Search results for: convergence results
36914 CSoS-STRE: A Combat System-of-System Space-Time Resilience Enhancement Framework
Authors: Jiuyao Jiang, Jiahao Liu, Jichao Li, Kewei Yang, Minghao Li, Bingfeng Ge
Abstract:
Modern warfare has transitioned from the paradigm of isolated combat forces to system-to-system confrontations due to advancements in combat technologies and application concepts. A combat system-of-systems (CSoS) is a combat network composed of independently operating entities that interact with one another to provide overall operational capabilities. Enhancing the resilience of CSoS is garnering increasing attention due to its significant practical value in optimizing network architectures, improving network security and refining operational planning. Accordingly, a unified framework called CSoS space-time resilience enhancement (CSoS-STRE) has been proposed, which enhances the resilience of CSoS by incorporating spatial features. Firstly, a multilayer spatial combat network model has been constructed, which incorporates an information layer depicting the interrelations among combat entities based on the OODA loop, along with a spatial layer that considers the spatial characteristics of equipment entities, thereby accurately reflecting the actual combat process. Secondly, building upon the combat network model, a spatiotemporal resilience optimization model is proposed, which reformulates the resilience optimization problem as a classical linear optimization model with spatial features. Furthermore, the model is extended from scenarios without obstacles to those with obstacles, thereby further emphasizing the importance of spatial characteristics. Thirdly, a resilience-oriented recovery optimization method based on improved non dominated sorting genetic algorithm II (R-INSGA) is proposed to determine the optimal recovery sequence for the damaged entities. This method not only considers spatial features but also provides the optimal travel path for multiple recovery teams. Finally, the feasibility, effectiveness, and superiority of the CSoS-STRE are demonstrated through a case study. Simultaneously, under deliberate attack conditions based on degree centrality and maximum operational loop performance, the proposed CSoS-STRE method is compared with six baseline recovery strategies, which are based on performance, time, degree centrality, betweenness centrality, closeness centrality, and eigenvector centrality. The comparison demonstrates that CSoS-STRE achieves faster convergence and superior performance.Keywords: space-time resilience enhancement, resilience optimization model, combat system-of-systems, recovery optimization method, no-obstacles and obstacles
Procedia PDF Downloads 1536913 Experimental Investigation of Boundary Layer Transition on Rotating Cones in Axial Flow in 0 and 35 Degrees Angle of Attack
Authors: Ali Kargar, Kamyar Mansour
Abstract:
In this paper, experimental results of using hot wire anemometer and smoke visualization are presented. The results obtained on the hot wire anemometer for critical Reynolds number and transitional Reynolds number are compared by previous results. Excellent agreement is found for the transitional Reynolds number. The results for the transitional Reynolds number are also compared by previous linear stability results. The results of the smoke visualization clearly show the cross flow vortices which arise in the transition process from a laminar to a turbulent flow. A non-zero angle of attack is also considered. We compare our results by linear stability theory which was done by Garret et. Al (2007). We just emphasis, Also the visualization and hot wire anemometer results have been compared graphically. The goal in this paper is to check reliability of using hot wire anemometer and smoke visualization in transition problems and check reliability of linear stability theory for this case and compare our results with some trusty experimental works.Keywords: transitional reynolds number, wind tunnel, rotating cone, smoke visualization
Procedia PDF Downloads 30736912 Life Time Improvement of Clamp Structural by Using Fatigue Analysis
Authors: Pisut Boonkaew, Jatuporn Thongsri
Abstract:
In hard disk drive manufacturing industry, the process of reducing an unnecessary part and qualifying the quality of part before assembling is important. Thus, clamp was designed and fabricated as a fixture for holding in testing process. Basically, testing by trial and error consumes a long time to improve. Consequently, the simulation was brought to improve the part and reduce the time taken. The problem is the present clamp has a low life expectancy because of the critical stress that occurred. Hence, the simulation was brought to study the behavior of stress and compressive force to improve the clamp expectancy with all probability of designs which are present up to 27 designs, which excluding the repeated designs. The probability was calculated followed by the full fractional rules of six sigma methodology which was provided correctly. The six sigma methodology is a well-structured method for improving quality level by detecting and reducing the variability of the process. Therefore, the defective will be decreased while the process capability increasing. This research focuses on the methodology of stress and fatigue reduction while compressive force still remains in the acceptable range that has been set by the company. In the simulation, ANSYS simulates the 3D CAD with the same condition during the experiment. Then the force at each distance started from 0.01 to 0.1 mm will be recorded. The setting in ANSYS was verified by mesh convergence methodology and compared the percentage error with the experimental result; the error must not exceed the acceptable range. Therefore, the improved process focuses on degree, radius, and length that will reduce stress and still remain in the acceptable force number. Therefore, the fatigue analysis will be brought as the next process in order to guarantee that the lifetime will be extended by simulating through ANSYS simulation program. Not only to simulate it, but also to confirm the setting by comparing with the actual clamp in order to observe the different of fatigue between both designs. This brings the life time improvement up to 57% compared with the actual clamp in the manufacturing. This study provides a precise and trustable setting enough to be set as a reference methodology for the future design. Because of the combination and adaptation from the six sigma method, finite element, fatigue and linear regressive analysis that lead to accurate calculation, this project will able to save up to 60 million dollars annually.Keywords: clamp, finite element analysis, structural, six sigma, linear regressive analysis, fatigue analysis, probability
Procedia PDF Downloads 23536911 Merging of Results in Distributed Information Retrieval Systems
Authors: Larbi Guezouli, Imane Azzouz
Abstract:
This work is located in the domain of distributed information retrieval ‘DIR’. A simplified view of the DIR requires a multi-search in a set of collections, which forces the system to analyze results found in these collections, and merge results back before sending them to the user in a single list. Our work is to find a fusion method based on the relevance score of each result received from collections and the relevance of the local search engine of each collection.Keywords: information retrieval, distributed IR systems, merging results, datamining
Procedia PDF Downloads 33636910 The Decision-Making Process of the Central Banks of Brazil and India in Regional Integration: A Comparative Analysis of MERCOSUR and SAARC (2003-2014)
Authors: Andre Sanches Siqueira Campos
Abstract:
Central banks can play a significant role in promoting regional economic and monetary integration by strengthening the payment and settlement systems. However, close coordination and cooperation require facilitating the implementation of reforms at domestic and cross-border levels in order to benchmark with international standards and commitments to the liberal order. This situation reflects the normative power of the regulatory globalization dimension of strong states, which may drive or constrain regional integration. In the MERCOSUR and SAARC regions, central banks have set financial initiatives that could facilitate South America and South Asia regions to move towards convergence integration and facilitate trade and investments connectivities. This is qualitative method research based on a combination of the Process-Tracing method with Qualitative Comparative Analysis (QCA). This research approaches multiple forms of data based on central banks, regional organisations, national governments, and financial institutions supported by existing literature. The aim of this research is to analyze the decision-making process of the Central Bank of Brazil (BCB) and the Reserve Bank of India (RBI) towards regional financial cooperation by identifying connectivity instruments that foster, gridlock, or redefine cooperation. The BCB and The RBI manage the monetary policy of the largest economies of those regions, which makes regional cooperation a relevant framework to understand how they provide an effective institutional arrangement for regional organisations to achieve some of their key policies and economic objectives. The preliminary conclusion is that both BCB and RBI demonstrate a reluctance to deepen regional cooperation because of the existing economic, political, and institutional asymmetries. Deepening regional cooperation is constrained by the interests of central banks in protecting their economies from risks of instability due to different degrees of development between countries in their regions and international financial crises that have impacted the international system in the 21st century. Reluctant regional integration also provides autonomy for national development and political ground for the contestation of Global Financial Governance by Brazil and India.Keywords: Brazil, central banks, decision-making process, global financial governance, India, MERCOSUR, connectivity, payment system, regional cooperation, SAARC
Procedia PDF Downloads 11436909 Investigating the Effect of Study Plan and Homework on Student's Performance by Using Web Based Learning MyMathLab
Authors: Mohamed Chabi, Mahmoud I. Syam, Sarah Aw
Abstract:
In Summer 2012, the Foundation Program Unit of Qatar University has started implementing new ways of teaching Math by introducing MML (MyMathLab) as an innovative interactive tool to support standard teaching. In this paper, we focused on the effect of proper use of the Study Plan component of MML on student’s performance. Authors investigated the results of students of pre-calculus course during Fall 2013 in Foundation Program at Qatar University. The results showed that there is a strong correlation between study plan results and final exam results, also a strong relation between homework results and final exam results. In addition, the attendance average affected on the student’s results in general. Multiple regression is determined between passing rate dependent variable and study plan, homework as independent variable.Keywords: MyMathLab, study plan, assessment, homework, attendance, correlation, regression
Procedia PDF Downloads 41936908 Investigating the Influence of Activation Functions on Image Classification Accuracy via Deep Convolutional Neural Network
Authors: Gulfam Haider, sana danish
Abstract:
Convolutional Neural Networks (CNNs) have emerged as powerful tools for image classification, and the choice of optimizers profoundly affects their performance. The study of optimizers and their adaptations remains a topic of significant importance in machine learning research. While numerous studies have explored and advocated for various optimizers, the efficacy of these optimization techniques is still subject to scrutiny. This work aims to address the challenges surrounding the effectiveness of optimizers by conducting a comprehensive analysis and evaluation. The primary focus of this investigation lies in examining the performance of different optimizers when employed in conjunction with the popular activation function, Rectified Linear Unit (ReLU). By incorporating ReLU, known for its favorable properties in prior research, the aim is to bolster the effectiveness of the optimizers under scrutiny. Specifically, we evaluate the adjustment of these optimizers with both the original Softmax activation function and the modified ReLU activation function, carefully assessing their impact on overall performance. To achieve this, a series of experiments are conducted using a well-established benchmark dataset for image classification tasks, namely the Canadian Institute for Advanced Research dataset (CIFAR-10). The selected optimizers for investigation encompass a range of prominent algorithms, including Adam, Root Mean Squared Propagation (RMSprop), Adaptive Learning Rate Method (Adadelta), Adaptive Gradient Algorithm (Adagrad), and Stochastic Gradient Descent (SGD). The performance analysis encompasses a comprehensive evaluation of the classification accuracy, convergence speed, and robustness of the CNN models trained with each optimizer. Through rigorous experimentation and meticulous assessment, we discern the strengths and weaknesses of the different optimization techniques, providing valuable insights into their suitability for image classification tasks. By conducting this in-depth study, we contribute to the existing body of knowledge surrounding optimizers in CNNs, shedding light on their performance characteristics for image classification. The findings gleaned from this research serve to guide researchers and practitioners in making informed decisions when selecting optimizers and activation functions, thus advancing the state-of-the-art in the field of image classification with convolutional neural networks.Keywords: deep neural network, optimizers, RMsprop, ReLU, stochastic gradient descent
Procedia PDF Downloads 12536907 Deep Reinforcement Learning Approach for Trading Automation in The Stock Market
Authors: Taylan Kabbani, Ekrem Duman
Abstract:
The design of adaptive systems that take advantage of financial markets while reducing the risk can bring more stagnant wealth into the global market. However, most efforts made to generate successful deals in trading financial assets rely on Supervised Learning (SL), which suffered from various limitations. Deep Reinforcement Learning (DRL) offers to solve these drawbacks of SL approaches by combining the financial assets price "prediction" step and the "allocation" step of the portfolio in one unified process to produce fully autonomous systems capable of interacting with its environment to make optimal decisions through trial and error. In this paper, a continuous action space approach is adopted to give the trading agent the ability to gradually adjust the portfolio's positions with each time step (dynamically re-allocate investments), resulting in better agent-environment interaction and faster convergence of the learning process. In addition, the approach supports the managing of a portfolio with several assets instead of a single one. This work represents a novel DRL model to generate profitable trades in the stock market, effectively overcoming the limitations of supervised learning approaches. We formulate the trading problem, or what is referred to as The Agent Environment as Partially observed Markov Decision Process (POMDP) model, considering the constraints imposed by the stock market, such as liquidity and transaction costs. More specifically, we design an environment that simulates the real-world trading process by augmenting the state representation with ten different technical indicators and sentiment analysis of news articles for each stock. We then solve the formulated POMDP problem using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm, which can learn policies in high-dimensional and continuous action spaces like those typically found in the stock market environment. From the point of view of stock market forecasting and the intelligent decision-making mechanism, this paper demonstrates the superiority of deep reinforcement learning in financial markets over other types of machine learning such as supervised learning and proves its credibility and advantages of strategic decision-making.Keywords: the stock market, deep reinforcement learning, MDP, twin delayed deep deterministic policy gradient, sentiment analysis, technical indicators, autonomous agent
Procedia PDF Downloads 17836906 Further Analysis of Global Robust Stability of Neural Networks with Multiple Time Delays
Authors: Sabri Arik
Abstract:
In this paper, we study the global asymptotic robust stability of delayed neural networks with norm-bounded uncertainties. By employing the Lyapunov stability theory and Homeomorphic mapping theorem, we derive some new types of sufficient conditions ensuring the existence, uniqueness and global asymptotic stability of the equilibrium point for the class of neural networks with discrete time delays under parameter uncertainties and with respect to continuous and slopebounded activation functions. An important aspect of our results is their low computational complexity as the reported results can be verified by checking some properties symmetric matrices associated with the uncertainty sets of network parameters. The obtained results are shown to be generalization of some of the previously published corresponding results. Some comparative numerical examples are also constructed to compare our results with some closely related existing literature results.Keywords: neural networks, delayed systems, lyapunov functionals, stability analysis
Procedia PDF Downloads 52836905 Unlocking Synergy: Exploring the Impact of Integrating Knowledge Management and Competitive Intelligence for Synergistic Advantage for Efficient, Inclusive and Optimum Organizational Performance
Authors: Godian Asami Mabindah
Abstract:
The convergence of knowledge management (KM) and competitive intelligence (CI) has gained significant attention in recent years as organizations seek to enhance their competitive advantage in an increasingly complex and dynamic business environment. This research study aims to explore and understand the synergistic relationship between KM and CI and its impact on organizational performance. By investigating how the integration of KM and CI practices can contribute to decision-making, innovation, and competitive advantage, this study seeks to unlock the potential benefits and challenges associated with this integration. The research employs a mixed-methods approach to gather comprehensive data. A quantitative analysis is conducted using survey data collected from a diverse sample of organizations across different industries. The survey measures the extent of integration between KM and CI practices and examines the perceived benefits and challenges associated with this integration. Additionally, qualitative interviews are conducted with key organizational stakeholders to gain deeper insights into their experiences, perspectives, and best practices regarding the synergistic relationship. The findings of this study are expected to reveal several significant outcomes. Firstly, it is anticipated that organizations that effectively integrate KM and CI practices will outperform those that treat them as independent functions. The study aims to highlight the positive impact of this integration on decision-making, innovation, organizational learning, and competitive advantage. Furthermore, the research aims to identify critical success factors and enablers for achieving constructive interaction between KM and CI, such as leadership support, culture, technology infrastructure, and knowledge-sharing mechanisms. The implications of this research are far-reaching. Organizations can leverage the findings to develop strategies and practices that facilitate the integration of KM and CI, leading to enhanced competitive intelligence capabilities and improved knowledge management processes. Additionally, the research contributes to the academic literature by providing a comprehensive understanding of the synergistic relationship between KM and CI and proposing a conceptual framework that can guide future research in this area. By exploring the synergies between KM and CI, this study seeks to help organizations harness their collective power to gain a competitive edge in today's dynamic business landscape. The research provides practical insights and guidelines for organizations to effectively integrate KM and CI practices, leading to improved decision-making, innovation, and overall organizational performance.Keywords: Competitive Intelligence, Knowledge Management, Organizational Performance, Incusivity, Optimum Performance
Procedia PDF Downloads 9136904 An Analysis of the Strategic Pathway to Building a Successful Mobile Advertising Business in Nigeria: From Strategic Intent to Competitive Advantage
Authors: Pius A. Onobhayedo, Eugene A. Ohu
Abstract:
Nigeria has one of the fastest growing mobile telecommunications industry in the world. In the absence of fixed connection access to the Internet, access to the Internet is primarily via mobile devices. It, therefore, provides a test case for how to penetrate the mobile market in an emerging economy. We also hope to contribute to a sparse literature on strategies employed in building successful data-driven mobile businesses in emerging economies. We, therefore, sought to identify and analyse the strategic approach taken in a successful locally born mobile data-driven business in Nigeria. The analysis was carried out through the framework of strategic intent and competitive advantages developed from the conception of the company to date. This study is based on an exploratory investigation of an innovative digital company based in Nigeria specializing in the mobile advertising business. The projected growth and high adoption of mobile in this African country, coinciding with the smartphone revolution triggered by the launch of iPhone in 2007 opened a new entrepreneurial horizon for the founder of the company, who reached the conclusion that ‘the future is mobile’. This dream led to the establishment of three digital businesses, designed for convergence and complementarity of medium and content. The mobile Ad subsidiary soon grew to become a truly African network with operations and campaigns across West, East and South Africa, successfully delivering campaigns in several African countries including Nigeria, Kenya, South Africa, Ghana, Uganda, Zimbabwe, and Zambia amongst others. The company recently declared a 40% year-end profit which was nine times that of the previous financial year. This study drew from an in-depth interview with the company’s founder, analysis of primary and secondary data from and about the business, as well as case studies of digital marketing campaigns. We hinge our analysis on the strategic intent concept which has been proposed to be an engine that drives the quest for sustainable strategic advantage in the global marketplace. Our goal was specifically to identify the strategic intents of the founder and how these were transformed creatively into processes that may have led to some distinct competitive advantages. Along with the strategic intents, we sought to identify the respective absorptive capacities that constituted favourable antecedents to the creation of such competitive advantages. Our recommendations and findings will be pivotal information for anybody wishing to invest in the world’s fastest technology business space - Africa.Keywords: Africa, competitive advantage, competitive strategy, digital, mobile business, marketing, strategic intent
Procedia PDF Downloads 43636903 The Lopsided Burden of Non-Communicable Diseases in India: Evidences from the Decade 2004-2014
Authors: Kajori Banerjee, Laxmi Kant Dwivedi
Abstract:
India is a part of the ongoing globalization, contemporary convergence, industrialization and technical advancement that is taking place world-wide. Some of the manifestations of this evolution is rapid demographic, socio-economic, epidemiological and health transition. There has been a considerable increase in non-communicable diseases due to change in lifestyle. This study aims to assess the direction of burden of disease and compare the pressure of infectious diseases against cardio-vascular, endocrine, metabolic and nutritional diseases. The change in prevalence in a ten-year period (2004-2014) is further decomposed to determine the net contribution of various socio-economic and demographic covariates. The present study uses the recent 71st (2014) and 60th (2004) rounds of National Sample Survey. The pressure of infectious diseases against cardio-vascular (CVD), endocrine, metabolic and nutritional (EMN) diseases during 2004-2014 is calculated by Prevalence Rates (PR), Hospitalization Rates (HR) and Case Fatality Rates (CFR). The prevalence of non-communicable diseases are further used as a dependent variable in a logit regression to find the effect of various social, economic and demographic factors on the chances of suffering from the particular disease. Multivariate decomposition technique further assists in determining the net contribution of socio-economic and demographic covariates. This paper upholds evidences of stagnation of the burden of communicable diseases (CD) and rapid increase in the burden of non-communicable diseases (NCD) uniformly for all population sub-groups in India. CFR for CVD has increased drastically in 2004-2014. Logit regression indicates the chances of suffering from CVD and EMN is significantly higher among the urban residents, older ages, females, widowed/ divorced and separated individuals. Decomposition displays ample proof that improvement in quality of life markers like education, urbanization, longevity of life has positively contributed in increasing the NCD prevalence rate. In India’s current epidemiological phase, compression theory of morbidity is in action as a significant rise in the probability of contracting the NCDs over the time period among older ages is observed. Age is found to play a vital contributor in increasing the probability of having CVD and EMN over the study decade 2004-2014 in the nationally representative sample of National Sample Survey.Keywords: cardio-vascular disease, case-fatality rate, communicable diseases, hospitalization rate, multivariate decomposition, non-communicable diseases, prevalence rate
Procedia PDF Downloads 31336902 Role of Indigenous Peoples in Climate Change
Authors: Neelam Kadyan, Pratima Ranga, Yogender
Abstract:
Indigenous people are the One who are affected by the climate change the most, although there have contributed little to its causes. This is largely a result of their historic dependence on local biological diversity, ecosystem services and cultural landscapes as a source of their sustenance and well-being. Comprising only four percent of the world’s population they utilize 22 percent of the world’s land surface. Despite their high exposure-sensitivity indigenous peoples and local communities are actively responding to changing climatic conditions and have demonstrated their resourcefulness and resilience in the face of climate change. Traditional Indigenous territories encompass up to 22 percent of the world’s land surface and they coincide with areas that hold 80 percent of the planet’s biodiversity. Also, the greatest diversity of indigenous groups coincides with the world’s largest tropical forest wilderness areas in the Americas (including Amazon), Africa, and Asia, and 11 percent of world forest lands are legally owned by Indigenous Peoples and communities. This convergence of biodiversity-significant areas and indigenous territories presents an enormous opportunity to expand efforts to conserve biodiversity beyond parks, which tend to benefit from most of the funding for biodiversity conservation. Tapping on Ancestral Knowledge Indigenous Peoples are carriers of ancestral knowledge and wisdom about this biodiversity. Their effective participation in biodiversity conservation programs as experts in protecting and managing biodiversity and natural resources would result in more comprehensive and cost effective conservation and management of biodiversity worldwide. Addressing the Climate Change Agenda Indigenous Peoples has played a key role in climate change mitigation and adaptation. The territories of indigenous groups who have been given the rights to their lands have been better conserved than the adjacent lands (i.e., Brazil, Colombia, Nicaragua, etc.). Preserving large extensions of forests would not only support the climate change objectives, but it would respect the rights of Indigenous Peoples and conserve biodiversity as well. A climate change agenda fully involving Indigenous Peoples has many more benefits than if only government and/or the private sector are involved. Indigenous peoples are some of the most vulnerable groups to the negative effects of climate change. Also, they are a source of knowledge to the many solutions that will be needed to avoid or ameliorate those effects. For example, ancestral territories often provide excellent examples of a landscape design that can resist the negatives effects of climate change. Over the millennia, Indigenous Peoples have developed adaptation models to climate change. They have also developed genetic varieties of medicinal and useful plants and animal breeds with a wider natural range of resistance to climatic and ecological variability.Keywords: ancestral knowledge, cost effective conservation, management, indigenous peoples, climate change
Procedia PDF Downloads 67736901 Problem Based Learning and Teaching by Example in Dimensioning of Mechanisms: Feedback
Authors: Nicolas Peyret, Sylvain Courtois, Gaël Chevallier
Abstract:
This article outlines the development of the Project Based Learning (PBL) at the level of a last year’s Bachelor’s Degree. This form of pedagogy has for objective to allow a better involving of the students from the beginning of the module. The theoretical contributions are introduced during the project to solving a technological problem. The module in question is the module of mechanical dimensioning method of Supméca a French engineering school. This school issues a Master’s Degree. While the teaching methods used in primary and secondary education are frequently renewed in France at the instigation of teachers and inspectors, higher education remains relatively traditional in its practices. Recently, some colleagues have felt the need to put the application back at the heart of their theoretical teaching. This need is induced by the difficulty of covering all the knowledge deductively before its application. It is therefore tempting to make the students 'learn by doing', even if it doesn’t cover some parts of the theoretical knowledge. The other argument that supports this type of learning is the lack of motivation the students have for the magisterial courses. The role-play allowed scenarios favoring interaction between students and teachers… However, this pedagogical form known as 'pedagogy by project' is difficult to apply in the first years of university studies because of the low level of autonomy and individual responsibility that the students have. The question of what the student actually learns from the initial program as well as the evaluation of the competences acquired by the students in this type of pedagogy also remains an open problem. Thus we propose to add to the pedagogy by project format a regressive part of interventionism by the teacher based on pedagogy by example. This pedagogical scenario is based on the cognitive load theory and Bruner's constructivist theory. It has been built by relying on the six points of the encouragement process defined by Bruner, with a concrete objective, to allow the students to go beyond the basic skills of dimensioning and allow them to acquire the more global skills of engineering. The implementation of project-based teaching coupled with pedagogy by example makes it possible to compensate for the lack of experience and autonomy of first-year students, while at the same time involving them strongly in the first few minutes of the module. In this project, students have been confronted with the real dimensioning problems and are able to understand the links and influences between parameter variations and dimensioning, an objective that we did not reach in classical teaching. It is this form of pedagogy which allows to accelerate the mastery of basic skills and so spend more time on the engineer skills namely the convergence of each dimensioning in order to obtain a validated mechanism. A self-evaluation of the project skills acquired by the students will also be presented.Keywords: Bruner's constructivist theory, mechanisms dimensioning, pedagogy by example, problem based learning
Procedia PDF Downloads 19036900 Coastal Resources Spatial Planning and Potential Oil Risk Analysis: Case Study of Misratah’s Coastal Resources, Libya
Authors: Abduladim Maitieg, Kevin Lynch, Mark Johnson
Abstract:
The goal of the Libyan Environmental General Authority (EGA) and National Oil Corporation (Department of Health, Safety & Environment) during the last 5 years has been to adopt a common approach to coastal and marine spatial planning. Protection and planning of the coastal zone is a significant for Libya, due to the length of coast and, the high rate of oil export, and spills’ potential negative impacts on coastal and marine habitats. Coastal resource scenarios constitute an important tool for exploring the long-term and short-term consequences of oil spill impact and available response options that would provide an integrated perspective on mitigation. To investigate that, this paper reviews the Misratah coastal parameters to present the physical and human controls and attributes of coastal habitats as the first step in understanding how they may be damaged by an oil spill. This paper also investigates costal resources, providing a better understanding of the resources and factors that impact the integrity of the ecosystem. Therefore, the study described the potential spatial distribution of oil spill risk and the coastal resources value, and also created spatial maps of coastal resources and their vulnerability to oil spills along the coast. This study proposes an analysis of coastal resources condition at a local level in the Misratah region of the Mediterranean Sea, considering the implementation of coastal and marine spatial planning over time as an indication of the will to manage urban development. Oil spill contamination analysis and their impact on the coastal resources depend on (1) oil spill sequence, (2) oil spill location, (3) oil spill movement near the coastal area. The resulting maps show natural, socio-economic activity, environmental resources along of the coast, and oil spill location. Moreover, the study provides significant geodatabase information which is required for coastal sensitivity index mapping and coastal management studies. The outcome of study provides the information necessary to set an Environmental Sensitivity Index (ESI) for the Misratah shoreline, which can be used for management of coastal resources and setting boundaries for each coastal sensitivity sectors, as well as to help planners measure the impact of oil spills on coastal resources. Geographic Information System (GIS) tools were used in order to store and illustrate the spatial convergence of existing socio-economic activities such as fishing, tourism, and the salt industry, and ecosystem components such as sea turtle nesting area, Sabkha habitats, and migratory birds feeding sites. These geodatabases help planners investigate the vulnerability of coastal resources to an oil spill.Keywords: coastal and marine spatial planning advancement training, GIS mapping, human uses, ecosystem components, Misratah coast, Libyan, oil spill
Procedia PDF Downloads 36236899 Experimental and Computational Fluid Dynamic Modeling of a Progressing Cavity Pump Handling Newtonian Fluids
Authors: Deisy Becerra, Edwar Perez, Nicolas Rios, Miguel Asuaje
Abstract:
Progressing Cavity Pump (PCP) is a type of positive displacement pump that is being awarded greater importance as capable artificial lift equipment in the heavy oil field. The most commonly PCP used is driven single lobe pump that consists of a single external helical rotor turning eccentrically inside a double internal helical stator. This type of pump was analyzed by the experimental and Computational Fluid Dynamic (CFD) approach from the DCAB031 model located in a closed-loop arrangement. Experimental measurements were taken to determine the pressure rise and flow rate with a flow control valve installed at the outlet of the pump. The flowrate handled was measured by a FLOMEC-OM025 oval gear flowmeter. For each flowrate considered, the pump’s rotational speed and power input were controlled using an Invertek Optidrive E3 frequency driver. Once a steady-state operation was attained, pressure rise measurements were taken with a Sper Scientific wide range digital pressure meter. In this study, water and three Newtonian oils of different viscosities were tested at different rotational speeds. The CFD model implementation was developed on Star- CCM+ using an Overset Mesh that includes the relative motion between rotor and stator, which is one of the main contributions of the present work. The simulations are capable of providing detailed information about the pressure and velocity fields inside the device in laminar and unsteady regimens. The simulations have a good agreement with the experimental data due to Mean Squared Error (MSE) in under 21%, and the Grid Convergence Index (GCI) was calculated for the validation of the mesh, obtaining a value of 2.5%. In this case, three different rotational speeds were evaluated (200, 300, 400 rpm), and it is possible to show a directly proportional relationship between the rotational speed of the rotor and the flow rate calculated. The maximum production rates for the different speeds for water were 3.8 GPM, 4.3 GPM, and 6.1 GPM; also, for the oil tested were 1.8 GPM, 2.5 GPM, 3.8 GPM, respectively. Likewise, an inversely proportional relationship between the viscosity of the fluid and pump performance was observed, since the viscous oils showed the lowest pressure increase and the lowest volumetric flow pumped, with a degradation around of 30% of the pressure rise, between performance curves. Finally, the Productivity Index (PI) remained approximately constant for the different speeds evaluated; however, between fluids exist a diminution due to the viscosity.Keywords: computational fluid dynamic, CFD, Newtonian fluids, overset mesh, PCP pressure rise
Procedia PDF Downloads 12836898 Robust Inference with a Skew T Distribution
Authors: M. Qamarul Islam, Ergun Dogan, Mehmet Yazici
Abstract:
There is a growing body of evidence that non-normal data is more prevalent in nature than the normal one. Examples can be quoted from, but not restricted to, the areas of Economics, Finance and Actuarial Science. The non-normality considered here is expressed in terms of fat-tailedness and asymmetry of the relevant distribution. In this study a skew t distribution that can be used to model a data that exhibit inherent non-normal behavior is considered. This distribution has tails fatter than a normal distribution and it also exhibits skewness. Although maximum likelihood estimates can be obtained by solving iteratively the likelihood equations that are non-linear in form, this can be problematic in terms of convergence and in many other respects as well. Therefore, it is preferred to use the method of modified maximum likelihood in which the likelihood estimates are derived by expressing the intractable non-linear likelihood equations in terms of standardized ordered variates and replacing the intractable terms by their linear approximations obtained from the first two terms of a Taylor series expansion about the quantiles of the distribution. These estimates, called modified maximum likelihood estimates, are obtained in closed form. Hence, they are easy to compute and to manipulate analytically. In fact the modified maximum likelihood estimates are equivalent to maximum likelihood estimates, asymptotically. Even in small samples the modified maximum likelihood estimates are found to be approximately the same as maximum likelihood estimates that are obtained iteratively. It is shown in this study that the modified maximum likelihood estimates are not only unbiased but substantially more efficient than the commonly used moment estimates or the least square estimates that are known to be biased and inefficient in such cases. Furthermore, in conventional regression analysis, it is assumed that the error terms are distributed normally and, hence, the well-known least square method is considered to be a suitable and preferred method for making the relevant statistical inferences. However, a number of empirical researches have shown that non-normal errors are more prevalent. Even transforming and/or filtering techniques may not produce normally distributed residuals. Here, a study is done for multiple linear regression models with random error having non-normal pattern. Through an extensive simulation it is shown that the modified maximum likelihood estimates of regression parameters are plausibly robust to the distributional assumptions and to various data anomalies as compared to the widely used least square estimates. Relevant tests of hypothesis are developed and are explored for desirable properties in terms of their size and power. The tests based upon modified maximum likelihood estimates are found to be substantially more powerful than the tests based upon least square estimates. Several examples are provided from the areas of Economics and Finance where such distributions are interpretable in terms of efficient market hypothesis with respect to asset pricing, portfolio selection, risk measurement and capital allocation, etc.Keywords: least square estimates, linear regression, maximum likelihood estimates, modified maximum likelihood method, non-normality, robustness
Procedia PDF Downloads 39736897 Sea Surface Trend over the Arabian Sea and Its Influence on the South West Monsoon Rainfall Variability over Sri Lanka
Authors: Sherly Shelton, Zhaohui Lin
Abstract:
In recent decades, the inter-annual variability of summer precipitation over the India and Sri Lanka has intensified significantly with an increased frequency of both abnormally dry and wet summers. Therefore prediction of the inter-annual variability of summer precipitation is crucial and urgent for water management and local agriculture scheduling. However, none of the hypotheses put forward so far could understand the relationship to monsoon variability and related factors that affect to the South West Monsoon (SWM) variability in Sri Lanka. This study focused to identify the spatial and temporal variability of SWM rainfall events from June to September (JJAS) over Sri Lanka and associated trend. The monthly rainfall records covering 1980-2013 over the Sri Lanka are used for 19 stations to investigate long-term trends in SWM rainfall over Sri Lanka. The linear trends of atmospheric variables are calculated to understand the drivers behind the changers described based on the observed precipitation, sea surface temperature and atmospheric reanalysis products data for 34 years (1980–2013). Empirical orthogonal function (EOF) analysis was applied to understand the spatial and temporal behaviour of seasonal SWM rainfall variability and also investigate whether the trend pattern is the dominant mode that explains SWM rainfall variability. The spatial and stations based precipitation over the country showed statistically insignificant decreasing trends except few stations. The first two EOFs of seasonal (JJAS) mean of rainfall explained 52% and 23 % of the total variance and first PC showed positive loadings of the SWM rainfall for the whole landmass while strongest positive lording can be seen in western/ southwestern part of the Sri Lanka. There is a negative correlation (r ≤ -0.3) between SMRI and SST in the Arabian Sea and Central Indian Ocean which indicate that lower temperature in the Arabian Sea and Central Indian Ocean are associated with greater rainfall over the country. This study also shows that consistently warming throughout the Indian Ocean. The result shows that the perceptible water over the county is decreasing with the time which the influence to the reduction of precipitation over the area by weakening drawn draft. In addition, evaporation is getting weaker over the Arabian Sea, Bay of Bengal and Sri Lankan landmass which leads to reduction of moisture availability required for the SWM rainfall over Sri Lanka. At the same time, weakening of the SST gradients between Arabian Sea and Bay of Bengal can deteriorate the monsoon circulation, untimely which diminish SWM over Sri Lanka. The decreasing trends of moisture, moisture transport, zonal wind, moisture divergence with weakening evaporation over Arabian Sea, during the past decade having an aggravating influence on decreasing trends of monsoon rainfall over the Sri Lanka.Keywords: Arabian Sea, moisture flux convergence, South West Monsoon, Sri Lanka, sea surface temperature
Procedia PDF Downloads 13236896 Effect of Fiber Orientation on Dynamic Properties of Carbon-Epoxy Composite Laminate under Flexural Vibration
Authors: Bahlouli Ahmed, Bentalab Nourdin, Nigrou Mourad
Abstract:
This study was aimed at investigating the effect of orientation fiber reinforced on dynamic properties of laminate composite FRP. An experimental investigation is implemented using an impulse technique. The various specimens are excited in free vibration by the use of bi-channel Analyzer. The experimental results are compared by model of finite element analysis using ANSYS. The results studies (natural frequencies measurements, vibration mode, dynamic modulus and damping ratio) show that the effects of significant parameters such as lay-up and stacking sequence, boundary conditions and excitation place of accelerometer. These results are critically examined and discussed. The accuracy of these results is demonstrated by comparing results with those available in the literature.Keywords: natural frequency, damping ratio, laminate composite, dynamic modulus
Procedia PDF Downloads 36036895 Impact of Transitioning to Renewable Energy Sources on Key Performance Indicators and Artificial Intelligence Modules of Data Center
Authors: Ahmed Hossam ElMolla, Mohamed Hatem Saleh, Hamza Mostafa, Lara Mamdouh, Yassin Wael
Abstract:
Artificial intelligence (AI) is reshaping industries, and its potential to revolutionize renewable energy and data center operations is immense. By harnessing AI's capabilities, we can optimize energy consumption, predict fluctuations in renewable energy generation, and improve the efficiency of data center infrastructure. This convergence of technologies promises a future where energy is managed more intelligently, sustainably, and cost-effectively. The integration of AI into renewable energy systems unlocks a wealth of opportunities. Machine learning algorithms can analyze vast amounts of data to forecast weather patterns, solar irradiance, and wind speeds, enabling more accurate energy production planning. AI-powered systems can optimize energy storage and grid management, ensuring a stable power supply even during intermittent renewable generation. Moreover, AI can identify maintenance needs for renewable energy infrastructure, preventing costly breakdowns and maximizing system lifespan. Data centers, which consume substantial amounts of energy, are prime candidates for AI-driven optimization. AI can analyze energy consumption patterns, identify inefficiencies, and recommend adjustments to cooling systems, server utilization, and power distribution. Predictive maintenance using AI can prevent equipment failures, reducing energy waste and downtime. Additionally, AI can optimize data placement and retrieval, minimizing energy consumption associated with data transfer. As AI transforms renewable energy and data center operations, modified Key Performance Indicators (KPIs) will emerge. Traditional metrics like energy efficiency and cost-per-megawatt-hour will continue to be relevant, but additional KPIs focused on AI's impact will be essential. These might include AI-driven cost savings, predictive accuracy of energy generation and consumption, and the reduction of carbon emissions attributed to AI-optimized operations. By tracking these KPIs, organizations can measure the success of their AI initiatives and identify areas for improvement. Ultimately, the synergy between AI, renewable energy, and data centers holds the potential to create a more sustainable and resilient future. By embracing these technologies, we can build smarter, greener, and more efficient systems that benefit both the environment and the economy.Keywords: data center, artificial intelligence, renewable energy, energy efficiency, sustainability, optimization, predictive analytics, energy consumption, energy storage, grid management, data center optimization, key performance indicators, carbon emissions, resiliency
Procedia PDF Downloads 3336894 Experimental Modal Analysis of a Suspended Composite Beam
Authors: First A. Lahmar Lahbib, Second B. Abdeldjebar Rabiâ, Third C. Moudden B, forth D. Missoum L
Abstract:
Vibration tests are used to identify the elasticity modulus in two directions. This strategy is applied to composite materials glass / polyester. Experimental results made on a specimen in free vibration showed the efficiency of this method. Obtained results were validated by a comparison to results stemming from static tests.Keywords: beam, characterization, composite, elasticity modulus, vibration.
Procedia PDF Downloads 46336893 A Benchmark for Some Elastic and Mechanical Properties of Uranium Dioxide
Abstract:
We present some elastic parameters of cubic fluorite type uranium dioxide (UO2) with a recent EAM type interatomic potential through geometry optimization calculations. Typical cubic elastic constants, bulk modulus, shear modulus, young modulus and other related elastic parameters were calculated during research. After calculations, we compared our results not only with the available theoretical data but also with previous experimental results. Our results are consistent with experiments and compare well the former theoretical results of the considered parameters of UO2.Keywords: UO2, elastic constants, bulk modulus, mechanical properties
Procedia PDF Downloads 41236892 Modification of Fick’s First Law by Introducing the Time Delay
Authors: H. Namazi, H. T. N. Kuan
Abstract:
Fick's first law relates the diffusive flux to the concentration field, by postulating that the flux goes from regions of high concentration to regions of low concentration, with a magnitude that is proportional to the concentration gradient (spatial derivative). It is clear that the diffusion of flux cannot be instantaneous and should be some time delay in this propagation. But Fick’s first law doesn’t consider this delay which results in some errors especially when there is a considerable time delay in the process. In this paper, we introduce a time delay to Fick’s first law. By this modification, we consider that the diffusion of flux cannot be instantaneous. In order to verify this claim an application sample in fluid diffusion is discussed and the results of modified Fick’s first law, Fick’s first law and the experimental results are compared. The results of this comparison stand for the accuracy of the modified model. The modified model can be used in any application where the time delay has considerable value and neglecting its effect reflects in undesirable results.Keywords: Fick's first law, flux, diffusion, time delay, modified Fick’s first law
Procedia PDF Downloads 40836891 Some Results on Cluster Synchronization
Authors: Shahed Vahedi, Mohd Salmi Md Noorani
Abstract:
This paper investigates cluster synchronization phenomena between community networks. We focus on the situation where a variety of dynamics occur in the clusters. In particular, we show that different synchronization states simultaneously occur between the networks. The controller is designed having an adaptive control gain, and theoretical results are derived via Lyapunov stability. Simulations on well-known dynamical systems are provided to elucidate our results.Keywords: cluster synchronization, adaptive control, community network, simulation
Procedia PDF Downloads 47636890 Impact on the Results of Sub-Group Analysis on Performance of Recommender Systems
Authors: Ho Yeon Park, Kyoung-Jae Kim
Abstract:
The purpose of this study is to investigate whether friendship in social media can be an important factor in recommender system through social scientific analysis of friendship in popular social media such as Facebook and Twitter. For this purpose, this study analyzes data on friendship in real social media using component analysis and clique analysis among sub-group analysis in social network analysis. In this study, we propose an algorithm to reflect the results of sub-group analysis on the recommender system. The key to this algorithm is to ensure that recommendations from users in friendships are more likely to be reflected in recommendations from users. As a result of this study, outcomes of various subgroup analyzes were derived, and it was confirmed that the results were different from the results of the existing recommender system. Therefore, it is considered that the results of the subgroup analysis affect the recommendation performance of the system. Future research will attempt to generalize the results of the research through further analysis of various social data.Keywords: sub-group analysis, social media, social network analysis, recommender systems
Procedia PDF Downloads 36436889 Coefficients of Some Double Trigonometric Cosine and Sine Series
Authors: Jatinderdeep Kaur
Abstract:
In this paper, the results of Kano from one-dimensional cosine and sine series are extended to two-dimensional cosine and sine series. To extend these results, some classes of coefficient sequences such as the class of semi convexity and class R are extended from one dimension to two dimensions. Under these extended classes, I have checked the function f(x,y) is two dimensional Fourier Cosine and Sine series or equivalently it represents an integrable function. Further, some results are obtained which are the generalization of Moricz's results.Keywords: conjugate dirichlet kernel, conjugate fejer kernel, fourier series, semi-convexity
Procedia PDF Downloads 43936888 Salter Pelvic Osteotomy for the Treatment of Developmental Dysplasia of the Hip: Assessment of Postoperative Results and Risk Factors
Authors: Suvorov Vasyl, Filipchuk Viktor
Abstract:
Background: If non-surgical treatment of developmental dysplasia of the hip (DDH) fails or if DDH is late-detected, surgery is necessary. Salter pelvic osteotomy (SPO) is an effective surgical option for such cases. The objectives of this study were to assess the results after SPO, evaluate risk factors, and reveal those radiological parameters that may correlate with the results. Mid- and long-term postoperative results after SPO in 17 patients (22 hip joints) were analyzed. Risk factors included those that do not depend on the surgeon (patient's age, value of the acetabular index (AI) preoperatively, DDH Tonnis grade) and those that depend on the surgeon (amount of AI correction). To radiological parameters which may correlate with the amount of AI correction, we referred distance "d" and the lateral rotation angle. Results: SPO allows performing AI correction in ranges 24.1 ± 6.5°. Excellent and good clinical results were obtained in 95.5% of patients; excellent and good radiological results in 86.4% of patients. Risk factors that do not depend on the surgeon were older patient’s age and higher preoperative AI values (p < 0.05). The risk factor that depends on the surgeon was the amount of AI correction (p < 0.05). The distance "d" was recognized as a radiological parameter that may indicate sufficient AI correction (p < 0.05). Conclusion: In older patients with a higher preoperative AI value, the results will be predictably worse. The surgeon may influence the result with a greater amount of AI correction (which may also be indicated radiologically by the distance "d" values).Keywords: developmental dysplasia of the hip, results, risk factor, pelvic osteotomy, salter osteotomy
Procedia PDF Downloads 13136887 Numerical Investigation of Geotextile Application in Clay Reinforcement in ABAQUS Software
Authors: Seyed Abolhasan Naeini, Eisa Aliagahei
Abstract:
Today, the use of geosynthetic materials in geotechnical activities is increasing significantly. One of the main uses of these materials is to increase the compressive strength of clay reinforced by geotextile layers. In the present study, the effect of clay reinforcement by geotextile layers in increasing the compressive strength of clay has been investigated using modeling in ABAQUS 6.11.3 software. For this purpose, the modified Drager Prager model has been chosen to simulate the stress-strain behavior of soil layers and the linear elastic model for the geotextile layer. Unreinforced samples and reinforced samples are modeled by geotextile layers (1, 2 and 3 geotextile layers) by software. In order to validate the results, an article in the same field was used and the numerical modeling results were calibrated with the laboratory results. Based on the obtained results, the software has a suitable capability for modeling and the results of the numerical model overlap with the laboratory results to a very acceptable extent, by increasing the number of geotextile layers, the error between the results of the laboratory sample and the software model increases. The highest amount of error is related to the sample reinforced with three layers of geotextile and is 7.3%.Keywords: Abaqus, cap model, clay, geotextile layer, reinforced soil
Procedia PDF Downloads 8836886 The Two-Lane Rural Analysis and Comparison of Police Statistics and Results with the Help IHSDM
Authors: S. Amanpour, F. Mohamadian, S. A. Tabatabai
Abstract:
With the number of accidents and fatalities in recent years can be concluded that Iran is the status of road accidents, remains in a crisis. Investigate the causes of such incidents in all countries is a necessity. By doing this research, the results of the number and type of accidents and the location of the crash will be available. It is possible to prioritize economic and rational solutions to fix the flaws in the way of short-term the results are all the more strict rules about the desire to have black spots and cursory glance at the change of but results in long-term are desired to change the system or increase the width of the path or add extra track. In general, the relationship between the analysis of the accidents and near police statistics is the number of accidents in one year. This could prove the accuracy of the analysis done.Keywords: traffic, IHSDM, crash, modeling, Khuzestan
Procedia PDF Downloads 28536885 Seismotectonics and Seismology the North of Algeria
Authors: Djeddi Mabrouk
Abstract:
The slow coming together between the Afro-Eurasia plates seems to be the main cause of the active deformation in the whole of North Africa which in consequence come true in Algeria with a large zone of deformation in an enough large limited band, southern through Saharan atlas and northern through tell atlas. Maghrebin and Atlassian Chain along North Africa are the consequence of this convergence. In junction zone, we have noticed a compressive regime NW-SE with a creases-faults structure and structured overthrust. From a geological point of view the north part of Algeria is younger then Saharan platform, it’s changing so unstable and constantly in movement, it’s characterized by creases openly reversed, overthrusts and reversed faults, and undergo perpetually complex movement vertically and horizontally. On structural level the north of Algeria it's a part of erogenous alpine peri-Mediterranean and essentially the tertiary age It’s spread from east to the west of Algeria over 1200 km.This oogenesis is extended from east to west on broadband of 100 km.The alpine chain is shaped by 3 domains: tell atlas in north, high plateaus in mid and Saharan atlas in the south In extreme south we find the Saharan platform which is made of Precambrian bedrock recovered by Paleozoic practically not deformed. The Algerian north and the Saharan platform are separated by an important accident along of 2000km from Agadir (Morocco) to Gabes (Tunisian). The seismic activity is localized essentially in a coastal band in the north of Algeria shaped by tell atlas, high plateaus, Saharan atlas. Earthquakes are limited in the first 20km of the earth's crust; they are caused by movements along faults of inverted orientation NE-SW or sliding tectonic plates. The center region characterizes Strong Earthquake Activity who locates mainly in the basin of Mitidja (age Neogene).The southern periphery (Atlas Blidéen) constitutes the June, more Important seism genic sources in the city of Algiers and east (Boumerdes region). The North East Region is also part of the tellian area, but it is characterized by a different strain in other parts of northern Algeria. The deformation is slow and low to moderate seismic activity. Seismic activity is related to the tectonic-slip earthquake. The most pronounced is that of 27 October 1985 (Constantine) of seismic moment magnitude Mw = 5.9. North-West region is quite active and also artificial seismic hypocenters which do not exceed 20km. The deep seismicity is concentrated mainly a narrow strip along the edge of Quaternary and Neogene basins Intra Mountains along the coast. The most violent earthquakes in this region are the earthquake of Oran in 1790 and earthquakes Orléansville (El Asnam in 1954 and 1980).Keywords: alpine chain, seismicity north Algeria, earthquakes in Algeria, geophysics, Earth
Procedia PDF Downloads 407