidinedione were found as false positive off targets with E-value 1/4> 10^-4 for compound 1, 3, and 4. Further, displaying positive drug-drug interaction of compound 1 as uricosuric was validated by all databases and docked protein targets with sequence similarity and compositional matrix alignment via BLAST software. Promiscuity of the compound 5 was further confirmed by in silico binding to different antibacterial targets.Keywords: antibacterial activity, drug promiscuity, ADMET prediction, metallo-pharmaceutical, antimicrobial resistance
Procedia PDF Downloads 5011611 Towards Law Data Labelling Using Topic Modelling
Authors: Daniel Pinheiro Da Silva Junior, Aline Paes, Daniel De Oliveira, Christiano Lacerda Ghuerren, Marcio Duran
Abstract:
The Courts of Accounts are institutions responsible for overseeing and point out irregularities of Public Administration expenses. They have a high demand for processes to be analyzed, whose decisions must be grounded on severity laws. Despite the existing large amount of processes, there are several cases reporting similar subjects. Thus, previous decisions on already analyzed processes can be a precedent for current processes that refer to similar topics. Identifying similar topics is an open, yet essential task for identifying similarities between several processes. Since the actual amount of topics is considerably large, it is tedious and error-prone to identify topics using a pure manual approach. This paper presents a tool based on Machine Learning and Natural Language Processing to assists in building a labeled dataset. The tool relies on Topic Modelling with Latent Dirichlet Allocation to find the topics underlying a document followed by Jensen Shannon distance metric to generate a probability of similarity between documents pairs. Furthermore, in a case study with a corpus of decisions of the Rio de Janeiro State Court of Accounts, it was noted that data pre-processing plays an essential role in modeling relevant topics. Also, the combination of topic modeling and a calculated distance metric over document represented among generated topics has been proved useful in helping to construct a labeled base of similar and non-similar document pairs.Keywords: courts of accounts, data labelling, document similarity, topic modeling
Procedia PDF Downloads 1771610 The Neuropsychology of Obsessive Compulsion Disorder
Authors: Mia Bahar, Özlem Bozkurt
Abstract:
Obsessive-compulsive disorder (OCD) is a typical, persistent, and long-lasting mental health condition in which a person experiences uncontrollable, recurrent thoughts (or "obsessions") and/or activities (or "compulsions") that they feel compelled to engage in repeatedly. Obsessive-compulsive disorder is both underdiagnosed and undertreated. It frequently manifests in a variety of medical settings and is persistent, expensive, and burdensome. Obsessive-compulsive neurosis was long believed to be a condition that offered valuable insight into the inner workings of the unconscious mind. Obsessive-compulsive disorder is now recognized as a prime example of a neuropsychiatric condition susceptible to particular pharmacotherapeutic and psychotherapy therapies and mediated by pathology in particular neural circuits. An obsessive-compulsive disorder which is called OCD, usually has two components, one cognitive and the other behavioral, although either can occur alone. Obsessions are often repetitive and intrusive thoughts that invade consciousness. These obsessions are incredibly hard to control or dismiss. People who have OCD often engage in rituals to reduce anxiety associated with intrusive thoughts. Once the ritual is formed, the person may feel extreme relief and be free from anxiety until the thoughts of contamination intrude once again. These thoughts are strengthened through a manifestation of negative reinforcement because they allow the person to avoid anxiety and obscurity. These thoughts are described as autogenous, meaning they most likely come from nowhere. These unwelcome thoughts are related to actions which we can describe as Thought Action Fusion. The thought becomes equated with an action, such as if they refuse to perform the ritual, something bad might happen, and so people perform the ritual to escape the intrusive thought. In almost all cases of OCD, the person's life gets extremely disturbed by compulsions and obsessions. Studies show OCD is an estimated 1.1% prevalence, making it a challenging issue with high co-morbidities with other issues like depressive episodes, panic disorders, and specific phobias. The first to reveal brain anomalies in OCD were numerous CT investigations, although the results were inconsistent. A few studies have focused on the orbitofrontal cortex (OFC), anterior cingulate gyrus (AC), and thalamus, structures also implicated in the pathophysiology of OCD by functional neuroimaging studies, but few have found consistent results. However, some studies have found abnormalities in the basal ganglion. There have also been some discussions that OCD might be genetic. OCD has been linked to families in studies of family aggregation, and findings from twin studies show that this relationship is somewhat influenced by genetic variables. Some Research has shown that OCD is a heritable, polygenic condition that can result from de novo harmful mutations as well as common and unusual variants. Numerous studies have also presented solid evidence in favor of a significant additive genetic component to OCD risk, with distinct OCD symptom dimensions showing both common and individual genetic risks.Keywords: compulsions, obsessions, neuropsychiatric, genetic
Procedia PDF Downloads 631609 Optimization of Dez Dam Reservoir Operation Using Genetic Algorithm
Authors: Alireza Nikbakht Shahbazi, Emadeddin Shirali
Abstract:
Since optimization issues of water resources are complicated due to the variety of decision making criteria and objective functions, it is sometimes impossible to resolve them through regular optimization methods or, it is time or money consuming. Therefore, the use of modern tools and methods is inevitable in resolving such problems. An accurate and essential utilization policy has to be determined in order to use natural resources such as water reservoirs optimally. Water reservoir programming studies aim to determine the final cultivated land area based on predefined agricultural models and water requirements. Dam utilization rule curve is also provided in such studies. The basic information applied in water reservoir programming studies generally include meteorological, hydrological, agricultural and water reservoir related data, and the geometric characteristics of the reservoir. The system of Dez dam water resources was simulated applying the basic information in order to determine the capability of its reservoir to provide the objectives of the performed plan. As a meta-exploratory method, genetic algorithm was applied in order to provide utilization rule curves (intersecting the reservoir volume). MATLAB software was used in order to resolve the foresaid model. Rule curves were firstly obtained through genetic algorithm. Then the significance of using rule curves and the decrease in decision making variables in the system was determined through system simulation and comparing the results with optimization results (Standard Operating Procedure). One of the most essential issues in optimization of a complicated water resource system is the increasing number of variables. Therefore a lot of time is required to find an optimum answer and in some cases, no desirable result is obtained. In this research, intersecting the reservoir volume has been applied as a modern model in order to reduce the number of variables. Water reservoir programming studies has been performed based on basic information, general hypotheses and standards and applying monthly simulation technique for a statistical period of 30 years. Results indicated that application of rule curve prevents the extreme shortages and decrease the monthly shortages.Keywords: optimization, rule curve, genetic algorithm method, Dez dam reservoir
Procedia PDF Downloads 2651608 Association of Leptin Gene T3469C Polymorphism on Reproductive Performance of Purebred Sows
Authors: Mariedel Autriz, Angel Lambio, Renato Vega, Severino Capitan, Rita Laude
Abstract:
The study was conducted to associate genetic polymorphism of the leptin gene T3469C with reproductive performance in purebred sows. DNA were isolated from hair follicles of 29 Landrace and 24 Large White sows. Amplification of the leptin gene was done followed by Hinf1digestion to determine the base at the T3469C site. Electrophoresis of the digestion products revealed that there were 25 Landrace and 15 Large White sows with the TT genotype while there were 3 Landrace and 6 Large White TC. There was 1 CC for Landrace and 3 for Large White. Significant genotype associations were observed for total litter size born and total born alive. Significant breed differences, on the other hand, was observed for gestation length and average birth weight. Significant breed by genotype interaction was observed in litter size total born and litter size born alive.Keywords: genetic polymorphism, leptin, swine, T3469C
Procedia PDF Downloads 417