Search results for: boundary layer displacement
3831 Design of Photonic Crystal with Defect Layer to Eliminate Interface Corrugations for Obtaining Unidirectional and Bidirectional Beam Splitting under Normal Incidence
Authors: Evrim Colak, Andriy E. Serebryannikov, Pavel V. Usik, Ekmel Ozbay
Abstract:
Working with a dielectric photonic crystal (PC) structure which does not include surface corrugations, unidirectional transmission and dual-beam splitting are observed under normal incidence as a result of the strong diffractions caused by the embedded defect layer. The defect layer has twice the period of the regular PC segments which sandwich the defect layer. Although the PC has even number of rows, the structural symmetry is broken due to the asymmetric placement of the defect layer with respect to the symmetry axis of the regular PC. The simulations verify that efficient splitting and occurrence of strong diffractions are related to the dispersion properties of the Floquet-Bloch modes of the photonic crystal. Unidirectional and bi-directional splitting, which are associated with asymmetric transmission, arise due to the dominant contribution of the first positive and first negative diffraction orders. The effect of the depth of the defect layer is examined by placing single defect layer in varying rows, preserving the asymmetry of PC. Even for deeply buried defect layer, asymmetric transmission is still valid even if the zeroth order is not coupled. This transmission is due to evanescent waves which reach to the deeply embedded defect layer and couple to higher order modes. In an additional selected performance, whichever surface is illuminated, i.e., in both upper and lower surface illumination cases, incident beam is split into two beams of equal intensity at the output surface where the intensity of the out-going beams are equal for both illumination cases. That is, although the structure is asymmetric, symmetric bidirectional transmission with equal transmission values is demonstrated and the structure mimics the behavior of symmetric structures. Finally, simulation studies including the examination of a coupled-cavity defect for two different permittivity values (close to the permittivity values of GaAs or Si and alumina) reveal unidirectional splitting for a wider band of operation in comparison to the bandwidth obtained in the case of a single embedded defect layer. Since the dielectric materials that are utilized are low-loss and weakly dispersive in a wide frequency range including microwave and optical frequencies, the studied structures should be scalable to the mentioned ranges.Keywords: asymmetric transmission, beam deflection, blazing, bi-directional splitting, defect layer, dual beam splitting, Floquet-Bloch modes, isofrequency contours, line defect, oblique incidence, photonic crystal, unidirectionality
Procedia PDF Downloads 1843830 Chemical and Vibrational Nonequilibrium Hypersonic Viscous Flow around an Axisymmetric Blunt Body
Authors: Rabah Haoui
Abstract:
Hypersonic flows around spatial vehicles during their reentry phase in planetary atmospheres are characterized by intense aerothermodynamics phenomena. The aim of this work is to analyze high temperature flows around an axisymmetric blunt body taking into account chemical and vibrational non-equilibrium for air mixture species and the no slip condition at the wall. For this purpose, the Navier-Stokes equations system is resolved by the finite volume methodology to determine the flow parameters around the axisymmetric blunt body especially at the stagnation point and in the boundary layer along the wall of the blunt body. The code allows the capture of shock wave before a blunt body placed in hypersonic free stream. The numerical technique uses the Flux Vector Splitting method of Van Leer. CFL coefficient and mesh size level are selected to ensure the numerical convergence.Keywords: hypersonic flow, viscous flow, chemical kinetic, dissociation, finite volumes, frozen and non-equilibrium flow
Procedia PDF Downloads 4663829 Influence of UV/Ozone Treatment on the Electrical Performance of Polystyrene Buffered Pentacene-Based OFETs
Authors: Lin Gong, Holger Göbel
Abstract:
In the present study, we have investigated the influence of UV/ozone treatment on pentacene-based organic field effect transistors (OFETs) with a bilayer gate dielectric. The OFETs for this study were fabricated on heavily n-doped Si substrates with a thermally deposited SiO2 dielectric layer (300nm). On the SiO2 dielectric a very thin (≈ 15nm) buffer layer of polystyrene (PS) was first spin-coated and then treated by UV/ozone to modify the surface prior to the deposition of pentacene. We found out that by extending the UV/ozone treatment time the threshold voltage of the OFETs was monotonically shifted towards positive values, whereas the field effect mobility first decreased but eventually reached a stable value after a treatment time of approximately thirty seconds. Since the field effect mobility of the UV/ozone treated bilayer OFETs was found to be higher than the value of a comparable transistor with a single layer dielectric, we propose that the bilayer (SiO2/PS) structure can be used to shift the threshold voltage to a desired value without sacrificing field effect mobility.Keywords: buffer layer, organic field effect transistors, threshold voltage, UV/ozone treatment
Procedia PDF Downloads 3373828 Plate-Laminated Slotted-Waveguide Fed 2×3 Planar Inverted F Antenna Array
Authors: Badar Muneer, Waseem Shabir, Faisal Karim Shaikh
Abstract:
Substrate Integrated waveguide based 6-element array of Planar Inverted F antenna (PIFA) has been presented and analyzed parametrically in this paper. The antenna is fed with coupled transverse slots on a plate laminated waveguide cavity to ensure wide bandwidth and simplicity of feeding network. The two-layer structure has one layer dedicated for feeding network and the top layer dedicated for radiating elements. It has been demonstrated that the presented feeding technique for feeding such class of array antennas can be far simple in structure and miniaturized in size when it comes to designing large phased array antenna systems. A good return loss and standing wave ratio of 2:1 has been achieved while maintaining properties of typical PIFA.Keywords: feeding network, laminated waveguide, PIFA, transverse slots
Procedia PDF Downloads 3113827 Numerical Modeling of Large Scale Dam Break Flows
Authors: Amanbek Jainakov, Abdikerim Kurbanaliev
Abstract:
The work presents the results of mathematical modeling of large-scale flows in areas with a complex topographic relief. The Reynolds-averaged Navier—Stokes equations constitute the basis of the three-dimensional unsteady modeling. The well-known Volume of Fluid method implemented in the solver interFoam of the open package OpenFOAM 2.3 is used to track the free-boundary location. The mathematical model adequacy is checked by comparing with experimental data. The efficiency of the applied technology is illustrated by the example of modeling the breakthrough of the dams of the Andijan (Uzbekistan) and Papan (near the Osh town, Kyrgyzstan) reservoir.Keywords: three-dimensional modeling, free boundary, the volume-of-fluid method, dam break, flood, OpenFOAM
Procedia PDF Downloads 4053826 Effect of Site Amplification on Seismic Safety Evaluation of Flyover Pier
Authors: Mohammad Raihan Mukhlis, M. Abdur Rahman Bhuiyan
Abstract:
Bangladesh is a developing country in which a lot of multi-span simply/continuous supported flyovers are being constructed in its major cities. Being situated in a seismically active region, seismic safety evaluation of flyovers is essential for seismic risk reduction. Effects of site amplification on seismic safety evaluation of flyover piers are the main concern of this study. In this regard, failure mode, lateral strength and displacement ductility of piers of a typical multi-span simply supported flyover have been evaluated by Japan Road Association (JRA) recommended guidelines, with and without considering site amplification. Ultimate flexural strengths of piers have been computed using the pushover analysis results. Shear capacity of piers has been calculated using the guidelines of JRA. Lateral strengths have been determined depending on the failure modes of the piers. Displacement ductility of piers has been computed using yield and ultimate displacements of the piers obtained from the pushover analysis results. Selected earthquake time history is used in seismic safety evaluation of the flyover piers. Finally, the ductility design method is used to conduct the seismic safety evaluation of the piers with and without considering site amplification. From the numerical results, it has been revealed that the effects of site amplification on seismic safety evaluation of bridge structures should be carefully taken into account.Keywords: displacement ductility, flyover pier, lateral strength, safety evaluation, site amplification
Procedia PDF Downloads 1713825 Controlling the Surface Morphology of the Biocompatible Hydroxyapatite Layer Deposited by Using a Flame-Coating
Authors: Nabaa M. Abdul Rahim, Mohammed A.Kadhim, Fadhil K. Fuliful
Abstract:
A biocompatible layer is prepared from calcium phosphate, which plays a role in building damaged bones and is used in many applications. In this research, calcium phosphate is coated on stainless steel substrates (SS 316) by using the flame coating. FE-SEM images show that the behavior of the sample surfaces varies with distance, at 3cm, appeared with nanostructures of bumps shaped of diameter about 317 nm. The contents of the elements are analyzed by energy-dispersive X-ray spectroscopy (EDX). The chemical elements C, Ca, Fe, Ni, Cr, Mn and O corresponding to calcium phosphate and the alloy are revealed by EDX analysis of the coating layer. XRD patterns for the calcium phosphate layers indicate the formation of the Hap layer on the deposited layers. The samples are immersed in a solution of simulated body fluids (SBF) for 21 days to examine the biocompatibility, as the tests show that the calcium phosphate ratio of 1.65 is the appropriate and biocompatible ratio in the human body. The assays show antibacterial activity using the diffusion disk procedure. On the surface of the agar, observed infested E.coli bacteria and incubated for 24 hours at 37°C. Bacteria grow on the entire agar rather than in some areas around some samples at a distance of 3 cm from the flame hole.Keywords: biomaterial, flame coating, antibacterial activity, stainless steel
Procedia PDF Downloads 973824 Performance Evaluation of Reinforced Concrete Framed Structure with Steel Bracing and Supplemental Energy Dissipation
Authors: Swanand Patil, Pankaj Agarwal
Abstract:
In past few decades, seismic performance objectives have shifted from earthquake resistance to earthquake resilience of the structures, especially for the lifeline buildings. Features such as negligible post-earthquake damage and replaceable damaged components, makes energy dissipating systems a valid choice for a seismically resilient building. In this study, various energy dissipation devices are applied on an eight-storey moment resisting RC building model. The energy dissipating devices include both hysteresis-based and viscous type of devices. The seismic response of the building is obtained for different positioning and mechanical properties of the devices. The investigation is carried forward to the deficiently ductile RC frame also. The performance assessment is done on the basis of drift ratio, mode shapes and displacement response of the model structures. Nonlinear dynamic analysis shows largely improved displacement response. The damping devices improve displacement response more efficiently in the deficient ductile frames than that in the perfectly moment resisting frames. This finding is important considering the number of deficient buildings in India and the world. The placement and mechanical properties of the dampers prove to be a crucial part in modelling, analyzing and designing of the structures with supplemental energy dissipation.Keywords: earthquake resilient structures, lifeline buildings, retrofitting of structures, supplemental energy dissipation
Procedia PDF Downloads 3453823 Possibility of Creating Polygon Layers from Raster Layers Obtained by using Classic Image Processing Software: Case of Geological Map of Rwanda
Authors: Louis Nahimana
Abstract:
Most maps are in a raster or pdf format and it is not easy to get vector layers of published maps. Faced to the production of geological simplified map of the northern Lake Tanganyika countries without geological information in vector format, I tried a method of obtaining vector layers from raster layers created from geological maps of Rwanda and DR Congo in pdf and jpg format. The procedure was as follows: The original raster maps were georeferenced using ArcGIS10.2. Under Adobe Photoshop, map areas with the same color corresponding to a lithostratigraphic unit were selected all over the map and saved in a specific raster layer. Using the same image processing software Adobe Photoshop, each RGB raster layer was converted in grayscale type and improved before importation in ArcGIS10. After georeferencing, each lithostratigraphic raster layer was transformed into a multitude of polygons with the tool "Raster to Polygon (Conversion)". Thereafter, tool "Aggregate Polygons (Cartography)" allowed obtaining a single polygon layer. Repeating the same steps for each color corresponding to a homogeneous rock unit, it was possible to reconstruct the simplified geological constitution of Rwanda and the Democratic Republic of Congo in vector format. By using the tool «Append (Management)», vector layers obtained were combined with those from Burundi to achieve vector layers of the geology of the « Northern Lake Tanganyika countries ».Keywords: creating raster layer under image processing software, raster to polygon, aggregate polygons, adobe photoshop
Procedia PDF Downloads 4423822 High-Frequency Acoustic Microscopy Imaging of Pellet/Cladding Interface in Nuclear Fuel Rods
Authors: H. Saikouk, D. Laux, Emmanuel Le Clézio, B. Lacroix, K. Audic, R. Largenton, E. Federici, G. Despaux
Abstract:
Pressurized Water Reactor (PWR) fuel rods are made of ceramic pellets (e.g. UO2 or (U,Pu) O2) assembled in a zirconium cladding tube. By design, an initial gap exists between these two elements. During irradiation, they both undergo transformations leading progressively to the closure of this gap. A local and non destructive examination of the pellet/cladding interface could constitute a useful help to identify the zones where the two materials are in contact, particularly at high burnups when a strong chemical bonding occurs under nominal operating conditions in PWR fuel rods. The evolution of the pellet/cladding bonding during irradiation is also an area of interest. In this context, the Institute of Electronic and Systems (IES- UMR CNRS 5214), in collaboration with the Alternative Energies and Atomic Energy Commission (CEA), is developing a high frequency acoustic microscope adapted to the control and imaging of the pellet/cladding interface with high resolution. Because the geometrical, chemical and mechanical nature of the contact interface is neither axially nor radially homogeneous, 2D images of this interface need to be acquired via this ultrasonic system with a highly performing processing signal and by means of controlled displacement of the sample rod along both its axis and its circumference. Modeling the multi-layer system (water, cladding, fuel etc.) is necessary in this present study and aims to take into account all the parameters that have an influence on the resolution of the acquired images. The first prototype of this microscope and the first results of the visualization of the inner face of the cladding will be presented in a poster in order to highlight the potentials of the system, whose final objective is to be introduced in the existing bench MEGAFOX dedicated to the non-destructive examination of irradiated fuel rods at LECA-STAR facility in CEA-Cadarache.Keywords: high-frequency acoustic microscopy, multi-layer model, non-destructive testing, nuclear fuel rod, pellet/cladding interface, signal processing
Procedia PDF Downloads 1913821 Pull-Out Behavior of Mechanical Anchor Bolts by Cyclic Loading
Authors: Yoshinori Kitsutaka, Kusumi Shingo, Matsuzawa Koichi, Kunieda Yoichiro, Yagisawa Yasuei
Abstract:
In this study, the pull-out properties of various mechanical anchor bolts embedded in concrete were investigated. Five kinds of mechanical anchor bolts were selected which were ordinarily used for concrete anchoring. Tensile tests for mechanical anchor bolts embedded in φ300mm x 100mm size concrete were conducted to measure the load - load displacement curves. The loading conditions were a monotonous loading and a repeating loading. The fracture energy for each mechanical anchor bolts was estimated by the analysis of consumed energy calculated by the load - load displacement curve. The effect of the types of mechanical anchor bolts on the pull-out properties of concrete subjected in monotonous loading and a repeating loading was cleared.Keywords: concrete, cyclic loading, mechanical anchor bolt, pull-out strength
Procedia PDF Downloads 2623820 Analysis of Wire Coating for Heat Transfer Flow of a Viscoelastic PTT Fluid with Slip Boundary Conditions
Authors: Rehan Ali Shah, A. M. Siddiqui, T. Haroon
Abstract:
Slip boundary value problem in wire coating analysis with heat transfer is examined. The fluid is assumed to be viscoelastic PTT (Phan-Thien and Tanner). The rheological constitutive equation of PTT fluid model simulates various polymer melts. Therefore, the current consequences are valuable in a number of realistic situations. Effects of slip parameter γ as well as εDec^2 (viscoelastic index) on the axial velocity, shear stress, normal stress, average velocity, volume flux, thickness of coated wire, shear stress, force on the total wire and temperature distribution profiles have been investigated. A new direction is explored to analyze the flow with the slip parameter. The slippage at the boundaries plays an important role in thickness of coated wire. It is noted that as the slip parameter increases the flow rate and thickness of coated wire increases while, temperature distribution decreases. The results reduce to no slip when the slip parameter is vanished. Furthermore, we can obtain the results for Maxwell and viscous model by setting ε and λ equal to zero respectively.Keywords: wire coating, straight annular die, PTT fluid, heat transfer, slip boundary conditions
Procedia PDF Downloads 3633819 Comparative Analysis of High Lift Airfoils for Motorsports Applications
Authors: M. Fozan Ur Rab, Mahrukh, M. Alam, N. Sheikh
Abstract:
The purpose of this study is to analyze various high lift low Reynolds number airfoils using two-dimensional Computational Fluid Dynamics (CFD) code in the isolated flow field and select optimum airfoil to suit the motorsports application. The airfoil is selected after comparing the stall behavior, transition location, pressure recovery, pressure distribution and boundary layer characteristics of various airfoils. The prime consideration while selecting airfoil is highest Cl while achieving the sustainable performance over a range of Reynolds numbers encountered on the race track. The increase in Cl is always accompanied by the increase in Cd but this must be compromised since the main goal is to increase an aerodynamic grip. It is always desirable to increase the down-force in Formula One (F1)/Formula Student (FS) to gain reduction in lap time. This paper establishes the criteria for selection of high lift low Reynolds number airfoil while considering various parameters which affect the performance of airfoils.Keywords: aerodynamics, airfoil, downforce, formula student, lap time
Procedia PDF Downloads 2883818 Modeling of Bipolar Charge Transport through Nanocomposite Films for Energy Storage
Authors: Meng H. Lean, Wei-Ping L. Chu
Abstract:
The effects of ferroelectric nanofiller size, shape, loading, and polarization, on bipolar charge injection, transport, and recombination through amorphous and semicrystalline polymers are studied. A 3D particle-in-cell model extends the classical electrical double layer representation to treat ferroelectric nanoparticles. Metal-polymer charge injection assumes Schottky emission and Fowler-Nordheim tunneling, migration through field-dependent Poole-Frenkel mobility, and recombination with Monte Carlo selection based on collision probability. A boundary integral equation method is used for solution of the Poisson equation coupled with a second-order predictor-corrector scheme for robust time integration of the equations of motion. The stability criterion of the explicit algorithm conforms to the Courant-Friedrichs-Levy limit. Trajectories for charge that make it through the film are curvilinear paths that meander through the interspaces. Results indicate that charge transport behavior depends on nanoparticle polarization with anti-parallel orientation showing the highest leakage conduction and lowest level of charge trapping in the interaction zone. Simulation prediction of a size range of 80 to 100 nm to minimize attachment and maximize conduction is validated by theory. Attached charge fractions go from 2.2% to 97% as nanofiller size is decreased from 150 nm to 60 nm. Computed conductivity of 0.4 x 1014 S/cm is in agreement with published data for plastics. Charge attachment is increased with spheroids due to the increase in surface area, and especially so for oblate spheroids showing the influence of larger cross-sections. Charge attachment to nanofillers and nanocrystallites increase with vol.% loading or degree of crystallinity, and saturate at about 40 vol.%.Keywords: nanocomposites, nanofillers, electrical double layer, bipolar charge transport
Procedia PDF Downloads 3543817 Flow Prediction of Boundary Shear Stress with Enlarging Flood Plains
Authors: Spandan Sahu, Amiya Kumar Pati, Kishanjit Kumar Khatua
Abstract:
River is our main source of water which is a form of open channel flow and the flow in open channel provides with many complex phenomenon of sciences that needs to be tackled such as the critical flow conditions, boundary shear stress and depth averaged velocity. During floods, part of a river is carried by the simple main channel and rest is carried by flood plains. For such compound asymmetric channels, the flow structure becomes complicated due to momentum exchange between main channel and adjoining flood plains. Distribution of boundary shear in subsections provides us with the concept of momentum transfer between the interface of main channel and the flood plains. Experimentally, to get better data with accurate results are very complex because of the complexity of the problem. Hence, CES software has been used to tackle the complex processes to determine the shear stresses at different sections of an open channel having asymmetric flood plains on both sides of the main channel and the results is compared with the symmetric flood plains for various geometrical shapes and flow conditions. Error analysis is also performed to know the degree of accuracy of the model implemented.Keywords: depth average velocity, non prismatic compound channel, relative flow depth, velocity distribution
Procedia PDF Downloads 1533816 Water-Controlled Fracturing with Fuzzy-Ball Fluid in Tight Gas Reservoirs of Deep Coal Measures in Sulige
Authors: Xiangchun Wang, Lihui Zheng, Maozong Gan, Peng Zhang, Tong Wu, An Chang
Abstract:
The deep coal measure tight gas reservoir in Sulige is usually reformed by fracturing, because the reservoir thickness is small, the water layers can be easily communicated during fracturing, which will lead to water production of gas wells and lower production of gas wells. Therefore, it is necessary to control water during fracturing in deep coal measure tight gas reservoir. Using fuzzy-ball fluid to control water fracturing can not only increase the output but also reduce the water output. The fuzzy-ball fluid was prepared indoors to carry out evaluation experiments. The fuzzy ball fluid was mixed in equal volume with the pre-fluid and formation water to test its compatibility. The core displacement device was used to test the gas and water breaking through the matrix and fractured cores blocked by fuzzy-ball fluid. The breakthrough pressure of the plunger tests its water blocking performance. The experimental results show that there is no precipitation after the fuzzy-ball fluid is mixed with the pad fluid and the formation water, respectively. The breakthrough pressure gradients of gas and water after the fuzzy-ball fluid plugged the cracks were 0.02MPa/cm and 0.04MPa/cm, respectively, and the breakthrough pressure gradients of gas and water after the matrix was plugged were 0.03MPa/cm and 0.2MPa/cm, respectively, which meet the requirements of field operation. Two wells A and B in the Sulige Gas Field were used on site to implement water control fracturing. After the pre-fluid was injected into the two wells, 50m3 of fuzzy-ball fluid was pumped to plug the water. The construction went smoothly. After water control and fracturing, the average daily output in 161 days was increased by 13.71% and 6.99% compared with that of adjacent wells in the same layer. The adjacent wells were bubbled for 3 times and 63 times respectively, while there was no effusion in A and B construction wells. The results show that fuzzy-ball fluid is a water plugging material suitable for water control fracturing in tight gas wells, and its water control mechanism can also provide a new idea for the development of water control fracturing materials.Keywords: coal seam, deep layer, fracking, fuzzy-ball fluid, reservoir reconstruction
Procedia PDF Downloads 2273815 Buildings Founded on Thermal Insulation Layer Subjected to Earthquake Load
Authors: David Koren, Vojko Kilar
Abstract:
The modern energy-efficient houses are often founded on a thermal insulation (TI) layer placed under the building’s RC foundation slab. The purpose of the paper is to identify the potential problems of the buildings founded on TI layer from the seismic point of view. The two main goals of the study were to assess the seismic behavior of such buildings, and to search for the critical structural parameters affecting the response of the superstructure as well as of the extruded polystyrene (XPS) layer. As a test building a multi-storeyed RC frame structure with and without the XPS layer under the foundation slab has been investigated utilizing nonlinear dynamic (time-history) and static (pushover) analyses. The structural response has been investigated with reference to the following performance parameters: i) Building’s lateral roof displacements, ii) Edge compressive and shear strains of the XPS, iii) Horizontal accelerations of the superstructure, iv) Plastic hinge patterns of the superstructure, v) Part of the foundation in compression, and vi) Deformations of the underlying soil and vertical displacements of the foundation slab (i.e. identifying the potential uplift). The results have shown that in the case of higher and stiff structures lying on firm soil the use of XPS under the foundation slab might induce amplified structural peak responses compared to the building models without XPS under the foundation slab. The analysis has revealed that the superstructure as well as the XPS response is substantially affected by the stiffness of the foundation slab.Keywords: extruded polystyrene (XPS), foundation on thermal insulation, energy-efficient buildings, nonlinear seismic analysis, seismic response, soil–structure interaction
Procedia PDF Downloads 3013814 Three-Dimensional Jet Refraction Simulation Using a Gradient Term Suppression and Filtering Method
Authors: Lican Wang, Rongqian Chen, Yancheng You, Ruofan Qiu
Abstract:
In the applications of jet engine, open-jet wind tunnel and airframe, there wildly exists a shear layer formed by the velocity and temperature gradients between jet flow and surrounded medium. The presence of shear layer will refract and reflect the sound path that consequently influences the measurement results in far-field. To investigate and evaluate the shear layer effect, a gradient term suppression and filtering method is adopted to simulate sound propagation through a steady sheared flow in three dimensions. Two typical configurations are considered: one is an incompressible and cold jet flow in wind tunnel and the other is a compressible and hot jet flow in turbofan engine. A numerically linear microphone array is used to localize the position of given sound source. The localization error is presented and linearly fitted.Keywords: aeroacoustic, linearized Euler equation, acoustic propagation, source localization
Procedia PDF Downloads 2033813 Application of Large Eddy Simulation-Immersed Boundary Volume Penalization Method for Heat and Mass Transfer in Granular Layers
Authors: Artur Tyliszczak, Ewa Szymanek, Maciej Marek
Abstract:
Flow through granular materials is important to a vast array of industries, for instance in construction industry where granular layers are used for bulkheads and isolators, in chemical engineering and catalytic reactors where large surfaces of packed granular beds intensify chemical reactions, or in energy production systems, where granulates are promising materials for heat storage and heat transfer media. Despite the common usage of granulates and extensive research performed in this field, phenomena occurring between granular solid elements or between solids and fluid are still not fully understood. In the present work we analyze the heat exchange process between the flowing medium (gas, liquid) and solid material inside the granular layers. We consider them as a composite of isolated solid elements and inter-granular spaces in which a gas or liquid can flow. The structure of the layer is controlled by shapes of particular granular elements (e.g., spheres, cylinders, cubes, Raschig rings), its spatial distribution or effective characteristic dimension (total volume or surface area). We will analyze to what extent alteration of these parameters influences on flow characteristics (turbulent intensity, mixing efficiency, heat transfer) inside the layer and behind it. Analysis of flow inside granular layers is very complicated because the use of classical experimental techniques (LDA, PIV, fibber probes) inside the layers is practically impossible, whereas the use of probes (e.g. thermocouples, Pitot tubes) requires drilling of holes inside the solid material. Hence, measurements of the flow inside granular layers are usually performed using for instance advanced X-ray tomography. In this respect, theoretical or numerical analyses of flow inside granulates seem crucial. Application of discrete element methods in combination with the classical finite volume/finite difference approaches is problematic as a mesh generation process for complex granular material can be very arduous. A good alternative for simulation of flow in complex domains is an immersed boundary-volume penalization (IB-VP) in which the computational meshes have simple Cartesian structure and impact of solid objects on the fluid is mimicked by source terms added to the Navier-Stokes and energy equations. The present paper focuses on application of the IB-VP method combined with large eddy simulation (LES). The flow solver used in this work is a high-order code (SAILOR), which was used previously in various studies, including laminar/turbulent transition in free flows and also for flows in wavy channels, wavy pipes and over various shape obstacles. In these cases a formal order of approximation turned out to be in between 1 and 2, depending on the test case. The current research concentrates on analyses of the flows in dense granular layers with elements distributed in a deterministic regular manner and validation of the results obtained using LES-IB method and body-fitted approach. The comparisons are very promising and show very good agreement. It is found that the size, number of elements and their distribution have huge impact on the obtained results. Ordering of the granular elements (or lack of it) affects both the pressure drop and efficiency of the heat transfer as it significantly changes mixing process.Keywords: granular layers, heat transfer, immersed boundary method, numerical simulations
Procedia PDF Downloads 1373812 Elucidating Microstructural Evolution Mechanisms in Tungsten via Layerwise Rolling in Additive Manufacturing: An Integrated Simulation and Experimental Approach
Authors: Sadman Durlov, Aditya Ganesh-Ram, Hamidreza Hekmatjou, Md Najmus Salehin, Nora Shayesteh Ameri
Abstract:
In the field of additive manufacturing, tungsten stands out for its exceptional resistance to high temperatures, making it an ideal candidate for use in extreme conditions. However, its inherent brittleness and vulnerability to thermal cracking pose significant challenges to its manufacturability. This study explores the microstructural evolution of tungsten processed through layer-wise rolling in laser powder bed fusion additive manufacturing, utilizing a comprehensive approach that combines advanced simulation techniques with empirical research. We aim to uncover the complex processes of plastic deformation and microstructural transformations, with a particular focus on the dynamics of grain size, boundary evolution, and phase distribution. Our methodology employs a combination of simulation and experimental data, allowing for a detailed comparison that elucidates the key mechanisms influencing microstructural alterations during the rolling process. This approach facilitates a deeper understanding of the material's behavior under additive manufacturing conditions, specifically in terms of deformation and recrystallization. The insights derived from this research not only deepen our theoretical knowledge but also provide actionable strategies for refining manufacturing parameters to improve the tungsten components' mechanical properties and functional performance. By integrating simulation with practical experimentation, this study significantly enhances the field of materials science, offering a robust framework for the development of durable materials suited for challenging operational environments. Our findings pave the way for optimizing additive manufacturing techniques and expanding the use of tungsten across various demanding sectors.Keywords: additive manufacturing, layer wise rolling, refractory materials, in-situ microstructure modifications
Procedia PDF Downloads 613811 Studying the Effect of Silicon Substrate Intrinsic Carrier Concentration on Performance of ZnO/Si Solar Cells
Authors: Syed Sadique Anwer Askari, Mukul Kumar Das
Abstract:
Zinc Oxide (ZnO) solar cells have drawn great attention due to the enhanced efficiency and low-cost fabrication process. In this study, ZnO thin film is used as the active layer, hole blocking layer, antireflection coating (ARC) as well as transparent conductive oxide. To improve the conductivity of ZnO, top layer of ZnO is doped with aluminum, for top contact. Intrinsic carrier concentration of silicon substrate plays an important role in enhancing the power conversion efficiency (PCE) of ZnO/Si solar cell. With the increase of intrinsic carrier concentration PCE decreased due to increase in dark current in solar cell. At 80nm ZnO and 160µm Silicon substrate thickness, power conversion efficiency of 26.45% and 21.64% is achieved with intrinsic carrier concentration of 1x109/cm3, 1.4x1010/cm3 respectively.Keywords: hetero-junction solar cell, solar cell, substrate intrinsic carrier concentration, ZnO/Si
Procedia PDF Downloads 6013810 Performance and Processing Evaluation of Solid Oxide Cells by Co-Sintering of GDC Buffer Layer and LSCF Air Electrode
Authors: Hyun-Jong Choi, Minjun Kwak, Doo-Won Seo, Sang-Kuk Woo, Sun-Dong Kim
Abstract:
Solid Oxide Cell(SOC) systems can contribute to the transition to the hydrogen society by utilized as a power and hydrogen generator by the electrochemical reaction with high efficiency at high operation temperature (>750 ℃). La1-xSrxCo1-yFeyO3, which is an air electrode, is occurred stability degradations due to reaction and delamination with yittria stabilized zirconia(YSZ) electrolyte in a water electrolysis mode. To complement this phenomenon SOCs need gadolinium doped ceria(GDC) buffer layer between electrolyte and air electrode. However, GDC buffer layer requires a high sintering temperature and it causes a reaction with YSZ electrolyte. This study carried out low temperature sintering of GDC layer by applying Cu-oxide as a sintering aid. The effect of a copper additive as a sintering aid to lower the sintering temperature for the construction of solid oxide fuel cells (SOFCs) was investigated. GDC buffer layer with 0.25-10 mol% CuO sintering aid was prepared by reacting GDC power and copper nitrate solution followed by heating at 600 ℃. The sintering of CuO-added GDC powder was optimized by investigating linear shrinkage, microstructure, grain size, ionic conductivity, and activation energy of CuO-GDC electrolytes at temperatures ranging from 1100 to 1400 ℃. The sintering temperature of the CuO-GDC electrolyte decreases from 1400 ℃ to 1100 ℃ by adding the CuO sintering aid. The ionic conductivity of the CuO-GDC electrolyte shows a maximum value at 0.5 mol% of CuO. However, the addition of CuO has no significant effects on the activation energy of GDC electrolyte. GDC-LSCF layers were co-sintering at 1050 and 1100 ℃ and button cell tests were carried out at 750 ℃.Keywords: Co-Sintering, GDC-LSCF, Sintering Aid, solid Oxide Cells
Procedia PDF Downloads 2453809 Application of Griddization Management to Construction Hazard Management
Authors: Lingzhi Li, Jiankun Zhang, Tiantian Gu
Abstract:
Hazard management that can prevent fatal accidents and property losses is a fundamental process during the buildings’ construction stage. However, due to lack of safety supervision resources and operational pressures, the conduction of hazard management is poor and ineffective in China. In order to improve the quality of construction safety management, it is critical to explore the use of information technologies to ensure that the process of hazard management is efficient and effective. After exploring the existing problems of construction hazard management in China, this paper develops the griddization management model for construction hazard management. First, following the knowledge grid infrastructure, the griddization computing infrastructure for construction hazards management is designed which includes five layers: resource entity layer, information management layer, task management layer, knowledge transformation layer and application layer. This infrastructure will be as the technical support for realizing grid management. Second, this study divides the construction hazards into grids through city level, district level and construction site level according to grid principles. Last, a griddization management process including hazard identification, assessment and control is developed. Meanwhile, all stakeholders of construction safety management, such as owners, contractors, supervision organizations and government departments, should take the corresponding responsibilities in this process. Finally, a case study based on actual construction hazard identification, assessment and control is used to validate the effectiveness and efficiency of the proposed griddization management model. The advantage of this designed model is to realize information sharing and cooperative management between various safety management departments.Keywords: construction hazard, griddization computing, grid management, process
Procedia PDF Downloads 2753808 Two Wheels Differential Type Odometry for Robot
Authors: Abhishek Jha, Manoj Kumar
Abstract:
This paper proposes a new type of two wheels differential type odometry to estimate the next position and orientation of mobile robots. The proposed odometry is composed for two independent wheels with respective encoders. The two wheels rotate independently, and the change is determined by the difference in the velocity of the two wheels. Angular velocities of the two wheels are measured by rotary encoders. A mathematical model is proposed for the mobile robots to precisely move towards the goal. Using measured values of the two encoders, the current displacement vector of a mobile robot is calculated by kinematics of the mathematical model. Using the displacement vector, the next position and orientation of the mobile robot are estimated by proposed odometry. Result of simulator experiment by the developed odometry is shown.Keywords: mobile robot, odometry, unicycle, differential type, encoders, infrared range sensors, kinematic model
Procedia PDF Downloads 4523807 Promising Anti-Displacement Practices for High Cost Cities
Authors: Leslie M. Mullins
Abstract:
In the face of dramatically shifting demographic trends and macroeconomic pressures on affordable housing in high-cost cities, municipalities and developers have been forced to develop new models of sustainable development that integrates elements of substantial rehabilitation and new construction while controlling for relocation and mass displacement. Community development partners in the San Francisco Bay Area of Northern California are starting to prioritize anti-displacement strategies when rehabilitating severely neglected public housing developments. This study explored the community-driven efforts to transform four dilapidated public housing sites (N=2,600 households) into thriving mixed-income housing communities. Eight interviews were conducted with frontline workers (property managers and service providers), who directly worked with residents throughout critical stages of the relocation and leasing process. Interviews were audio-recorded, transcribed, and analyzed by a systematic procedure for qualitative analysis to identify key themes on the topics of interest. Also, an extensive literature analysis was conducted to determine promising practices throughout the industry. This study highlighted that resident’s emotional attachment to their homes (regardless of the deteriorating conditions of their unit) could both a) impede the relocation process and substantially impact the budget and timeline, while b) simultaneously providing a basis for an enhanced sense of belonging and community cohesion. This phenomenon often includes the welcoming of new residents and cultures. Resident centered workshops, healing centered rituals, and extensive 'hands-on' guidance was highlighted as promising practices that resulted in residential retention rates that were two to three times the national average and positively impacted the overall project’s budget and timeline.Keywords: anti-displacement strategies, community based practices, community cohesion, cultural preservation, healing-centered, public housing, relocation, trauma-informed
Procedia PDF Downloads 1363806 Multi-Size Continuous Particle Separation on a Dielectrophoresis-Based Microfluidics Chip
Authors: Arash Dalili, Hamed Tahmouressi, Mina Hoorfar
Abstract:
Advances in lab-on-a-chip (LOC) devices have led to significant advances in the manipulation, separation, and isolation of particles and cells. Among the different active and passive particle manipulation methods, dielectrophoresis (DEP) has been proven to be a versatile mechanism as it is label-free, cost-effective, simple to operate, and has high manipulation efficiency. DEP has been applied for a wide range of biological and environmental applications. A popular form of DEP devices is the continuous manipulation of particles by using co-planar slanted electrodes, which utilizes a sheath flow to focus the particles into one side of the microchannel. When particles enter the DEP manipulation zone, the negative DEP (nDEP) force generated by the slanted electrodes deflects the particles laterally towards the opposite side of the microchannel. The lateral displacement of the particles is dependent on multiple parameters including the geometry of the electrodes, the width, length and height of the microchannel, the size of the particles and the throughput. In this study, COMSOL Multiphysics® modeling along with experimental studies are used to investigate the effect of the aforementioned parameters. The electric field between the electrodes and the induced DEP force on the particles are modelled by COMSOL Multiphysics®. The simulation model is used to show the effect of the DEP force on the particles, and how the geometry of the electrodes (width of the electrodes and the gap between them) plays a role in the manipulation of polystyrene microparticles. The simulation results show that increasing the electrode width to a certain limit, which depends on the height of the channel, increases the induced DEP force. Also, decreasing the gap between the electrodes leads to a stronger DEP force. Based on these results, criteria for the fabrication of the electrodes were found, and soft lithography was used to fabricate interdigitated slanted electrodes and microchannels. Experimental studies were run to find the effect of the flow rate, geometrical parameters of the microchannel such as length, width, and height as well as the electrodes’ angle on the displacement of 5 um, 10 um and 15 um polystyrene particles. An empirical equation is developed to predict the displacement of the particles under different conditions. It is shown that the displacement of the particles is more for longer and lower height channels, lower flow rates, and bigger particles. On the other hand, the effect of the angle of the electrodes on the displacement of the particles was negligible. Based on the results, we have developed an optimum design (in terms of efficiency and throughput) for three size separation of particles.Keywords: COMSOL Multiphysics, Dielectrophoresis, Microfluidics, Particle separation
Procedia PDF Downloads 1863805 Research on Low interfacial Tension Viscoelastic Fluid Oil Displacement System in Unconventional Reservoir
Authors: Long Long Chen, Xinwei Liao, Shanfa Tang, Shaojing Jiang, Ruijia Tang, Rui Wang, Shu Yun Feng, Si Yao Wang
Abstract:
Unconventional oil reservoirs have the characteristics of strong heterogeneity and poor injectability, and traditional chemical flooding technology is not effective in such reservoirs; polymer flooding in the production of heavy oil reservoirs is difficult to handle produced fluid and easy to block oil wells, etc. Therefore, a viscoelastic fluid flooding system with good adaptability, low interfacial tension, plugging, and diverting capabilities was studied. The viscosity, viscoelasticity, surface/interfacial activity, wettability, emulsification, and oil displacement performance of the anionic Gemini surfactant flooding system were studied, and the adaptability of the system to the reservoir environment was evaluated. The oil displacement effect of the system in low-permeability and high-permeability (heavy oil) reservoirs was investigated, and the mechanism of the system to enhance water flooding recovery was discussed. The results show that the system has temperature resistance and viscosity increasing performance (65℃, 4.12mPa•s), shear resistance and viscoelasticity; at a lower concentration (0.5%), the oil-water interfacial tension can be reduced to ultra-low (10-3mN/m); has good emulsifying ability for heavy oil, and is easy to break demulsification (4.5min); has good adaptability to reservoirs with high salinity (30000mg/L). Oil flooding experiments show that this system can increase the water flooding recovery rate of low-permeability homogeneous and heterogeneous cores by 13% and 15%, respectively, and can increase the water-flooding recovery rate of high-permeability heavy oil reservoirs by 40%. The anionic Gemini surfactant flooding system studied in this paper is a viscoelastic fluid, has good emulsifying and oil washing ability, can effectively improve sweep efficiency, reduce injection pressure, and has broad application in unconventional reservoirs to enhance oil recovery prospect.Keywords: oil displacement system, recovery factor, rheology, interfacial activity, environmental adaptability
Procedia PDF Downloads 1243804 Monitoring and Analysis of Bridge Crossing Ground Fissures
Authors: Zhiqing Zhang, Xiangong Zhou, Zihan Zhou
Abstract:
Ground fissures can be seen in some cities all over the world. As a special urban geological disaster, ground fissures in Xi'an have caused great harm to infrastructure. Chang'an Road Interchange in Xi'an City is a bridge across ground fissures. The damage to Chang'an Road interchange is the most serious and typical. To study the influence of ground fissures on the bridge, we established a bridge monitoring system. The main monitoring items include elevation monitoring, structural displacement monitoring, etc. The monitoring results show that the typical failure is mainly reflected in the bridge deck damage caused by horizontal tension and vertical dislocation. For the construction of urban interchange spanning ground fissures, the interchange should be divided reasonably, a simple support structure with less restriction should be adopted, and the monitoring of supports should be strengthened to prevent the occurrence of beam falling.Keywords: bridge monitoring, ground fissures, typical disease, structural displacement
Procedia PDF Downloads 2243803 Simulation Study on Vehicle Drag Reduction by Surface Dimples
Authors: S. F. Wong, S. S. Dol
Abstract:
Automotive designers have been trying to use dimples to reduce drag in vehicles. In this work, a car model has been applied with dimple surface with a parameter called dimple ratio DR, the ratio between the depths of the half dimple over the print diameter of the dimple, has been introduced and numerically simulated via k-ε turbulence model to study the aerodynamics performance with the increasing depth of the dimples The Ahmed body car model with 25 degree slant angle is simulated with the DR of 0.05, 0.2, 0.3 0.4 and 0.5 at Reynolds number of 176387 based on the frontal area of the car model. The geometry of dimple changes the kinematics and dynamics of flow. Complex interaction between the turbulent fluctuating flow and the mean flow escalates the turbulence quantities. The maximum level of turbulent kinetic energy occurs at DR = 0.4. It can be concluded that the dimples have generated extra turbulence energy at the surface and as a result, the application of dimples manages to reduce the drag coefficient of the car model compared to the model with smooth surface.Keywords: aerodynamics, boundary layer, dimple, drag, kinetic energy, turbulence
Procedia PDF Downloads 3153802 Comparison between the Quadratic and the Cubic Linked Interpolation on the Mindlin Plate Four-Node Quadrilateral Finite Elements
Authors: Dragan Ribarić
Abstract:
We employ the so-called problem-dependent linked interpolation concept to develop two cubic 4-node quadrilateral Mindlin plate finite elements with 12 external degrees of freedom. In the problem-independent linked interpolation, the interpolation functions are independent of any problem material parameters and the rotation fields are not expressed in terms of the nodal displacement parameters. On the contrary, in the problem-dependent linked interpolation, the interpolation functions depend on the material parameters and the rotation fields are expressed in terms of the nodal displacement parameters. Two cubic 4-node quadrilateral plate elements are presented, named Q4-U3 and Q4-U3R5. The first one is modelled with one displacement and two rotation degrees of freedom in every of the four element nodes and the second element has five additional internal degrees of freedom to get polynomial completeness of the cubic form and which can be statically condensed within the element. Both elements are able to pass the constant-bending patch test exactly as well as the non-zero constant-shear patch test on the oriented regular mesh geometry in the case of cylindrical bending. In any mesh shape, the elements have the correct rank and only the three eigenvalues, corresponding to the solid body motions are zero. There are no additional spurious zero modes responsible for instability of the finite element models. In comparison with the problem-independent cubic linked interpolation implemented in Q9-U3, the nine-node plate element, significantly less degrees of freedom are employed in the model while retaining the interpolation conformity between adjacent elements. The presented elements are also compared to the existing problem-independent quadratic linked-interpolation element Q4-U2 and to the other known elements that also use the quadratic or the cubic linked interpolation, by testing them on several benchmark examples. Simple functional upgrading from the quadratic to the cubic linked interpolation, implemented in Q4-U3 element, showed no significant improvement compared to the quadratic linked form of the Q4-U2 element. Only when the additional bubble terms are incorporated in the displacement and rotation function fields, which complete the full cubic linked interpolation form, qualitative improvement is fulfilled in the Q4-U3R5 element. Nevertheless, the locking problem exists even for the both presented elements, like in all pure displacement elements when applied to very thin plates modelled by coarse meshes. But good and even slightly better performance can be noticed for the Q4-U3R5 element when compared with elements from the literature, if the model meshes are moderately dense and the plate thickness not extremely thin. In some cases, it is comparable to or even better than Q9-U3 element which has as many as 12 more external degrees of freedom. A significant improvement can be noticed in particular when modeling very skew plates and models with singularities in the stress fields as well as circular plates with distorted meshes.Keywords: Mindlin plate theory, problem-independent linked interpolation, problem-dependent interpolation, quadrilateral displacement-based plate finite elements
Procedia PDF Downloads 312