Search results for: blue color detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4875

Search results for: blue color detection

4305 Effect of Thistle Ecotype in the Physical-Chemical and Sensorial Properties of Serra da Estrela Cheese

Authors: Raquel P. F. Guiné, Marlene I. C. Tenreiro, Ana C. Correia, Paulo Barracosa, Paula M. R. Correia

Abstract:

The objective of this study was to evaluate the physical and chemical characteristics of Serra da Estrela cheese and compare these results with those of the sensory analysis. For the study were taken six samples of Serra da Estrela cheese produced with 6 different ecotypes of thistle in a dairy situated in Penalva do Castelo. The chemical properties evaluated were moisture content, protein, fat, ash, chloride and pH; the physical properties studied were color and texture; and finally a sensory evaluation was undertaken. The results showed moisture varying in the range 40-48%, protein in the range 15-20%, fat between 41-45%, ash between 3.9-5.0% and chlorides varying from 1.2 to 3.0%. The pH varied from 4.8 to 5.4. The textural properties revealed that the crust hardness is relatively low (maximum 7.3 N), although greater than flesh firmness (maximum 1.7 N), and also that these cheeses are in fact soft paste type, with measurable stickiness and intense adhesiveness. The color analysis showed that the crust is relatively light (L* over 50), and with a predominant yellow coloration (b* around 20 or over) although with a slight greenish tone (a* negative). The results of the sensory analysis did not show great variability for most of the attributes measured, although some differences were found in attributes such as crust thickness, crust uniformity, and creamy flesh.

Keywords: chemical composition, color, sensorial analysis, Serra da Estrela cheese, texture

Procedia PDF Downloads 300
4304 Multitemporal Satellite Images for Agriculture Change Detection in Al Jouf Region, Saudi Arabia

Authors: Ali A. Aldosari

Abstract:

Change detection of Earth surface features is extremely important for better understanding of our environment in order to promote better decision making. Al-Jawf is remarkable for its abundant agricultural water where there is fertile agricultural land due largely to underground water. As result, this region has large areas of cultivation of dates, olives and fruits trees as well as other agricultural products such as Alfa Alfa and wheat. However this agricultural area was declined due to the reduction of government supports in the last decade. This reduction was not officially recorded or measured in this region at large scale or governorate level. Remote sensing data are primary sources extensively used for change detection in agriculture applications. This study is applied the technology of GIS and used the Normalized Difference Vegetation Index (NDVI) which can be used to measure and analyze the spatial and temporal changes in the agriculture areas in the Aljouf region.

Keywords: spatial analysis, geographical information system, change detection

Procedia PDF Downloads 402
4303 Hate Speech Detection in Tunisian Dialect

Authors: Helmi Baazaoui, Mounir Zrigui

Abstract:

This study addresses the challenge of hate speech detection in Tunisian Arabic text, a critical issue for online safety and moderation. Leveraging the strengths of the AraBERT model, we fine-tuned and evaluated its performance against the Bi-LSTM model across four distinct datasets: T-HSAB, TNHS, TUNIZI-Dataset, and a newly compiled dataset with diverse labels such as Offensive Language, Racism, and Religious Intolerance. Our experimental results demonstrate that AraBERT significantly outperforms Bi-LSTM in terms of Recall, Precision, F1-Score, and Accuracy across all datasets. The findings underline the robustness of AraBERT in capturing the nuanced features of Tunisian Arabic and its superior capability in classification tasks. This research not only advances the technology for hate speech detection but also provides practical implications for social media moderation and policy-making in Tunisia. Future work will focus on expanding the datasets and exploring more sophisticated architectures to further enhance detection accuracy, thus promoting safer online interactions.

Keywords: hate speech detection, Tunisian Arabic, AraBERT, Bi-LSTM, Gemini annotation tool, social media moderation

Procedia PDF Downloads 11
4302 Diagnosis of Diabetes Using Computer Methods: Soft Computing Methods for Diabetes Detection Using Iris

Authors: Piyush Samant, Ravinder Agarwal

Abstract:

Complementary and Alternative Medicine (CAM) techniques are quite popular and effective for chronic diseases. Iridology is more than 150 years old CAM technique which analyzes the patterns, tissue weakness, color, shape, structure, etc. for disease diagnosis. The objective of this paper is to validate the use of iridology for the diagnosis of the diabetes. The suggested model was applied in a systemic disease with ocular effects. 200 subject data of 100 each diabetic and non-diabetic were evaluated. Complete procedure was kept very simple and free from the involvement of any iridologist. From the normalized iris, the region of interest was cropped. All 63 features were extracted using statistical, texture analysis, and two-dimensional discrete wavelet transformation. A comparison of accuracies of six different classifiers has been presented. The result shows 89.66% accuracy by the random forest classifier.

Keywords: complementary and alternative medicine, classification, iridology, iris, feature extraction, disease prediction

Procedia PDF Downloads 407
4301 Explanatory Analysis the Effect of Urban Form and Monsoon on Cooling Effect of Blue-Green Spaces: A Case Study in Singapore

Authors: Yangyang Zhou

Abstract:

Rapid urbanization has caused the urban heat island effect, which will threaten the physical and mental health of urban dwellers, and blue-green spaces can mitigate the thermal environment effectively. In this study, we calculated the average LST from 2013 to 2022, Northeastmonsoon and Southwestmonsoon of Singapore, and compared the cooling effect differences of the four blue-green spaces. Then, spatial correlation and spatial autoregression model were conducted between cooling distance intensity (CDI) and 11 independent variables. The results reveal that (1) the highest mean land surface temperature (LST) in all years, Northeast monsoon and Southwest monsoon can reach 42.8 ℃, 41.6 ℃, and 42.9 ℃, respectively. (2) the temperature-changing tendency in the three time periods is similar to each other, while the overall LST changing trends of the Southwest monsoon are lower than all year and Northeast monsoon. (3) the cooling distance of the sea can reach 1200 m, and CEI is highly positively correlated with NDBI and BuildD and highly negatively correlated with SVF, NDVI and TreeH. LISA maps showed that the zones that passed the significance test between CDI, NDBI and BuildD were nearly the same locations; the same phenomenon also happened between CDI and SVF, NDVI and TreeH. (4) SLM had better regression results than SEM in all the regions; only 3 independent variables passed the significance test in region 1, and most independent variables can pass the significance test in other regions. Variables DIST and NDBI were significantly affecting the CDI in all the regions. In the whole region, all the variables passed the significance test, and NDBI (1.61), SVF (0.95) and NDVI (0.5) had the strongest influence on CDI.

Keywords: cooling effect, land surface temperature, thermal environment mitigation, spatial autoregression model

Procedia PDF Downloads 26
4300 Fourier Transform and Machine Learning Techniques for Fault Detection and Diagnosis of Induction Motors

Authors: Duc V. Nguyen

Abstract:

Induction motors are widely used in different industry areas and can experience various kinds of faults in stators and rotors. In general, fault detection and diagnosis techniques for induction motors can be supervised by measuring quantities such as noise, vibration, and temperature. The installation of mechanical sensors in order to assess the health conditions of a machine is typically only done for expensive or load-critical machines, where the high cost of a continuous monitoring system can be Justified. Nevertheless, induced current monitoring can be implemented inexpensively on machines with arbitrary sizes by using current transformers. In this regard, effective and low-cost fault detection techniques can be implemented, hence reducing the maintenance and downtime costs of motors. This work proposes a method for fault detection and diagnosis of induction motors, which combines classical fast Fourier transform and modern/advanced machine learning techniques. The proposed method is validated on real-world data and achieves a precision of 99.7% for fault detection and 100% for fault classification with minimal expert knowledge requirement. In addition, this approach allows users to be able to optimize/balance risks and maintenance costs to achieve the highest bene t based on their requirements. These are the key requirements of a robust prognostics and health management system.

Keywords: fault detection, FFT, induction motor, predictive maintenance

Procedia PDF Downloads 170
4299 Tailoring Polythiophene Nanocomposites with MnS/CoS Nanoparticles for Enhanced Surface-Enhanced Raman Spectroscopy (SERS) Detection of Mercury Ions in Water

Authors: Temesgen Geremew

Abstract:

The excessive emission of heavy metal ions from industrial processes poses a serious threat to both the environment and human health. This study presents a distinct approach utilizing (PTh-MnS/CoS NPs) for the highly selective and sensitive detection of Hg²⁺ ions in water. Such detection is crucial for safeguarding human health, protecting the environment, and accurately assessing toxicity. The fabrication method employs a simple and efficient chemical precipitation technique, harmoniously combining polythiophene, MnS, and CoS NPs to create highly active substrates for SERS. The MnS@Hg²⁺ exhibits a distinct Raman shift at 1666 cm⁻¹, enabling specific identification and demonstrating the highest responsiveness among the studied semiconductor substrates with a detection limit of only 1 nM. This investigation demonstrates reliable and practical SERS detection for Hg²⁺ ions. Relative standard deviation (RSD) ranged from 0.49% to 9.8%, and recovery rates varied from 96% to 102%, indicating selective adsorption of Hg²⁺ ions on the synthesized substrate. Furthermore, this research led to the development of a remarkable set of substrates, including (MnS, CoS, MnS/CoS, and PTh-MnS/CoS) nanoparticles were created right there on SiO₂/Si substrate, all exhibiting sensitive, robust, and selective SERS for Hg²⁺ ion detection. These platforms effectively monitor Hg²⁺ concentrations in real environmental samples.

Keywords: surface-enhanced raman spectroscopy (SERS), sensor, mercury ions, nanoparticles, and polythiophene.

Procedia PDF Downloads 77
4298 Enhancing Fall Detection Accuracy with a Transfer Learning-Aided Transformer Model Using Computer Vision

Authors: Sheldon McCall, Miao Yu, Liyun Gong, Shigang Yue, Stefanos Kollias

Abstract:

Falls are a significant health concern for older adults globally, and prompt identification is critical to providing necessary healthcare support. Our study proposes a new fall detection method using computer vision based on modern deep learning techniques. Our approach involves training a trans- former model on a large 2D pose dataset for general action recognition, followed by transfer learning. Specifically, we freeze the first few layers of the trained transformer model and train only the last two layers for fall detection. Our experimental results demonstrate that our proposed method outperforms both classical machine learning and deep learning approaches in fall/non-fall classification. Overall, our study suggests that our proposed methodology could be a valuable tool for identifying falls.

Keywords: healthcare, fall detection, transformer, transfer learning

Procedia PDF Downloads 146
4297 Protein Remote Homology Detection and Fold Recognition by Combining Profiles with Kernel Methods

Authors: Bin Liu

Abstract:

Protein remote homology detection and fold recognition are two most important tasks in protein sequence analysis, which is critical for protein structure and function studies. In this study, we combined the profile-based features with various string kernels, and constructed several computational predictors for protein remote homology detection and fold recognition. Experimental results on two widely used benchmark datasets showed that these methods outperformed the competing methods, indicating that these predictors are useful computational tools for protein sequence analysis. By analyzing the discriminative features of the training models, some interesting patterns were discovered, reflecting the characteristics of protein superfamilies and folds, which are important for the researchers who are interested in finding the patterns of protein folds.

Keywords: protein remote homology detection, protein fold recognition, profile-based features, Support Vector Machines (SVMs)

Procedia PDF Downloads 161
4296 Implementation of a Method of Crater Detection Using Principal Component Analysis in FPGA

Authors: Izuru Nomura, Tatsuya Takino, Yuji Kageyama, Shin Nagata, Hiroyuki Kamata

Abstract:

We propose a method of crater detection from the image of the lunar surface captured by the small space probe. We use the principal component analysis (PCA) to detect craters. Nevertheless, considering severe environment of the space, it is impossible to use generic computer in practice. Accordingly, we have to implement the method in FPGA. This paper compares FPGA and generic computer by the processing time of a method of crater detection using principal component analysis.

Keywords: crater, PCA, eigenvector, strength value, FPGA, processing time

Procedia PDF Downloads 555
4295 Early Detection of Damages in Railway Steel Truss Bridges from Measured Dynamic Responses

Authors: Dinesh Gundavaram

Abstract:

This paper presents an investigation on bridge damage detection based on the dynamic responses estimated from a passing vehicle. A numerical simulation of steel truss bridge for railway was used in this investigation. The bridge response at different locations is measured using CSI-Bridge software. Several damage scenarios are considered including different locations and severities. The possibilities of dynamic properties of global modes in the identification of structural changes in truss bridges were discussed based on the results of measurement.

Keywords: bridge, damage, dynamic responses, detection

Procedia PDF Downloads 271
4294 Two-Step Patterning of Microfluidic Structures in Paper by Laser Cutting and Wax Printing for Mass Fabrication of Biosensor

Authors: Bong Keun Kang, Sung Suk Oh, Jeong-Woo Sohn, Jong-Ryul Choi, Young Ho Kim

Abstract:

In this paper, we describe two-step micro-pattering by using laser cutting and wax printing. Wax printing is performed only on the bridges for hydrophobic barriers. We prepared 405nm blue-violet laser module and wax pencil module. And, this two modules combine x-y plot. The hollow microstructure formed by laser patterning define the hydrophilic flowing paths. However, bridges are essential to avoid the cutting area being the island. Through the support bridges, microfluidic solution spread out to the unnecessary areas. Chromatography blotting paper was purchased from Whatman. We used 20x20 cm and 46x57 cm of chromatography blotting paper. Axis moving speed of x-y plot was the main parameter of optimization. For aligning between the two patterning, the paper sheet was taped at the bottom. After the two-step patterning, temperature curing step was done at 110-130 °C. The resolution of the fabrication and the potential of the multiplex detection were investigated.

Keywords: µPADs, microfluidic, biosensor, mass-fabrication

Procedia PDF Downloads 467
4293 VideoAssist: A Labelling Assistant to Increase Efficiency in Annotating Video-Based Fire Dataset Using a Foundation Model

Authors: Keyur Joshi, Philip Dietrich, Tjark Windisch, Markus König

Abstract:

In the field of surveillance-based fire detection, the volume of incoming data is increasing rapidly. However, the labeling of a large industrial dataset is costly due to the high annotation costs associated with current state-of-the-art methods, which often require bounding boxes or segmentation masks for model training. This paper introduces VideoAssist, a video annotation solution that utilizes a video-based foundation model to annotate entire videos with minimal effort, requiring the labeling of bounding boxes for only a few keyframes. To the best of our knowledge, VideoAssist is the first method to significantly reduce the effort required for labeling fire detection videos. The approach offers bounding box and segmentation annotations for the video dataset with minimal manual effort. Results demonstrate that the performance of labels annotated by VideoAssist is comparable to those annotated by humans, indicating the potential applicability of this approach in fire detection scenarios.

Keywords: fire detection, label annotation, foundation models, object detection, segmentation

Procedia PDF Downloads 6
4292 Phishing Detection: Comparison between Uniform Resource Locator and Content-Based Detection

Authors: Nuur Ezaini Akmar Ismail, Norbazilah Rahim, Norul Huda Md Rasdi, Maslina Daud

Abstract:

A web application is the most targeted by the attacker because the web application is accessible by the end users. It has become more advantageous to the attacker since not all the end users aware of what kind of sensitive data already leaked by them through the Internet especially via social network in shake on ‘sharing’. The attacker can use this information such as personal details, a favourite of artists, a favourite of actors or actress, music, politics, and medical records to customize phishing attack thus trick the user to click on malware-laced attachments. The Phishing attack is one of the most popular attacks for social engineering technique against web applications. There are several methods to detect phishing websites such as Blacklist/Whitelist based detection, heuristic-based, and visual similarity-based detection. This paper illustrated a comparison between the heuristic-based technique using features of a uniform resource locator (URL) and visual similarity-based detection techniques that compares the content of a suspected phishing page with the legitimate one in order to detect new phishing sites based on the paper reviewed from the past few years. The comparison focuses on three indicators which are false positive and negative, accuracy of the method, and time consumed to detect phishing website.

Keywords: heuristic-based technique, phishing detection, social engineering and visual similarity-based technique

Procedia PDF Downloads 177
4291 Training of Future Computer Science Teachers Based on Machine Learning Methods

Authors: Meruert Serik, Nassipzhan Duisegaliyeva, Danara Tleumagambetova

Abstract:

The article highlights and describes the characteristic features of real-time face detection in images and videos using machine learning algorithms. Students of educational programs reviewed the research work "6B01511-Computer Science", "7M01511-Computer Science", "7M01525- STEM Education," and "8D01511-Computer Science" of Eurasian National University named after L.N. Gumilyov. As a result, the advantages and disadvantages of Haar Cascade (Haar Cascade OpenCV), HoG SVM (Histogram of Oriented Gradients, Support Vector Machine), and MMOD CNN Dlib (Max-Margin Object Detection, convolutional neural network) detectors used for face detection were determined. Dlib is a general-purpose cross-platform software library written in the programming language C++. It includes detectors used for determining face detection. The Cascade OpenCV algorithm is efficient for fast face detection. The considered work forms the basis for the development of machine learning methods by future computer science teachers.

Keywords: algorithm, artificial intelligence, education, machine learning

Procedia PDF Downloads 73
4290 Removal of Methylene Blue from Aqueous Solution by Adsorption onto Untreated Coffee Grounds

Authors: N. Azouaou, H. Mokaddem, D. Senadjki, K. Kedjit, Z. Sadaoui

Abstract:

Introduction: Water contamination caused by dye industries, including food, leather, textile, plastic, cosmetics, paper-making, printing and dye synthesis, has caused more and more attention, since most dyes are harmful to human being and environments. Untreated coffee grounds were used as a high-efficiency adsorbent for the removal of a cationic dye (methylene blue, MB) from aqueous solution. Characterization of the adsorbent was performed using several techniques such as SEM, surface area (BET), FTIR and pH zero charge. The effects of contact time, adsorbent dose, initial solution pH and initial concentration were systematically investigated. Results showed the adsorption kinetics followed the pseudo-second-order kinetic model. Langmuir isotherm model is in good agreement with the experimental data as compared to Freundlich and D–R models. The maximum adsorption capacity was found equal to 52.63mg/g. In addition, the possible adsorption mechanism was also proposed based on the experimental results. Experimental: The adsorption experiments were carried out in batch at room temperature. A given mass of adsorbent was added to methylene blue (MB) solution and the entirety was agitated during a certain time. The samples were carried out at quite time intervals. The concentrations of MB left in supernatant solutions after different time intervals were determined using a UV–vis spectrophotometer. The amount of MB adsorbed per unit mass of coffee grounds (qt) and the dye removal efficiency (R %) were evaluated. Results and Discussion: Some chemical and physical characteristics of coffee grounds are presented and the morphological analysis of the adsorbent was also studied. Conclusions: The good capacity of untreated coffee grounds to remove MB from aqueous solution was demonstrated in this study, highlighting its potential for effluent treatment processes. The kinetic experiments show that the adsorption is rapid and maximum adsorption capacities qmax= 52.63mg/g achieved in 30min. The adsorption process is a function of the adsorbent concentration, pH and metal ion concentration. The optimal parameters found are adsorbent dose m=5g, pH=5 and ambient temperature. FTIR spectra showed that the principal functional sites taking part in the sorption process included carboxyl and hydroxyl groups.

Keywords: adsorption, methylene blue, coffee grounds, kinetic study

Procedia PDF Downloads 231
4289 A Case Study of Zhang Yimou, Using Color Evidence From “Hero and the Shadow” and How the Color Is Symbolized in Contemporary Society?

Authors: Rakiba Sultana

Abstract:

This paper investigates how different colors are used and bring symbolic meaning comparatively in Zhang Yimou's movies Hero and Shadow. The study also explores how those colors are symbolized in contemporary society. The researcher analyzes the movies Hero and the Shadow to investigate them using colors and how they are used in contemporary society. Hero exposes the colorful colors to expose the Chinese traditions, whereas Shadow explores the gray, black, and white with the ink paints. Also, in contemporary society, sometimes, the author gets a similar symbolic meaning of the colors. Sometimes, the contemporary's meaning is different from the one used in these two movies.

Keywords: Chinese movie, visuals, colors, traditional painting, contemporary society, and Western countries

Procedia PDF Downloads 112
4288 Enhancement of Road Defect Detection Using First-Level Algorithm Based on Channel Shuffling and Multi-Scale Feature Fusion

Authors: Yifan Hou, Haibo Liu, Le Jiang, Wandong Su, Binqing Wang

Abstract:

Road defect detection is crucial for modern urban management and infrastructure maintenance. Traditional road defect detection methods mostly rely on manual labor, which is not only inefficient but also difficult to ensure their reliability. However, existing deep learning-based road defect detection models have poor detection performance in complex environments and lack robustness to multi-scale targets. To address this challenge, this paper proposes a distinct detection framework based on the one stage algorithm network structure. This article designs a deep feature extraction network based on RCSDarknet, which applies channel shuffling to enhance information fusion between tensors. Through repeated stacking of RCS modules, the information flow between different channels of adjacent layer features is enhanced to improve the model's ability to capture target spatial features. In addition, a multi-scale feature fusion mechanism with weighted dual flow paths was adopted to fuse spatial features of different scales, thereby further improving the detection performance of the model at different scales. To validate the performance of the proposed algorithm, we tested it using the RDD2022 dataset. The experimental results show that the enhancement algorithm achieved 84.14% mAP, which is 1.06% higher than the currently advanced YOLOv8 algorithm. Through visualization analysis of the results, it can also be seen that our proposed algorithm has good performance in detecting targets of different scales in complex scenes. The above experimental results demonstrate the effectiveness and superiority of the proposed algorithm, providing valuable insights for advancing real-time road defect detection methods.

Keywords: roads, defect detection, visualization, deep learning

Procedia PDF Downloads 7
4287 Comparative Analysis of Two Approaches to Joint Signal Detection, ToA and AoA Estimation in Multi-Element Antenna Arrays

Authors: Olesya Bolkhovskaya, Alexey Davydov, Alexander Maltsev

Abstract:

In this paper two approaches to joint signal detection, time of arrival (ToA) and angle of arrival (AoA) estimation in multi-element antenna array are investigated. Two scenarios were considered: first one, when the waveform of the useful signal is known a priori and, second one, when the waveform of the desired signal is unknown. For first scenario, the antenna array signal processing based on multi-element matched filtering (MF) with the following non-coherent detection scheme and maximum likelihood (ML) parameter estimation blocks is exploited. For second scenario, the signal processing based on the antenna array elements covariance matrix estimation with the following eigenvector analysis and ML parameter estimation blocks is applied. The performance characteristics of both signal processing schemes are thoroughly investigated and compared for different useful signals and noise parameters.

Keywords: antenna array, signal detection, ToA, AoA estimation

Procedia PDF Downloads 496
4286 Effect of Red Cabbage Antioxidant Extracts on Lipid Oxidation of Fresh Tilapia

Authors: Ayse Demirbas, Bruce A. Welt, Yavuz Yagiz

Abstract:

Oxidation of polyunsaturated fatty acids (PUFA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in fish causes loss of product quality. Oxidative rancidity causes loss of nutritional value and undesirable color changes. Therefore, powerful antioxidant extracts may provide a relatively low cost and natural means to reduce oxidation, resulting in longer, higher quality and higher value shelf life of foods. In this study, we measured effects of red cabbage antioxidant on lipid oxidation in fresh tilapia filets using thiobarbituric acid reactive substances (TBARS) assay, peroxide value (PV) and color assesment analysis. Extraction of red cabbage was performed using an efficient microwave method. Fresh tilapia filets were dipped in or sprayed with solutions containing different concentrations of extract. Samples were stored for up to 9 days at 4°C and analyzed every other day for color and lipid oxidation. Results showed that treated samples had lower oxidation than controls. Lipid peroxide values on treated samples showed benefits through day-7. Only slight differences were observed between spraying and dipping methods. This work shows that red cabbage antioxidant extracts may represent an inexpensive and all natural method for reducing oxidative spoilage of fresh fish.

Keywords: antioxidant, shelf life, fish, red cabbage, lipid oxidation

Procedia PDF Downloads 329
4285 Levels of Microcystin in the Coastal Waters of Nigeria

Authors: Medina Kadiri

Abstract:

Blue-green otherwise called cyanobacteria, produce an array of biotoxins grouped into five categories notably hapatotoxins, neurotoxins, cytotoxins, dermatotoxins, and irritant toxins. Microcystins which are examples of hepatotoxins produced by blue-green algae Microcystins comprise the most common group of the cyanobacterial toxins. Blue-green algae flourish in aquatic environments, whether marine, brackish or freshwater, producing blooms in different forms such as microscopic, mats, or unsightly odoriferous scums. Microcystins biotoxins cause a plethora of animal and human hazards such as liver damage/cirrhosis and cancer, kidney damage, dermatitis, tinnitus, gastroenteritis, sore throat, nausea, myalgia, neurological problems, respiratory irritation and death. Water samples were collected from coastal regions of Nigeria in March 2014, June 2014, October 2014 and January 2015 and analyzed with Enzyme Linked Immunosorbent Assay (ELISA) kits. Microcystin biotoxin was recorded in all sites both during dry and wet seasons. The range of microcystins found was 0.000041-There was a seasonal trend of increasing microcystin concentrations from March till Octobers and a decrease thereafter. Generally in the oceanic waters, microcystin levels were highest at Cross Rivers in March and January, Barbeach in June and Lekki in October. In the adjoining riverine ecosystems, on the other hand, the highest concentrations of microcystin were observed at Akwa Ibom in March, June and October and in Bayelsa in January. Continuous monitoring and screening of coastal water bodies is suggested to minimize the health risks of cyanobacterial biotoxins to coastal communities of Nigeria.

Keywords: biotoxins, harmful algae, marine, microcystin, Nigeria

Procedia PDF Downloads 284
4284 Timely Detection and Identification of Abnormalities for Process Monitoring

Authors: Hyun-Woo Cho

Abstract:

The detection and identification of multivariate manufacturing processes are quite important in order to maintain good product quality. Unusual behaviors or events encountered during its operation can have a serious impact on the process and product quality. Thus they should be detected and identified as soon as possible. This paper focused on the efficient representation of process measurement data in detecting and identifying abnormalities. This qualitative method is effective in representing fault patterns of process data. In addition, it is quite sensitive to measurement noise so that reliable outcomes can be obtained. To evaluate its performance a simulation process was utilized, and the effect of adopting linear and nonlinear methods in the detection and identification was tested with different simulation data. It has shown that the use of a nonlinear technique produced more satisfactory and more robust results for the simulation data sets. This monitoring framework can help operating personnel to detect the occurrence of process abnormalities and identify their assignable causes in an on-line or real-time basis.

Keywords: detection, monitoring, identification, measurement data, multivariate techniques

Procedia PDF Downloads 236
4283 Sensory Evaluation and Microbiological Properties of Gouda Cheese Affected by Bunium persicum (Boiss.) Essential Oil

Authors: N. Noori, P. Taherkhani, A. Akhondzadeh Basti, H. Gandomi, M. Alimohammadi

Abstract:

Research on natural antimicrobial agents, especially of plant origin, highly noticed in recent years and evaluation of antimicrobial effects of native plants such as Bunium persicum Boiss. is especially important. In the present study, sensory characteristics and microbiological properties of Gouda cheese affected by different concentrations of Bunium persicum Boiss. essential oil were investigated. Extraction of the essential oil was performed by hydro distillation. The oil was analyzed by GC using flame ionization (FID) and GC/ MS for detection. The antimicrobial effects were determined against various microbial groups (aerobic mesophilic bacteria, enterococci, mesophilic lactobacilli, enterobacteriaceae, lactococcus and yeasts). Microbial groups were counted during ripening period using plate count on specific culture media. Organoleptic evaluation including teture, flavor, odor, color and total acceptability were determined at the end of aging. According to results, the essential oil yield was 4/1 % ( W/ W). Twenty- six compounds were identified in the oil that concluded 99.7 % of the total oil. The major components of Bunium persicum Boiss. essential oil were γ- terpinene- 7- al (26.9 %) and cuminaldehyde (23.3 %). Generally, the increase of Black Cumin essential oil concentration led to reduction in microbial counts in different groups. The maximum antimicrobial effect was seen in yeast that reduced by 2 log compared to the control group at EO concentration of 4µl/ ml at day 90.The minimum reduction was observed in enterobacteriaceae that showed only 0.75 log decreese compared to the control at the same concentration of EO. Addition of EO improved organoleptic properties of Gouda cheese especially in the case of flavor and odor characteristic. However, no significant differences were observed in texture and color between treatment and control groups. Bunium persicum Boiss. essential oil could be used as preservative material and flavoring agent in some kinds of food such as cheese and also could be provided consumers health.

Keywords: Bunium persicum Boiss. essential oil, Microbiological properties, sensory evaluation, gouda cheese

Procedia PDF Downloads 325
4282 Green Synthesis of Silver and Silver-Gold Alloy Nanoparticle Using Cyanobacteria as Bioreagent

Authors: Piya Roychoudhury, Ruma Pal

Abstract:

Cyanobacteria, commonly known as blue green algae were found to be an effective bioreagent for nanoparticle synthesis. Nowadays silver nanoparticles (AgNPs) are very popular due to their antimicrobial and anti-proliferative activity. To exploit these characters in different biotechnological fields, it is very essential to synthesize more stable, non-toxic nano-silver. For this reason silver-gold alloy (Ag-AuNPs) nanoparticles are of great interest as they are more stable, harder and more effective than single metal nanoparticles. In the present communication we described a simple technique for rapid synthesis of biocompatible AgNP and Ag-AuNP employing cyanobacteria, Leptolyngbya and Lyngbya respectively. For synthesis of AgNP the biomass of Leptolyngbya valderiana (200 mg Fresh weight) was exposed to 9 mM AgNO3 solution (pH 4). For synthesis of Ag-AuNP Lyngbya majuscula (200 mg Fresh weight) was exposed to equimolar solution of hydrogen tetra-auro chlorate and silver nitrate (1mM, pH 4). After 72 hrs of exposure thallus of Leptolyngyba turned brown in color and filaments of Lyngbya turned pink in color that indicated synthesis of nanoparticles. The produced particles were extracted from the cyanobacterial biomass using nano-capping agent, sodium citrate. Firstly, extracted brown and pink suspensions were taken for Energy Dispersive X-ray (EDAX) analysis to confirm the presence of silver in brown suspension and presence of both gold and silver in pink suspension. Extracted nanoparticles showed a distinct single plasmon band (AgNP at 411 nm; Ag-Au NP at 481 nm) in Uv-vis spectroscopy. It was revealed from Transmission electron microscopy (TEM) that all the synthesized particles were spherical in nature with a size range of ~2-25 nm. In X-ray powder diffraction (XRD) analysis four intense peaks appeared at 38.2°, 44.5°, 64.8°and 77.8° which confirmed the crystallographic nature of synthesized particles. Presence of different functional groups viz. N-H, C=C, C–O, C=O on the surface of nanoparticles were recorded by Fourier transform infrared spectroscopy (FTIR). Scanning Electron microscopy (SEM) images showed the surface topography of metal treated filaments of cyanobacteria. The stability of the particles was observed by Zeta potential study. Antibiotic property of synthesized particles was tested by Agar well diffusion method against gram negative bacteria Pseudomonas aeruginosa. Overall, this green-technique requires low energy, less manufacturing cost and produces rapidly eco-friendly metal nanoparticles.

Keywords: cyanobacteria, silver nanoparticles, silver-gold alloy nanoparticles, spectroscopy

Procedia PDF Downloads 323
4281 Evolving Digital Circuits for Early Stage Breast Cancer Detection Using Cartesian Genetic Programming

Authors: Zahra Khalid, Gul Muhammad Khan, Arbab Masood Ahmad

Abstract:

Cartesian Genetic Programming (CGP) is explored to design an optimal circuit capable of early stage breast cancer detection. CGP is used to evolve simple multiplexer circuits for detection of malignancy in the Fine Needle Aspiration (FNA) samples of breast. The data set used is extracted from Wisconsins Breast Cancer Database (WBCD). A range of experiments were performed, each with different set of network parameters. The best evolved network detected malignancy with an accuracy of 99.14%, which is higher than that produced with most of the contemporary non-linear techniques that are computational expensive than the proposed system. The evolved network comprises of simple multiplexers and can be implemented easily in hardware without any further complications or inaccuracy, being the digital circuit.

Keywords: breast cancer detection, cartesian genetic programming, evolvable hardware, fine needle aspiration

Procedia PDF Downloads 216
4280 Cross-Cultural Evangelism a Necessity in Contemporary Times: A Case Study of Mission of Diocese on the Niger Anglican Communion to Togo

Authors: Nnatuanya Chinedu Emmanuel

Abstract:

The focus of this research is to point out the importance of mission across nations, tribes, and languages. This is because the message of the gospel is global in nature and as a result, Christians of nations, irrespective of color and denomination, must strive to ensure that this message of transformation is extended to all, notwithstanding their region, locality and color. It is in response to this that this work investigates the evangelization activity of the Diocese on the Niger in Togo, their impacts and activities. The framework of qualitative research was adopted while findings indicate that much work has been done in the areas of human and societal development; notwithstanding, the problem of funding, language barrier, and manpower become a threat to the mission work.

Keywords: cross–cultural Evangelism, diocese on the Niger, Anglican communion, Togo

Procedia PDF Downloads 90
4279 Refactoring Object Oriented Software through Community Detection Using Evolutionary Computation

Authors: R. Nagarani

Abstract:

An intrinsic property of software in a real-world environment is its need to evolve, which is usually accompanied by the increase of software complexity and deterioration of software quality, making software maintenance a tough problem. Refactoring is regarded as an effective way to address this problem. Many refactoring approaches at the method and class level have been proposed. But the extent of research on software refactoring at the package level is less. This work presents a novel approach to refactor the package structures of object oriented software using genetic algorithm based community detection. It uses software networks to represent classes and their dependencies. It uses a constrained community detection algorithm to obtain the optimized community structures in software networks, which also correspond to the optimized package structures. It finally provides a list of classes as refactoring candidates by comparing the optimized package structures with the real package structures.

Keywords: community detection, complex network, genetic algorithm, package, refactoring

Procedia PDF Downloads 418
4278 Using Deep Learning for the Detection of Faulty RJ45 Connectors on a Radio Base Station

Authors: Djamel Fawzi Hadj Sadok, Marrone Silvério Melo Dantas Pedro Henrique Dreyer, Gabriel Fonseca Reis de Souza, Daniel Bezerra, Ricardo Souza, Silvia Lins, Judith Kelner

Abstract:

A radio base station (RBS), part of the radio access network, is a particular type of equipment that supports the connection between a wide range of cellular user devices and an operator network access infrastructure. Nowadays, most of the RBS maintenance is carried out manually, resulting in a time consuming and costly task. A suitable candidate for RBS maintenance automation is repairing faulty links between devices caused by missing or unplugged connectors. A suitable candidate for RBS maintenance automation is repairing faulty links between devices caused by missing or unplugged connectors. This paper proposes and compares two deep learning solutions to identify attached RJ45 connectors on network ports. We named connector detection, the solution based on object detection, and connector classification, the one based on object classification. With the connector detection, we get an accuracy of 0:934, mean average precision 0:903. Connector classification, get a maximum accuracy of 0:981 and an AUC of 0:989. Although connector detection was outperformed in this study, this should not be viewed as an overall result as connector detection is more flexible for scenarios where there is no precise information about the environment and the possible devices. At the same time, the connector classification requires that information to be well-defined.

Keywords: radio base station, maintenance, classification, detection, deep learning, automation

Procedia PDF Downloads 201
4277 Optical and Luminescence Studies on Dy³+ Singly Doped and Dy³+/Ce³+ Co-doped Alumina Borosilicate Glasses for Photonics Device Application

Authors: M. Monisha, Sudha D. Kamath

Abstract:

We investigate the optical and photoluminescence properties from Dy³+ singly doped and Dy³+ co-doped with Ce³+alumino borosilicate glasses prepared using high temperature melt-quenching technique. The glass composition formula is 25SiO₂-(40-x-y)B2O₃-10Al₂O₃-15NaF-10ZnO-xDy₂O₃ yCe₂O₃ where, x = 0.5 mol% and y = 0, 0.1, and 0.5 mol%. The XRD study reveals the amorphous nature of both singly doped and co-doped glasses. Absorption study on Dy3+ singly doped glass shows nearly twelve absorption peaks arising from the ground level of Dy³+ ions (⁶H₁₅/₂) to various upper levels, and for Dy³+/Ce³+ co-doped glasses, few of the transitions in the visible region are suppressed. The absorption band edge is shifted towards the higher wavelength region on increasing Ce3+concentration. The decrease in indirect energy bandgap and increase in Urbach energy of the prepared glasses is observed due to codoping with Ce3+ ions. The photoluminescence studies on singly doped glass under 350 nm excitation showed three peaks at the blue (482 nm), yellow (575 nm), and red (663 nm) region. For codoped glasses, the emission peak at 403 nm is raised due to the 4d to 5f transition of Ce3+ ions. Lifetime values (ms) of co-doped glass is found to be higher than singly doped glass. Under 350 nm excitation, CIE coordinates of the co-doped glasses moved towards the bright white light region. The correlated color temperature (CCT) values were obtained in the range 4500 – 4700 K. Thus, the prepared glasses can be used for photonics device applications.

Keywords: absorption spectra, borosilicate glasses, Ce³+, Dy³+, photoluminescence

Procedia PDF Downloads 149
4276 Traffic Sign Recognition System Using Convolutional Neural NetworkDevineni

Authors: Devineni Vijay Bhaskar, Yendluri Raja

Abstract:

We recommend a model for traffic sign detection stranded on Convolutional Neural Networks (CNN). We first renovate the unique image into the gray scale image through with support vector machines, then use convolutional neural networks with fixed and learnable layers for revealing and understanding. The permanent layer can reduction the amount of attention areas to notice and crop the limits very close to the boundaries of traffic signs. The learnable coverings can rise the accuracy of detection significantly. Besides, we use bootstrap procedures to progress the accuracy and avoid overfitting problem. In the German Traffic Sign Detection Benchmark, we obtained modest results, with an area under the precision-recall curve (AUC) of 99.49% in the group “Risk”, and an AUC of 96.62% in the group “Obligatory”.

Keywords: convolutional neural network, support vector machine, detection, traffic signs, bootstrap procedures, precision-recall curve

Procedia PDF Downloads 122