Search results for: decision support technique
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16004

Search results for: decision support technique

15434 Reliability Modeling on Drivers’ Decision during Yellow Phase

Authors: Sabyasachi Biswas, Indrajit Ghosh

Abstract:

The random and heterogeneous behavior of vehicles in India puts up a greater challenge for researchers. Stop-and-go modeling at signalized intersections under heterogeneous traffic conditions has remained one of the most sought-after fields. Vehicles are often caught up in the dilemma zone and are unable to take quick decisions whether to stop or cross the intersection. This hampers the traffic movement and may lead to accidents. The purpose of this work is to develop a stop and go prediction model that depicts the drivers’ decision during the yellow time at signalised intersections. To accomplish this, certain traffic parameters were taken into account to develop surrogate model. This research investigated the Stop and Go behavior of the drivers by collecting data from 4-signalized intersections located in two major Indian cities. Model was developed to predict the drivers’ decision making during the yellow phase of the traffic signal. The parameters used for modeling included distance to stop line, time to stop line, speed, and length of the vehicle. A Kriging base surrogate model has been developed to investigate the drivers’ decision-making behavior in amber phase. It is observed that the proposed approach yields a highly accurate result (97.4 percent) by Gaussian function. It was observed that the accuracy for the crossing probability was 95.45, 90.9 and 86.36.11 percent respectively as predicted by the Kriging models with Gaussian, Exponential and Linear functions.

Keywords: decision-making decision, dilemma zone, surrogate model, Kriging

Procedia PDF Downloads 309
15433 Decision Tree Modeling in Emergency Logistics Planning

Authors: Yousef Abu Nahleh, Arun Kumar, Fugen Daver, Reham Al-Hindawi

Abstract:

Despite the availability of natural disaster related time series data for last 110 years, there is no forecasting tool available to humanitarian relief organizations to determine forecasts for emergency logistics planning. This study develops a forecasting tool based on identifying probability of disaster for each country in the world by using decision tree modeling. Further, the determination of aggregate forecasts leads to efficient pre-disaster planning. Based on the research findings, the relief agencies can optimize the various resources allocation in emergency logistics planning.

Keywords: decision tree modeling, forecasting, humanitarian relief, emergency supply chain

Procedia PDF Downloads 483
15432 Knowledge about Dementia: Why Should Family Caregivers Know that Dementia is a Terminal Disease?

Authors: Elzbieta Sikorska-Simmons

Abstract:

Dementia is a progressive terminal disease. Despite this recognition, research shows that most family caregivers do not know it, and it is unclear how this knowledge affects the quality of patient care. The aim of this qualitative study of 20 family caregivers for patients with advanced dementia is to examine how the caregiver's knowledge about dementia affects the quality of patient care in the context of healthcare decision-making, advanced care planning, and access to adequate support systems. Knowledge about dementia implies family caregivers' understanding of dementia trajectories, common symptoms/complications, and alternative treatment options (e.g., comfort feeding versus tube feeding). Data were collected in semi-structured interviews with 20 family caregivers. The interviews were conducted in person by the author and designed to elicit rich descriptions of family caregivers' experiences with healthcare decision-making and the management of common symptoms/complications of end-stage dementia as patient healthcare proxies. The study findings suggest that caregivers who recognize that dementia is a terminal disease are less likely to opt for life-extending treatments during the advanced stages. They are also more likely to seek palliative/hospice care, and consequently, they are better able to avoid unnecessary hospitalizations or medical procedures. For example, those who know that dementia is a terminal disease tend to opt for "comfort feeding" rather than "tube feeding" in managing the swallowing difficulties that accompany advanced dementia. In the context of advance care planning, family caregivers who know that dementia is a terminal disease tend to have more meaningful advance directives (e.g., Power of Attorney and Do Not Resuscitate orders). They are better prepared to anticipate common problems and pursue treatments that foster the best quality of patient life and care. Greater knowledge about advanced dementia helps them make more informed decisions that focus on enhancing the quality of patient life rather than just survival. In addition, those who know that dementia is a terminal disease are more likely to establish adequate support systems to help them cope with the complex demands of caregiving. For example, they are more likely to seek dementia-oriented primary care programs that offer house visits or respite services. Based on the study findings, knowledge about dementia as a terminal disease is critical in the optimal management of patient care needs and the establishment of adequate support systems. More research is needed to better understand what caregivers need to know to better prepare them for the complex demands of dementia caregiving.

Keywords: dementia education, family caregiver, management of dementia, quality of care

Procedia PDF Downloads 100
15431 [Keynote Speech]: Facilitating Familial Support of Saudi Arabians Living with HIV/AIDS

Authors: Noor Attar

Abstract:

The paper provides an overview of the current situation of HIV/AIDS patients in the Kingdom of Saudi Arabia (KSA) and a literature review of the concepts of stigma communication, communication of social support. These concepts provide the basis for the proposed methods, which will include conducting a textual analysis of materials that are currently distributed to family members of persons living with HIV/AIDS (PLWHIV/A) in KSA and creating an educational brochure. The brochure will aim to help families of PLWHIV/A in KSA (1) understand how stigma shapes the experience of PLWHIV/A, (2) realize the role of positive communication as a helpful social support, and (3) develop the ability to provide positive social support for their loved ones.

Keywords:

Procedia PDF Downloads 312
15430 Application of Artificial Neural Network Technique for Diagnosing Asthma

Authors: Azadeh Bashiri

Abstract:

Introduction: Lack of proper diagnosis and inadequate treatment of asthma leads to physical and financial complications. This study aimed to use data mining techniques and creating a neural network intelligent system for diagnosis of asthma. Methods: The study population is the patients who had visited one of the Lung Clinics in Tehran. Data were analyzed using the SPSS statistical tool and the chi-square Pearson's coefficient was the basis of decision making for data ranking. The considered neural network is trained using back propagation learning technique. Results: According to the analysis performed by means of SPSS to select the top factors, 13 effective factors were selected, in different performances, data was mixed in various forms, so the different models were made for training the data and testing networks and in all different modes, the network was able to predict correctly 100% of all cases. Conclusion: Using data mining methods before the design structure of system, aimed to reduce the data dimension and the optimum choice of the data, will lead to a more accurate system. Therefore, considering the data mining approaches due to the nature of medical data is necessary.

Keywords: asthma, data mining, Artificial Neural Network, intelligent system

Procedia PDF Downloads 273
15429 Blind Data Hiding Technique Using Interpolation of Subsampled Images

Authors: Singara Singh Kasana, Pankaj Garg

Abstract:

In this paper, a blind data hiding technique based on interpolation of sub sampled versions of a cover image is proposed. Sub sampled image is taken as a reference image and an interpolated image is generated from this reference image. Then difference between original cover image and interpolated image is used to embed secret data. Comparisons with the existing interpolation based techniques show that proposed technique provides higher embedding capacity and better visual quality marked images. Moreover, the performance of the proposed technique is more stable for different images.

Keywords: interpolation, image subsampling, PSNR, SIM

Procedia PDF Downloads 578
15428 The Ethio-Eritrea Claims Commission on Use of Force: Issue of Self-Defense or Violation of Sovereignty

Authors: Isaias Teklia Berhe

Abstract:

A decision that deals with international disputes, be it arbitral or judicial, has to properly reflect objectivity and coherence with existing rules of international law. This paper shows the decision of the Ethio-Eritrea Claims Commission on the jus ad bellum case is bereft of objectivity and coherence, which contributed a disservice to international law on many aspects. The Commission’s decision that holds Eritrea in contravention to Art 2(4) of the UN Charter based on Ethiopia’s contention is flawed. It fails to consider: the illegitimacy of an actual authority established over contested territory through hostile acts, the proper determination of effectivites under international law, the sanctity of colonially determined boundaries, Ethiopia’s prior firm political recognition and undergirds to respect colonial boundary, and Ethio-Eritrea Border Commission’s decision. The paper will also argue that the Commission confused Eritrea’s right of self-defense with the rule against the non-use of force to settle territorial disputes; wherefore its decision sanitizes or sterilizes unlawful change of territory resulted through unlawful use of force to the effect of advantaging aggressions. The paper likewise argues that the decision is so sacrilegious that it disregards the ossified legal finality of colonial boundaries. Moreover, its approach toward armed attack does not reflect the peculiarity of the jus ad bellum case rather it brings about definitional uncertainties and sustains the perception that the law on self-defense is unsettled.

Keywords: armed attack, Eritrea, Ethiopia, self-defense, territorial integrity, use of force

Procedia PDF Downloads 278
15427 Designing a Cricket Team Selection Method Using Super-Efficient DEA and Semi Variance Approach

Authors: Arnab Adhikari, Adrija Majumdar, Gaurav Gupta, Arnab Bisi

Abstract:

Team formation plays an instrumental role in the sports like cricket. Existing literature reveals that most of the works on player selection focus only on the players’ efficiency and ignore the consistency. It motivates us to design an improved player selection method based on both player’s efficiency and consistency. To measure the players’ efficiency measurement, we employ a modified data envelopment analysis (DEA) technique namely ‘super-efficient DEA model’. We design a modified consistency index based on semi variance approach. Here, we introduce a new parameter called ‘fitness index’ for consistency computation to assess a player’s fitness level. Finally, we devise a single performance score using both efficiency score and consistency score with the help of a linear programming model. To test the robustness of our method, we perform a rigorous numerical analysis to determine the all-time best One Day International (ODI) Cricket XI. Next, we conduct extensive comparative studies regarding efficiency scores, consistency scores, selected team between the existing methods and the proposed method and explain the rationale behind the improvement.

Keywords: decision support systems, sports, super-efficient data envelopment analysis, semi variance approach

Procedia PDF Downloads 399
15426 Independent Encryption Technique for Mobile Voice Calls

Authors: Nael Hirzalla

Abstract:

The legality of some countries or agencies’ acts to spy on personal phone calls of the public became a hot topic to many social groups’ talks. It is believed that this act is considered an invasion to someone’s privacy. Such act may be justified if it is singling out specific cases but to spy without limits is very unacceptable. This paper discusses the needs for not only a simple and light weight technique to secure mobile voice calls but also a technique that is independent from any encryption standard or library. It then presents and tests one encrypting algorithm that is based of frequency scrambling technique to show fair and delay-free process that can be used to protect phone calls from such spying acts.

Keywords: frequency scrambling, mobile applications, real-time voice encryption, spying on calls

Procedia PDF Downloads 479
15425 A Method for Automated Planning of Fiber to the Home Access Network Infrastructures

Authors: Hammad Khalid

Abstract:

In this paper, a strategy for computerized arranging of Fiber to the Home (FTTH) get to systems is proposed. We presented an efficient methodology for arranging access organize framework. The GIS information and a lot of calculations were utilized to make the arranging procedure increasingly programmed. The technique clarifies various strides of the arranging process. Considering various situations, various designs can be produced by utilizing the technique. It was likewise conceivable to produce the designs in an extremely brief temporal contrast with the conventional arranging. A contextual investigation is considered to delineate the utilization and abilities of the arranging technique. The technique, be that as it may, doesn't completely robotize the arranging however, make the arranging procedure fundamentally quick. The outcomes and dialog are displayed and end is given at last.

Keywords: FTTH, GIS, robotize, plan

Procedia PDF Downloads 153
15424 The Synergistic Effects of Blockchain and AI on Enhancing Data Integrity and Decision-Making Accuracy in Smart Contracts

Authors: Sayor Ajfar Aaron, Sajjat Hossain Abir, Ashif Newaz, Mushfiqur Rahman

Abstract:

Investigating the convergence of blockchain technology and artificial intelligence, this paper examines their synergistic effects on data integrity and decision-making within smart contracts. By implementing AI-driven analytics on blockchain-based platforms, the research identifies improvements in automated contract enforcement and decision accuracy. The paper presents a framework that leverages AI to enhance transparency and trust while blockchain ensures immutable record-keeping, culminating in significantly optimized operational efficiencies in various industries.

Keywords: artificial intelligence, blockchain, data integrity, smart contracts

Procedia PDF Downloads 55
15423 Percutaneous Femoral Shortening Over a Nail Using Onsite Smashing Osteotomy Technique

Authors: Rami Jahmani

Abstract:

Closed femoral-shortening osteotomy over an intramedullary nail for the treatment of leg length discrepancy (LLD) is a demanding surgical technique, classically requiring specialized instrumentation (intramedullary saw and chisel). The paper describes a modified surgical technique of performing femoral shortening percutaneously, using a percutaneous multiple drill-hole osteotomy technique to smash the bone, and then, the bone is fixed using intramedullary locked nail. Paper presents the result of performing nine cases of shortening as well.

Keywords: —Femoral shortening, Leg length discrepancy, Minimal invasive, Percutaneous osteotomy.

Procedia PDF Downloads 74
15422 Cloud Support for Scientific Workflow Execution: Prototyping Solutions for Remote Sensing Applications

Authors: Sofiane Bendoukha, Daniel Moldt, Hayat Bendoukha

Abstract:

Workflow concepts are essential for the development of remote sensing applications. They can help users to manage and process satellite data and execute scientific experiments on distributed resources. The objective of this paper is to introduce an approach for the specification and the execution of complex scientific workflows in Cloud-like environments. The approach strives to support scientists during the modeling, the deployment and the monitoring of their workflows. This work takes advantage from Petri nets and more pointedly the so-called reference nets formalism, which provides a robust modeling/implementation technique. RENEWGRASS is a tool that we implemented and integrated into the Petri nets editor and simulator RENEW. It provides an easy way to support not experienced scientists during the specification of their workflows. It allows both modeling and enactment of image processing workflows from the remote sensing domain. Our case study is related to the implementation of vegetation indecies. We have implemented the Normalized Differences Vegetation Index (NDVI) workflow. Additionally, we explore the integration possibilities of the Cloud technology as a supplementary layer for the deployment of the current implementation. For this purpose, we discuss migration patterns of data and applications and propose an architecture.

Keywords: cloud computing, scientific workflows, petri nets, RENEWGRASS

Procedia PDF Downloads 447
15421 A Machine Learning Model for Predicting Students’ Academic Performance in Higher Institutions

Authors: Emmanuel Osaze Oshoiribhor, Adetokunbo MacGregor John-Otumu

Abstract:

There has been a need in recent years to predict student academic achievement prior to graduation. This is to assist them in improving their grades, especially for those who have struggled in the past. The purpose of this research is to use supervised learning techniques to create a model that predicts student academic progress. Many scholars have developed models that predict student academic achievement based on characteristics including smoking, demography, culture, social media, parent educational background, parent finances, and family background, to mention a few. This element, as well as the model used, could have misclassified the kids in terms of their academic achievement. As a prerequisite to predicting if the student will perform well in the future on related courses, this model is built using a logistic regression classifier with basic features such as the previous semester's course score, attendance to class, class participation, and the total number of course materials or resources the student is able to cover per semester. With a 96.7 percent accuracy, the model outperformed other classifiers such as Naive bayes, Support vector machine (SVM), Decision Tree, Random forest, and Adaboost. This model is offered as a desktop application with user-friendly interfaces for forecasting student academic progress for both teachers and students. As a result, both students and professors are encouraged to use this technique to predict outcomes better.

Keywords: artificial intelligence, ML, logistic regression, performance, prediction

Procedia PDF Downloads 109
15420 Determination of Water Pollution and Water Quality with Decision Trees

Authors: Çiğdem Bakır, Mecit Yüzkat

Abstract:

With the increasing emphasis on water quality worldwide, the search for and expanding the market for new and intelligent monitoring systems has increased. The current method is the laboratory process, where samples are taken from bodies of water, and tests are carried out in laboratories. This method is time-consuming, a waste of manpower, and uneconomical. To solve this problem, we used machine learning methods to detect water pollution in our study. We created decision trees with the Orange3 software we used in our study and tried to determine all the factors that cause water pollution. An automatic prediction model based on water quality was developed by taking many model inputs such as water temperature, pH, transparency, conductivity, dissolved oxygen, and ammonia nitrogen with machine learning methods. The proposed approach consists of three stages: preprocessing of the data used, feature detection, and classification. We tried to determine the success of our study with different accuracy metrics and the results. We presented it comparatively. In addition, we achieved approximately 98% success with the decision tree.

Keywords: decision tree, water quality, water pollution, machine learning

Procedia PDF Downloads 81
15419 Morphological Features Fusion for Identifying INBREAST-Database Masses Using Neural Networks and Support Vector Machines

Authors: Nadia el Atlas, Mohammed el Aroussi, Mohammed Wahbi

Abstract:

In this paper a novel technique of mass characterization based on robust features-fusion is presented. The proposed method consists of mainly four stages: (a) the first phase involves segmenting the masses using edge information’s. (b) The second phase is to calculate and fuse the most relevant morphological features. (c) The last phase is the classification step which allows us to classify the images into benign and malignant masses. In this step we have implemented Support Vectors Machines (SVM) and Artificial Neural Networks (ANN), which were evaluated with the following performance criteria: confusion matrix, accuracy, sensitivity, specificity, receiver operating characteristic ROC, and error histogram. The effectiveness of this new approach was evaluated by a recently developed database: INBREAST database. The fusion of the most appropriate morphological features provided very good results. The SVM gives accuracy to within 64.3%. Whereas the ANN classifier gives better results with an accuracy of 97.5%.

Keywords: breast cancer, mammography, CAD system, features, fusion

Procedia PDF Downloads 599
15418 Decision Making Communication in the Process of Technologies Commercialization: Archival Analysis of the Process Content

Authors: Vaida Zemlickiene

Abstract:

Scientists around the world and practitioners are working to identify the factors that influence the results of technology commercialization and to propose the ideal model for the technology commercialization process. In other words, all stakeholders of technology commercialization seek to find a formula or set of rules to succeed in commercializing technologies in order to avoid unproductive investments. In this article, the process of commercialization technology is understood as the process of transforming inventions into marketable products, services, and processes, or the path from the idea of using an invention to a product that incorporates process from 1 to 9 technology readiness level (TRL). There are many publications in the field of management literature, which are aimed at managing the commercialization process. However, there is an apparent lack of research for communication in decision-making in the process of technology commercialization. Works were done in the past, and the last decade's global research analysis led to the unambiguous conclusion that the methodological framework is not mature enough to be of practical use in business. The process of technology commercialization and the decisions made in the process should be explored in-depth. An archival analysis is performed to find insights into decision-making communication in the process of technologies commercialization, to find out the content of technology commercialization process: decision-making stages and participants, to analyze the internal factors of technology commercialization, to perform their critical analysis, to analyze the concept of successful/unsuccessful technology commercialization.

Keywords: the process of technology commercialization, communication in decision-making process, the content of technology commercialization process, successful/unsuccessful technology commercialization

Procedia PDF Downloads 153
15417 Literature Review and Approach for the Use of Digital Factory Models in an Augmented Reality Application for Decision Making in Restructuring Processes

Authors: Rene Hellmuth, Jorg Frohnmayer

Abstract:

The requirements of the factory planning and the building concerned have changed in the last years. Factory planning has the task of designing products, plants, processes, organization, areas, and the building of a factory. Regular restructuring gains more importance in order to maintain the competitiveness of a factory. Even today, the methods and process models used in factory planning are predominantly based on the classical planning principles of Schmigalla, Aggteleky and Kettner, which, however, are not specifically designed for reorganization. In addition, they are designed for a largely static environmental situation and a manageable planning complexity as well as for medium to long-term planning cycles with a low variability of the factory. Existing approaches already regard factory planning as a continuous process that makes it possible to react quickly to adaptation requirements. However, digital factory models are not yet used as a source of information for building data. Approaches which consider building information modeling (BIM) or digital factory models in general either do not refer to factory conversions or do not yet go beyond a concept. This deficit can be further substantiated. A method for factory conversion planning using a current digital building model is lacking. A corresponding approach must take into account both the existing approaches to factory planning and the use of digital factory models in practice. A literature review will be conducted first. In it, approaches to classic factory planning and approaches to conversion planning are examined. In addition, it will be investigated which approaches already contain digital factory models. In the second step, an approach is presented how digital factory models based on building information modeling can be used as a basis for augmented reality tablet applications. This application is suitable for construction sites and provides information on the costs and time required for conversion variants. Thus a fast decision making is supported. In summary, the paper provides an overview of existing factory planning approaches and critically examines the use of digital tools. Based on this preliminary work, an approach is presented, which suggests the sensible use of digital factory models for decision support in the case of conversion variants of the factory building. The augmented reality application is designed to summarize the most important information for decision-makers during a reconstruction process.

Keywords: augmented reality, digital factory model, factory planning, restructuring

Procedia PDF Downloads 138
15416 New Approach for Load Modeling

Authors: Slim Chokri

Abstract:

Load forecasting is one of the central functions in power systems operations. Electricity cannot be stored, which means that for electric utility, the estimate of the future demand is necessary in managing the production and purchasing in an economically reasonable way. A majority of the recently reported approaches are based on neural network. The attraction of the methods lies in the assumption that neural networks are able to learn properties of the load. However, the development of the methods is not finished, and the lack of comparative results on different model variations is a problem. This paper presents a new approach in order to predict the Tunisia daily peak load. The proposed method employs a computational intelligence scheme based on the Fuzzy neural network (FNN) and support vector regression (SVR). Experimental results obtained indicate that our proposed FNN-SVR technique gives significantly good prediction accuracy compared to some classical techniques.

Keywords: neural network, load forecasting, fuzzy inference, machine learning, fuzzy modeling and rule extraction, support vector regression

Procedia PDF Downloads 435
15415 On the Move: Factors Impacting the Migratory Decision-Making Capabilities of Gambians Relocating to Europe

Authors: Jeremy Goldsmith

Abstract:

The Gambia, the smallest country in mainland Africa and one of the poorest countries on Earth, is currently experiencing historically unprecedented levels of out-migration to Europe. As a result, Gambians are currently among the top four nationalities emigrating to Europe. The central question that this thesis will address is: what factors impact the migration-related decision-making capabilities of Gambians? Based on interviews with NGOs, as well as those who have migrated and returned, are planning to migrate, and their friends and families, a pattern will emerge. This pattern will be woven into first person narratives which will explore the politico-economic, environmental, and socio-cultural factors that inform individual decision-making with regards to migration.

Keywords: migration, The Gambia, Africa, politico-economic, sociocultural, environmental

Procedia PDF Downloads 324
15414 Strict Liability as a Means of Standardising Sentencing Outcomes for Shoplifting Offences Dealt with in UK Magistrates Courts

Authors: Mariam Shah

Abstract:

Strict liability is frequently used in magistrate’s courts for TV license and driving offences.There is existing research suggesting that the strict liability approach to criminal offences can result in ‘absurd’ judicial outcomes, or potentially ‘injustice’.This paper will discuss the potential merits of strict liability as a method for dealing with shoplifting offences.Currently, there is disparity in sentencing outcomes in the UK, particularly in relation to shoplifting offences.This paper will question whether ‘injustice’ is actually in the differentiation of defendants based upon their ‘perceived’ circumstances, which could be resulting in arbitrary judicial decision making.

Keywords: arbitrary, decision making, judicial decision making, shoplifting, stereotypes, strict liability

Procedia PDF Downloads 309
15413 A Study of the Frequency of Individual Support for the Pupils With Developmental Disabilities or Suspected Developmental Disabilities in Regular Japanese School Classes - From a Questionnaire Survey of Teachers

Authors: Maho Komura

Abstract:

The purpose of this study was to determine from a questionnaire survey of teachers the status of implementation of individualized support for the pupils with suspected developmental disabilities in regular elementary school classes in Japan. In inclusive education, the goal is for all pupils to learn in the same place as much as possible by receiving the individualized support they need. However, in the Japanese school culture, strong "homogeneity" sometimes surfaces, and it is pointed out that it is difficult to provide individualized support from the viewpoint of formal equality. Therefore, we decided to conduct this study in order to examine whether there is a difference in the frequency of implementation depending on the content of individualized support and to consider the direction of future individualized support. The subjects of the survey were 196 public elementary school teachers who had been in charge of regular classes within the past five years. In the survey, individualized support was defined as individualized consideration including rational consideration, and did not include support for the entire class or all pupils enrolled in the class (e.g., reducing the amount of homework for pupils who have trouble learning, changing classroom rules, etc.). (e.g., reducing the amount of homework for pupils with learning difficulties, allowing pupils with behavioral concerns to use the library or infirmary when they are unstable). The respondents were asked to choose one answer from four options, ranging from "very much" to "not at all," regarding the degree to which they implemented the nine individual support items that were set up with reference to previous studies. As a result, it became clear that the majority of teachers had pupils with developmental disabilities or pupils who require consideration in terms of learning and behavior, and that the majority of teachers had experience in providing individualized support to these pupils. Investigating the content of the individualized support that had been implemented, it became clear that the frequency with which it was implemented varied depending on the individualized support. Individualized support that allowed pupils to perform the same learning tasks was implemented more frequently, but individualized support that allowed different learning tasks or use of places other than the classroom was implemented less frequently. It was suggested that flexible support methods tailored to each pupil may not have been considered.

Keywords: inclusive education, ndividualized support, regular class, elementary school

Procedia PDF Downloads 130
15412 Empowerment Means Decision-Making: How Does It Empower Women: Case of Slum Areas of Dhaka City, Bangladesh

Authors: Nurunnaher Nurunnaher

Abstract:

This paper examines the impact of women’s participation in microcredit on women’s decision making in the slum areas of Dhaka city, Bangladesh. There is confusion in the literature about whether women’s empowerment is or is not a trickle down impact of poverty alleviation or household well-being, and the studies use more or less similar indicators to measure the status of household and the status of women. Studies very rarely conceptualize and operationalize the term ‘empowerment’ as the word is often used without proper care by policy makers and development practitioners instead of household wellbeing. Currently, decision making in many studies has been used as an indicator of women’s empowerment when assessing the impact of microcredit programs on women. Based on a qualitative and feminist study this paper operationalizes women’s empowerment through the development of a conceptual framework, the identification of assessment criteria and the development of proper indicators that guided the whole study. The testimonies of participants, both men and women, were the basis of exploration of women’s lived experiences, which is the most appropriate method to explore the impact of such programs on women’s empowerment. The study considers empowerment as a process that affects various levels of life and gender relationships. The study found that there is a positive change in women’s position in decision making when women have developed an independent economic base with credit money. However, predominantly, women’s decision making is shared with men with the final decision still in the men’s hands. It can be said that women’s microcredit participation has not significantly challenged the social norms, therefore it is not surprising that women who hand over credit to their husband rarely have any power in intra-household bargaining process. Nevertheless, overall it is evident that women are continuously struggling toward the freedom to have the authority over household, economic and personal matters. It is concluded that while making strategic choices or gaining empowerment requires several steps, women’s participation in decision-making has several implications on their lives and potentially challenges patriarchy.

Keywords: women, gender inequality/equality, decision making, empowerment, microcredit, slums, Dhaka, Bangladesh

Procedia PDF Downloads 443
15411 Neighbour Cell List Reduction in Multi-Tier Heterogeneous Networks

Authors: Mohanad Alhabo, Naveed Nawaz

Abstract:

The ongoing call or data session must be maintained to ensure a good quality of service. This can be accomplished by performing the handover procedure while the user is on the move. However, the dense deployment of small cells in 5G networks is a challenging issue due to the extensive number of handovers. In this paper, a neighbour cell list method is proposed to reduce the number of target small cells and hence minimizing the number of handovers. The neighbour cell list is built by omitting cells that could cause an unnecessary handover and handover failure because of short time of stay of the user in these cells. A multi-attribute decision making technique, simple additive weighting, is then applied to the optimized neighbour cell list. Multi-tier small cells network is considered in this work. The performance of the proposed method is analysed and compared with that of the existing methods. Results disclose that our method has decreased the candidate small cell list, unnecessary handovers, handover failure, and short time of stay cells compared to the competitive method.

Keywords: handover, HetNets, multi-attribute decision making, small cells

Procedia PDF Downloads 119
15410 Thin-Film Nanocomposite Membrane with Single-Walled Carbon Nanotubes Axial Positioning in Support Layer for Desalination of Water

Authors: Ahmed A. Alghamdi

Abstract:

Single-walled carbon nanotubes (SWCNTs) are an outstanding material for applications in thermoelectric power generation, nanoelectronics, electrochemical energy storage, photovoltaics, and light emission. They are ultra-lightweight and possess electrical as well as thermal conductivity, flexibility, and mechanical strength. SWCNT is applicable in water treatment, brine desalination, removal of heavy metal ions associated with pollutants, and oil-water separation. Carbon nanotube (CNT) is believed to tackle the trade-off issue between permeability, selectivity, and fouling issues in membrane filtration applications. Studying these CNT structures, as well as their interconnection in nanotechnology, assists in finding the precise position to be placed for water desalination. Reverse osmosis (RO) has been used globally for desalination, resulting in purified water. Thin film composite (TFC) membranes were utilized in the RO process for desalination. The sheet thickness increases the salt rejection and decreases the water flux when CNT is utilized as a support layer to this membrane. Thus, through a temperature-induced phase separation technique (TIPS), axially aligned SWCNT (AASWCNT) is fabricated, and its use enhances the salt rejection and water flux at short reaction times with a modified procedure. An evaluation was conducted and analogized with prior works in the literature, which exhibited that the prepared TFC membrane showed a better outcome.

Keywords: single-walled carbon nanotubes, thin film composite, axially aligned swcnt, temperature induced phase separation technique, reverse osmosis

Procedia PDF Downloads 51
15409 Routing and Energy Efficiency through Data Coupled Clustering in Large Scale Wireless Sensor Networks (WSNs)

Authors: Jainendra Singh, Zaheeruddin

Abstract:

A typical wireless sensor networks (WSNs) consists of several tiny and low-power sensors which use radio frequency to perform distributed sensing tasks. The longevity of wireless sensor networks (WSNs) is a major issue that impacts the application of such networks. While routing protocols are striving to save energy by acting on sensor nodes, recent studies show that network lifetime can be enhanced by further involving sink mobility. A common approach for energy efficiency is partitioning the network into clusters with correlated data, where the representative nodes simply transmit or average measurements inside the cluster. In this paper, we propose an energy- efficient homogenous clustering (EHC) technique. In this technique, the decision of each sensor is based on their residual energy and an estimate of how many of its neighboring cluster heads (CHs) will benefit from it being a CH. We, also explore the routing algorithm in clustered WSNs. We show that the proposed schemes significantly outperform current approaches in terms of packet delay, hop count and energy consumption of WSNs.

Keywords: wireless sensor network, energy efficiency, clustering, routing

Procedia PDF Downloads 264
15408 Neural Network Based Decision Trees Using Machine Learning for Alzheimer's Diagnosis

Authors: P. S. Jagadeesh Kumar, Tracy Lin Huan, S. Meenakshi Sundaram

Abstract:

Alzheimer’s disease is one of the prevalent kind of ailment, expected for impudent reconciliation or an effectual therapy is to be accredited hitherto. Probable detonation of patients in the upcoming years, and consequently an enormous deal of apprehension in early discovery of the disorder, this will conceivably chaperon to enhanced healing outcomes. Complex impetuosity of the brain is an observant symbolic of the disease and a unique recognition of genetic sign of the disease. Machine learning alongside deep learning and decision tree reinforces the aptitude to absorb characteristics from multi-dimensional data’s and thus simplifies automatic classification of Alzheimer’s disease. Susceptible testing was prophesied and realized in training the prospect of Alzheimer’s disease classification built on machine learning advances. It was shrewd that the decision trees trained with deep neural network fashioned the excellent results parallel to related pattern classification.

Keywords: Alzheimer's diagnosis, decision trees, deep neural network, machine learning, pattern classification

Procedia PDF Downloads 297
15407 The Mediator as an Evaluator: An Analysis of Evaluation as a Method for the Lawyer’s Reform to Mediation

Authors: Dionne Coley B. A.

Abstract:

The role of a lawyer as a mediator is to be impartial in assisting parties to arrive at a decision. This decision should be made in a voluntary and mutually acceptable manner where the mediator encourages the parties to communicate, identify their interests, assess risks and consider settlement options. One of the key components to mediation is impartiality where mediators are to have a duty to remain impartial throughout the course of mediation and uphold an “objective” demeanor with both parties. The question is whether a mediator should take on evaluative role while encouraging the parties to come to a decision. This means that the mediator would not only encourage dialogue and responses between the parties but also assess and provide an opinion on the matter. This paper submits the argument that the role of a mediator should not be one of evaluation as this does not encourage the dialogue, process or desired outcomes associated with mediation.

Keywords: evaluation, lawyer, mediation, reform

Procedia PDF Downloads 418
15406 Exploring the Carer Gender Support Gap: Results from Freedom of Information Requests to Adult Social Services in England

Authors: Stephen Bahooshy

Abstract:

Our understanding of gender inequality has advanced in recent years. Differences in pay and societal gendered behaviour expectations have been emphasized. It is acknowledged globally that gender shapes everyone’s experiences of health and social care, including access to care, use of services and products, and the interaction with care providers. NHS Digital in England collects data from local authorities on the number of carers and people with support needs and the services they access. This data does not provide a gender breakdown. Caring can have many positive and negative impacts on carers’ health and wellbeing. For example, caring can improve physical health, provide a sense of pride and purpose, and reduced stress levels for those who undertake a caring role by choice. Negatives of caring include financial concerns, social isolation, a reduction in earnings, and not being recognized as a carer or involved and consulted by health and social care professionals. Treating male and female carers differently is by definition unequitable and precludes one gender from receiving the benefits of caring whilst potentially overburdening the other with the negatives of caring. In order to explore the issue on a preliminary basis, five local authorities who provide statutory adult social care services in England were sent Freedom of Information requests in 2019. The authorities were selected to include county councils and London boroughs. The authorities were asked to provide data on the amount of money spent on care at home packages to people over 65 years, broken down by gender and carer gender for each financial year between 2013 and 2019. Results indicated that in each financial year, female carers supporting someone over 65 years received less financial support for care at home support packages than male carers. Over the six-year period, this difference equated to a £9.5k deficit in financial support received on average per female carer when compared to male carers. An example of a London borough with the highest disparity presented an average weekly spend on care at home for people over 65 with a carer of £261.35 for male carers and £165.46 for female carers. Consequently, female carers in this borough received on average £95.89 less per week in care at home support than male carers. This highlights a real and potentially detrimental disparity in the care support received to female carers in order to support them to continue to care in parts of England. More research should be undertaken in this area to better explore this issue and to understand if these findings are unique to these social care providers or part of a wider phenomenon. NHS Digital should request local authorities collect data on gender in the same way that large employers in the United Kingdom are required by law to provide data on staff salaries by gender. People who allocate social care packages of support should consider the impact of gender when allocating support packages to people with support needs and who have carers to reduce any potential impact of gender bias on their decision-making.

Keywords: caregivers, carers, gender equality, social care

Procedia PDF Downloads 165
15405 Support Provided by Teachers to Learners With Special Education Needs in Selected Amathole West District Primary Schools South Africa

Authors: Toyin Mary Adewumi, Cina Mosito

Abstract:

Part of enabling learners with special education needs (SEN) to succeed is providing them with adequate support. Support is all activities in a school that enhance its capacity to respond to diversity by making learning contexts and lessons accessible to all learners. The paper reports findings of support provided by teachers to learners with SEN and the pockets of good practice found in the support provided by teachers to these learners in schools in the Amathole West District, Eastern Cape. A purposeful sample, comprising eight teachers, eight principals in eight schools, including one provincial and two district education officials, was selected. Thematic analysis was used for analyzing data gathered through semi-structured interviews. The results established that despite the challenges such as lack of qualifications and training in special education needs, learners with SEN received varied support from teachers which include extra exercises, extra time, special attention during break times or after school hours and homework. The study reveals pockets of good practice in some selected primary schools particularly in the poverty-stricken locations in the Amathole West District. This paper recommends adequate training for teachers for the support of learners with SEN.

Keywords: good practice, learner, special education needs, inclusion, support

Procedia PDF Downloads 134