Search results for: acoustic shell
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 981

Search results for: acoustic shell

411 Metal-Organic Frameworks-Based Materials for Volatile Organic Compounds Sensing Applications: Strategies to Improve Sensing Performances

Authors: Claudio Clemente, Valentina Gargiulo, Alessio Occhicone, Giovanni Piero Pepe, Giovanni Ausanio, Michela Alfè

Abstract:

Volatile organic compound (VOC) emissions represent a serious risk to human health and the integrity of the ecosystems, especially at high concentrations. For this reason, it is very important to continuously monitor environmental quality and develop fast and reliable portable sensors to allow analysis on site. Chemiresistors have become promising candidates for VOC sensing as their ease of fabrication, variety of suitable sensitive materials, and simple sensing data. A chemoresistive gas sensor is a transducer that allows to measure the concentration of an analyte in the gas phase because the changes in resistance are proportional to the amount of the analyte present. The selection of the sensitive material, which interacts with the target analyte, is very important for the sensor performance. The most used VOC detection materials are metal oxides (MOx) for their rapid recovery, high sensitivity to various gas molecules, easy fabrication. Their sensing performance can be improved in terms of operating temperature, selectivity, and detection limit. Metal-organic frameworks (MOFs) have attracted a lot of attention also in the field of gas sensing due to their high porosity, high surface area, tunable morphologies, structural variety. MOFs are generated by the self-assembly of multidentate organic ligands connecting with adjacent multivalent metal nodes via strong coordination interactions, producing stable and highly ordered crystalline porous materials with well-designed structures. However, most MOFs intrinsically exhibit low electrical conductivity. To improve this property, MOFs can be combined with organic and inorganic materials in a hybrid fashion to produce composite materials or can be transformed into more stable structures. MOFs, indeed, can be employed as the precursors of metal oxides with well-designed architectures via the calcination method. The MOF-derived MOx partially preserved the original structure with high surface area and intrinsic open pores, which act as trapping centers for gas molecules, and showed a higher electrical conductivity. Core-shell heterostructures, in which the surface of a metal oxide core is completely coated by a MOF shell, forming a junction at the core-shell heterointerface, can also be synthesized. Also, nanocomposite in which MOF structures are intercalated with graphene related materials can also be produced, and the conductivity increases thanks to the high mobility of electrons of carbon materials. As MOF structures, zinc-based MOFs belonging to the ZIF family were selected in this work. Several Zn-based materials based and/or derived from MOFs were produced, structurally characterized, and arranged in a chemo resistive architecture, also exploring the potentiality of different approaches of sensing layer deposition based on PLD (pulsed laser deposition) and, in case of thermally labile materials, MAPLE (Matrix Assisted Pulsed Laser Evaporation) to enhance the adhesion to the support. The sensors were tested in a controlled humidity chamber, allowing for the possibility of varying the concentration of ethanol, a typical analyte chosen among the VOCs for a first survey. The effect of heating the chemiresistor to improve sensing performances was also explored. Future research will focus on exploring new manufacturing processes for MOF-based gas sensors with the aim to improve sensitivity, selectivity and reduce operating temperatures.

Keywords: chemiresistors, gas sensors, graphene related materials, laser deposition, MAPLE, metal-organic frameworks, metal oxides, nanocomposites, sensing performance, transduction mechanism, volatile organic compounds

Procedia PDF Downloads 46
410 High Frequency Sonochemistry: A New Field of Cavitation‐Free Acoustic Materials Synthesis and Manipulation

Authors: Amgad Rezk, Heba Ahmed, Leslie Yeo

Abstract:

Ultrasound presents a powerful means for material synthesis. In this talk, we showcase a new field demonstrating the possibility for harnessing sound energy sources at considerably higher frequencies (10 MHz to 1 GHz) compared to conventional ultrasound (kHz and up to ~2 MHz) for crystalising and manipulating a variety of nanoscale materials. At these frequencies, cavitation—which underpins most sonochemical processes—is largely absent, suggesting that altogether fundamentally different mechanisms are at dominant. Examples include the crystallization of highly oriented structures, quasi-2D metal-organic frameworks and nanocomposites. These fascinating examples reveal how the highly nonlinear electromechanical coupling associated with high-frequency surface vibration gives rise to molecular ordering and assembly on the nano and microscale.

Keywords: high-frequency acoustics, microfluidics, crystallisation, composite nanomaterials

Procedia PDF Downloads 111
409 The Contribution of Density Fluctuations in Ultrasound Scattering in Cancellous Bone

Authors: A. Elsariti, T. Evans

Abstract:

An understanding of the interaction between acoustic waves and cancellous bone is needed in order to realize the full clinical potential of ultrasonic bone measurements. Scattering is likely to be of central importance but has received little attention to date. Few theoretical approaches have been described to explain scattering of ultrasound from bone. In this study, a scattering model based on velocity and density fluctuations in a binary mixture (marrow fat and cortical matrix) was used to estimate the ultrasonic attenuation in cancellous bone as a function of volume fraction. Predicted attenuation and backscatter coefficient were obtained for a range of porosities and scatterer size. At 600 kHZ and for different scatterer size the effect of velocity and density fluctuations in the predicted attenuation was approximately 60% higher than velocity fluctuations.

Keywords: ultrasound scattering, sound speed, density fluctuations, attenuation coefficient

Procedia PDF Downloads 315
408 Non Destructive Testing for Evaluation of Defects and Interfaces in Metal Carbon Fiber Reinforced Polymer Hybrids

Authors: H.-G. Herrmann, M. Schwarz, J. Summa, F. Grossmann

Abstract:

In this work, different non-destructive testing methods for the characterization of defects and interfaces are presented. It is shown that, by means of active thermography, defects in the interface and in the carbon fiber reinforced polymer (CFRP) itself can be detected and determined. The bonding of metal and thermoplastic can be characterized very well by ultrasonic testing with electromagnetic acoustic transducers (EMAT). Mechanical testing is combined with passive thermography to correlate mechanical values with the defect-size. There is also a comparison between active and passive thermography. Mechanical testing shows the influence of different defects. Furthermore, a correlation of defect-size and loading to rupture was performed.

 

Keywords: defect evaluation, EMAT, mechanical testing, thermography

Procedia PDF Downloads 410
407 Release of Calcein from Liposomes Using Low and High Frequency Ultrasound

Authors: Ghaleb A. Husseini, Salma E. Ahmed, Hesham G. Moussa, Ana M. Martins, Mohammad Al-Sayah, Nasser Qaddoumi

Abstract:

This abstract aims to investigate the use of targeted liposomes as anticancer drug carriers in vitro in combination with ultrasound applied as drug trigger; in order to reduce the side effects caused by traditional chemotherapy. Pegylated liposomes were used to encapsulate calcein and then release this model drug when 20-kHz, 40-kHz, 1-MHz and 3-MHz ultrasound were applied at different acoustic power densities. Fluorescence techniques were then used to measure the percent drug release of calcein from these targeted liposomes. Results showed that as the power density increases, at the four frequencies studied, the release of calcein also increased. Based on these results, we believe that ultrasound can be used to increase the rate and amount of chemotherapeutics release from liposomes.

Keywords: liposomes, calcein release, high frequency ultrasound, low frequency ultrasound, fluorescence techniques

Procedia PDF Downloads 408
406 Therapeutic Management of Toxocara canis Induced Hepatitis in Dogs

Authors: Milind D. Meshram

Abstract:

Ascarids are the most frequent worm parasite of dogs and cats. There are two species that commonly infect dogs: Toxocara canis and Toxascaris leonina. Adult roundworms live in the stomach and intestines and can grow to 7 inches (18 cm) long. A female may lay 200,000 eggs in a day. The eggs are protected by a hard shell. They are extremely hardy and can live for months or years in the soil. A dog aged about 6 years, from Satara was referred to Teaching Veterinary Clinical Complex (TVCC) with a complaint of abdominal pain, anorexia, loss of condition and dull body coat with mucous pale membrane. The clinical examination revealed Anaemia, palpation of abdomen revealed enlargement of liver, slimy feel of the intestine loop, diarrhea.

Keywords: therapeutic management, Toxocara canis, induced hepatitis, dogs

Procedia PDF Downloads 579
405 Experimental and Numerical Investigation of Fracture Behavior of Foamed Concrete Based on Three-Point Bending Test of Beams with Initial Notch

Authors: M. Kozłowski, M. Kadela

Abstract:

Foamed concrete is known for its low self-weight and excellent thermal and acoustic properties. For many years, it has been used worldwide for insulation to foundations and roof tiles, as backfill to retaining walls, sound insulation, etc. However, in the last years it has become a promising material also for structural purposes e.g. for stabilization of weak soils. Due to favorable properties of foamed concrete, many interests and studies were involved to analyze its strength, mechanical, thermal and acoustic properties. However, these studies do not cover the investigation of fracture energy which is the core factor governing the damage and fracture mechanisms. Only limited number of publications can be found in literature. The paper presents the results of experimental investigation and numerical campaign of foamed concrete based on three-point bending test of beams with initial notch. First part of the paper presents the results of a series of static loading tests performed to investigate the fracture properties of foamed concrete of varying density. Beam specimens with dimensions of 100×100×840 mm with a central notch were tested in three-point bending. Subsequently, remaining halves of the specimens with dimensions of 100×100×420 mm were tested again as un-notched beams in the same set-up with reduced distance between supports. The tests were performed in a hydraulic displacement controlled testing machine with a load capacity of 5 kN. Apart from measuring the loading and mid-span displacement, a crack mouth opening displacement (CMOD) was monitored. Based on the load – displacement curves of notched beams the values of fracture energy and tensile stress at failure were calculated. The flexural tensile strength was obtained on un-notched beams with dimensions of 100×100×420 mm. Moreover, cube specimens 150×150×150 mm were tested in compression to determine the compressive strength. Second part of the paper deals with numerical investigation of the fracture behavior of beams with initial notch presented in the first part of the paper. Extended Finite Element Method (XFEM) was used to simulate and analyze the damage and fracture process. The influence of meshing and variation of mechanical properties on results was investigated. Numerical models simulate correctly the behavior of beams observed during three-point bending. The numerical results show that XFEM can be used to simulate different fracture toughness of foamed concrete and fracture types. Using the XFEM and computer simulation technology allow for reliable approximation of load–bearing capacity and damage mechanisms of beams made of foamed concrete, which provides some foundations for realistic structural applications.

Keywords: foamed concrete, fracture energy, three-point bending, XFEM

Procedia PDF Downloads 290
404 Simulations of a Jet Impinging on a Flat Plate

Authors: Reda Mankbadi

Abstract:

In this paper we explore the use of a second-order unstructured-grid, finite-volume code for direct noise prediction. We consider a Mach 1.5 jet impinging on a perpendicular flat plate. Hybrid LES-RANS simulations are used to calculate directly both the flow field and the radiated sound. The ANSYS Fluent commercial code is utilized for the calculations. The acoustic field is obtained directly from the simulations and is compared with the integral approach of Ffowcs Williams-Hawkings (FWH). Results indicate the existence of a preferred radiation angle. The spectrum obtained is in good agreement with observations. This points out to the possibility of handling the effects of complicated geometries on noise radiation by using unstructured second-orders codes.

Keywords: CFD, Ffowcs Williams-Hawkings (FWH), imping jet, ANSYS fluent commercial code, hybrid LES-RANS simulations

Procedia PDF Downloads 439
403 Failure Pressure Prediction of a Corroded Pipeline Using a Finite Element Method

Authors: Lounes Aouane, Omar Bouledroua

Abstract:

Sonatrach uses 24,000 kilometers of pipelines to transport gas and oil. Over time, these pipes run the risk of bursting due to corrosion inside and/or outside the pipeline. For this reason, a check must be made with the help of an equipped scraper. This intelligent tool provides a detailed picture of all errors in the pipeline. Based on the ERF values, these wear defects are divided into two parts: acceptable defect and unacceptable defect. The objective of this work is to conduct a comparative study of the different methods of calculating the marginal pressure found in the literature (DNV RP F-101, SHELL, P-CORRC, NETTO and CSA Z662). This comparison will be made from a database of 329 burst tests published in the literature. Finally, we will propose a new approach based on the finite element method using the commercial software ANSYS.

Keywords: hydrogen embrittlement, pipelines, hydrogen, transient flow, cyclic pressure, fatigue crack growth

Procedia PDF Downloads 54
402 Simulation of Piezoelectric Laminated Smart Structure under Strong Electric Field

Authors: Shun-Qi Zhang, Shu-Yang Zhang, Min Chen

Abstract:

Applying strong electric field on piezoelectric actuators, on one hand very significant electroelastic material nonlinear effects will occur, on the other hand piezo plates and shells may undergo large displacements and rotations. In order to give a precise prediction of piezolaminated smart structures under large electric field, this paper develops a finite element (FE) model accounting for both electroelastic material nonlinearity and geometric nonlinearity with large rotations based on the first order shear deformation (FSOD) hypothesis. The proposed FE model is applied to analyze a piezolaminated semicircular shell structure.

Keywords: smart structures, piezolamintes, material nonlinearity, strong electric field

Procedia PDF Downloads 411
401 “MaxSALIVA”: A Nano-Sized Dual-Drug Delivery System for Salivary Gland Radioprotection and Repair in Head and Neck Cancer

Authors: Ziyad S. Haidar

Abstract:

Background: Saliva plays a major role in maintaining oral and dental health (consequently, general health and well-being). Where it normally bathes the oral cavity and acts as a clearing agent. This becomes more apparent when the amount and quality of salivare significantly reduced due to medications, salivary gland neoplasms, disorders such as Sjögren’s syndrome, and especially ionizing radiation therapy for tumors of the head and neck, the fifth most common malignancy worldwide, during which the salivary glands are included within the radiation field or zone. Clinically, patients affected by salivary gland dysfunction often opt to terminate their radiotherapy course prematurely because they become malnourished and experience a significant decrease in their quality of life. Accordingly, the development of an alternative treatment to restore or regenerate damaged salivary gland tissue is eagerly awaited. Likewise, the formulation of a radioprotection modality and early damage prevention strategy is also highly desirable. Objectives: To assess the pre-clinical radio-protective effect as well as the reparative/regenerative potential of layer-by-layer self-assembled lipid-polymer-based core-shell nanocapsules designed and fine-tuned in this experimental work for the sequential (ordered) release of dual cytokines, following a single local administration (direct injection) into a murine sub-mandibular salivary gland model of irradiation. Methods: The formulated core-shell nanocapsules were characterized by physical-chemical-mechanically pre-/post-loading with the drugs (in solution and powder formats), followed by optimizing the pharmaco-kinetic profile. Then, nanosuspensions were administered directly into the salivary glands, 24hrs pre-irradiation (PBS, un-loaded nanocapsules, and individual and combined vehicle-free cytokines were injected into the control glands for an in-depth comparative analysis). External irradiation at an elevated dose of 18Gy (revised from our previous 15Gy model) was exposed to the head-and-neck region of C57BL/6 mice. Salivary flow rate (un-stimulated) and salivary protein content/excretion were regularly assessed using an enzyme-linked immunosorbent assay (3-month period). Histological and histomorphometric evaluation and apoptosis/proliferation analysis followed by local versus systemic bio-distribution and immuno-histochemical assays were then performed on all harvested major organs (at the distinct experimental end-points). Results: Monodisperse, stable, and cytocompatible nanocapsules capable of maintaining the bioactivity of the encapsulant within the different compartments with the core and shell and with controlled/customizable pharmaco-kinetics, resulted, as is illustrated in the graphical abstract (Figure) below. The experimental animals demonstrated a significant increase in salivary flow rates when compared to the controls. Herein, salivary protein content was comparable to the pre-irradiation (baseline) level. Histomorphometry further confirmed the biocompatibility and localization of the nanocapsules, in vivo, into the site of injection. Acinar cells showed fewer vacuoles and nuclear aberration in the experimental group, while the amount of mucin was higher in controls. Overall, fewer apoptotic activities were detected by a Terminal deoxynucleotidyl Transferase (TdT) dUTP Nick-End Labeling (TUNEL) assay and proliferative rates were similar to the controls, suggesting an interesting reparative and regenerative potential of irradiation-damaged/-dysfunctional salivary glands. The Figure below exemplifies some of these findings. Conclusions: Biocompatible, reproducible, and customizable self-assembling layer-by-layer core-shell delivery system is formulated and presented. Our findings suggest that localized sequential bioactive delivery of dual cytokines (in specific dose and order) can prevent irradiation-induced damage via reducing apoptosis and also has the potential to promote in situ proliferation of salivary gland cells; maxSALIVA is scalable (Good Manufacturing Practice or GMP production for human clinical trials) and patent-pending.

Keywords: saliva, head and neck cancer, nanotechnology, controlled drug delivery, xerostomia, mucositis, biopolymers, innovation

Procedia PDF Downloads 74
400 Ultrasonic Irradiation Synthesis of High-Performance Pd@Copper Nanowires/MultiWalled Carbon Nanotubes-Chitosan Electrocatalyst by Galvanic Replacement toward Ethanol Oxidation in Alkaline Media

Authors: Majid Farsadrouh Rashti, Amir Shafiee Kisomi, Parisa Jahani

Abstract:

The direct ethanol fuel cells (DEFCs) are contemplated as a promising energy source because, In addition to being used in portable electronic devices, it is also used for electric vehicles. The synthesis of bimetallic nanostructures due to their novel optical, catalytic and electronic characteristic which is precisely in contrast to their monometallic counterparts is attracting extensive attention. Galvanic replacement (sometimes is named to as cementation or immersion plating) is an uncomplicated and effective technique for making nanostructures (such as core-shell) of different metals, semiconductors, and their application in DEFCs. The replacement of galvanic does not need any external power supply compared to electrodeposition. In addition, it is different from electroless deposition because there is no need for a reducing agent to replace galvanizing. In this paper, a fast method for the palladium (Pd) wire nanostructures synthesis with the great surface area through galvanic replacement reaction utilizing copper nanowires (CuNWS) as a template by the assistance of ultrasound under room temperature condition is proposed. To evaluate the morphology and composition of Pd@ Copper nanowires/MultiWalled Carbon nanotubes-Chitosan, emission scanning electron microscopy, energy dispersive X-ray spectroscopy were applied. In order to measure the phase structure of the electrocatalysts were performed via room temperature X-ray powder diffraction (XRD) applying an X-ray diffractometer. Various electrochemical techniques including chronoamperometry and cyclic voltammetry were utilized for the electrocatalytic activity of ethanol electrooxidation and durability in basic solution. Pd@ Copper nanowires/MultiWalled Carbon nanotubes-Chitosan catalyst demonstrated substantially enhanced performance and long-term stability for ethanol electrooxidation in the basic solution in comparison to commercial Pd/C that demonstrated the potential in utilizing Pd@ Copper nanowires/MultiWalled Carbon nanotubes-Chitosan as efficient catalysts towards ethanol oxidation. Noticeably, the Pd@ Copper nanowires/MultiWalled Carbon nanotubes-Chitosan presented excellent catalytic activities with a peak current density of 320.73 mAcm² which was 9.5 times more than in comparison to Pd/C (34.2133 mAcm²). Additionally, activation energy thermodynamic and kinetic evaluations revealed that the Pd@ Copper nanowires/MultiWalled Carbon nanotubes-Chitosan catalyst has lower compared to Pd/C which leads to a lower energy barrier and an excellent charge transfer rate towards ethanol oxidation.

Keywords: core-shell structure, electrocatalyst, ethanol oxidation, galvanic replacement reaction

Procedia PDF Downloads 133
399 Designing a Refractive Index Gas Biosensor Exploiting Defects in Photonic Crystal Core-Shell Rods

Authors: Bilal Tebboub, AmelLabbani

Abstract:

This article introduces a compact sensor based on high-transmission, high-sensitivity two-dimensional photonic crystals. The photonic crystal consists of a square network of silicon rods in the air. The sensor is composed of two waveguide couplers and a microcavity designed for monitoring the percentage of hydrogen in the air and identifying gas types. Through the Finite-Difference Time-Domain (FDTD) method, we demonstrate that the sensor's resonance wavelength is contingent upon changes in the gas refractive index. We analyze transmission spectra, quality factors, and sensor sensitivity. The sensor exhibits a notable quality factor and a sensitivity value of 1374 nm/RIU. Notably, the sensor's compact structure occupies an area of 74.5 μm2, rendering it suitable for integrated optical circuits.

Keywords: 2-D photonic crystal, sensitivity, F.D.T.D method, label-free biosensing

Procedia PDF Downloads 73
398 Reinforcing Fibre Reinforced Polymer (FRP) Bridge Decks with Steel Plates

Authors: M. Alpaslan Koroglu

Abstract:

Fibre reinforced polymer (FRP) bridge decks have become an innovative alternative, and they have offered many advantages, and this has been increasing attention for applications in not only reinforcement of existing bridges decks but also construction of new bridges decks. The advantages of these FRP decks are; lightweight, high-strength FRP materials, corrosion resistance. However, this high strength deck is not ductile. In this study, the behaviour of hybrid FRP-steel decks are investigated. All FRP decks was analysed with the commercial package ABAQUS. In the FE model, the webs and flanges were discretised by 4 nodes shell elements. A full composite action between the steel and the FRP composite was assumed in the FE analysis because the bond-slip behaviour was unknown at that time. The performance of the proposed hybrid FRP deck panel with steel plates was evaluated by means of FE analysis.

Keywords: FRP, deck, bridge, finite element

Procedia PDF Downloads 466
397 Frequency Modulation in Vibro-Acoustic Modulation Method

Authors: D. Liu, D. M. Donskoy

Abstract:

The vibroacoustic modulation method is based on the modulation effect of high-frequency ultrasonic wave (carrier) by low-frequency vibration in the presence of various defects, primarily contact-type such as cracks, delamination, etc. The presence and severity of the defect are measured by the ratio of the spectral sidebands and the carrier in the spectrum of the modulated signal. This approach, however, does not differentiate between amplitude and frequency modulations, AM and FM, respectfully. It was experimentally shown that both modulations could be present in the spectrum, yet each modulation may be associated with different physical mechanisms. AM mechanisms are quite well understood and widely covered in the literature. This paper is a first attempt to explain the generation mechanisms of FM and its correlation with the flaw properties. Here we proposed two possible mechanisms leading to FM modulation based on nonlinear local defect resonance and dynamic acousto-elastic models.

Keywords: non-destructive testing, nonlinear acoustics, structural health monitoring, acousto-elasticity, local defect resonance

Procedia PDF Downloads 134
396 Usability Issues of Smart Phone Applications: For Visually Challenged People

Authors: Anam Ashraf, Arif Raza

Abstract:

In this era of globalization, adoption of technology is quite difficult for people with physical disabilities compared to people with normal abilities. The advancement in mobile based accessible applications has opened up several different avenues for the visually challenged across the globe. Smartphones applications are not very common for blind people, but they access and use these applications in their daily lives to some extent. Several smartphone applications have a number of usability issues for the visually impaired. In this paper, we evaluate the usability of various android and iPhone applications for blind people through analysis and surveys. This paper aspires to provide guidance in order to increase smartphone application accessibility for the visually impaired. An abstract application design is also proposed to overcome usability issues in smartphone applications for visually challenged people.

Keywords: eyes-free shell, human computer interaction, usability engineering, visually challenged

Procedia PDF Downloads 350
395 Assessment of Noise Pollution in the City of Biskra, Algeria

Authors: Tallal Abdel Karim Bouzir, Nourdinne Zemmouri, Djihed Berkouk

Abstract:

In this research, a quantitative assessment of the urban sound environment of the city of Biskra, Algeria, was conducted. To determine the quality of the soundscape based on in-situ measurement, using a Landtek SL5868P sound level meter in 47 points, which have been identified to represent the whole city. The result shows that the urban noise level varies from 55.3 dB to 75.8 dB during the weekdays and from 51.7 dB to 74.3 dB during the weekend. On the other hand, we can also note that 70.20% of the results of the weekday measurements and 55.30% of the results of the weekend measurements have levels of sound intensity that exceed the levels allowed by Algerian law and the recommendations of the World Health Organization. These very high urban noise levels affect the quality of life, the acoustic comfort and may even pose multiple risks to people's health.

Keywords: road traffic, noise pollution, sound intensity, public health

Procedia PDF Downloads 251
394 An Automatic Speech Recognition Tool for the Filipino Language Using the HTK System

Authors: John Lorenzo Bautista, Yoon-Joong Kim

Abstract:

This paper presents the development of a Filipino speech recognition tool using the HTK System. The system was trained from a subset of the Filipino Speech Corpus developed by the DSP Laboratory of the University of the Philippines-Diliman. The speech corpus was both used in training and testing the system by estimating the parameters for phonetic HMM-based (Hidden-Markov Model) acoustic models. Experiments on different mixture-weights were incorporated in the study. The phoneme-level word-based recognition of a 5-state HMM resulted in an average accuracy rate of 80.13 for a single-Gaussian mixture model, 81.13 after implementing a phoneme-alignment, and 87.19 for the increased Gaussian-mixture weight model. The highest accuracy rate of 88.70% was obtained from a 5-state model with 6 Gaussian mixtures.

Keywords: Filipino language, Hidden Markov Model, HTK system, speech recognition

Procedia PDF Downloads 468
393 The Effect of Inlet Baffle Position in Improving the Efficiency of Oil and Water Gravity Separator Tanks

Authors: Haitham A. Hussein, Rozi Abdullah, Issa Saket, Md. Azlin

Abstract:

The gravitational effect has been extensively applied to separate oil from water in water and wastewater treatment systems. The maximum oil globules removal efficiency is improved by obtaining the best flow uniformity in separator tanks. This study used 2D computational fluid dynamics (CFD) to investigate the effect of different inlet baffle positions inside the separator tank. Laboratory experiment has been conducted, and the measured velocity fields which were by Nortek Acoustic Doppler Velocimeter (ADV) are used to verify the CFD model. Computational investigation results indicated that the construction of an inlet baffle in a suitable location provides the minimum recirculation zone volume, creates the best flow uniformity, and dissipates kinetic energy in the oil and water separator tank. Useful formulas were predicted to design the oil and water separator tanks geometry based on an experimental model.

Keywords: oil/water separator tanks, inlet baffles, CFD, VOF

Procedia PDF Downloads 344
392 Measuring How Brightness Mediates Auditory Salience

Authors: Baptiste Bouvier

Abstract:

While we are constantly flooded with stimuli in daily life, attention allows us to select the ones we specifically process and ignore the others. Some salient stimuli may sometimes pass this filter independently of our will, in a "bottom-up" way. The role of the acoustic properties of the timbre of a sound on its salience, i.e., its ability to capture the attention of a listener, is still not well understood. We implemented a paradigm called the "additional singleton paradigm", in which participants have to discriminate targets according to their duration. This task is perturbed (higher error rates and longer response times) by the presence of an irrelevant additional sound, of which we can manipulate a feature of our choice at equal loudness. This allows us to highlight the influence of the timbre features of a sound stimulus on its salience at equal loudness. We have shown that a stimulus that is brighter than the others but not louder leads to an attentional capture phenomenon in this framework. This work opens the door to the study of the influence of any timbre feature on salience.

Keywords: attention, audition, bottom-up attention, psychoacoustics, salience, timbre

Procedia PDF Downloads 157
391 Continuous-Time and Discrete-Time Singular Value Decomposition of an Impulse Response Function

Authors: Rogelio Luck, Yucheng Liu

Abstract:

This paper proposes the continuous-time singular value decomposition (SVD) for the impulse response function, a special kind of Green’s functions e⁻⁽ᵗ⁻ ᵀ⁾, in order to find a set of singular functions and singular values so that the convolutions of such function with the set of singular functions on a specified domain are the solutions to the inhomogeneous differential equations for those singular functions. A numerical example was illustrated to verify the proposed method. Besides the continuous-time SVD, a discrete-time SVD is also presented for the impulse response function, which is modeled using a Toeplitz matrix in the discrete system. The proposed method has broad applications in signal processing, dynamic system analysis, acoustic analysis, thermal analysis, as well as macroeconomic modeling.

Keywords: singular value decomposition, impulse response function, Green’s function , Toeplitz matrix , Hankel matrix

Procedia PDF Downloads 146
390 High Strain Rate Behavior of Harmonic Structure Designed Pure Nickel: Mechanical Characterization Microstructure Analysis and 3D Modelisation

Authors: D. Varadaradjou, H. Kebir, J. Mespoulet, D. Tingaud, S. Bouvier, P. Deconick, K. Ameyama, G. Dirras

Abstract:

The development of new architecture metallic alloys with controlled microstructures is one of the strategic ways for designing materials with high innovation potential and, particularly, with improved mechanical properties as required for structural materials. Indeed, unlike conventional counterparts, metallic materials having so-called harmonic structure displays strength and ductility synergy. The latter occurs due to a unique microstructure design: a coarse grain structure surrounded by a 3D continuous network of ultra-fine grain known as “core” and “shell,” respectively. In the present study, pure harmonic-structured (HS) Nickel samples were processed via controlled mechanical milling and followed by spark plasma sintering (SPS). The present work aims at characterizing the mechanical properties of HS pure Nickel under room temperature dynamic loading through a Split Hopkinson Pressure Bar (SHPB) test and the underlying microstructure evolution. A stopper ring was used to maintain the strain at a fixed value of about 20%. Five samples (named B1 to B5) were impacted using different striker bar velocities from 14 m/s to 28 m/s, yielding strain rate in the range 4000-7000 s-1. Results were considered until a 10% deformation value, which is the deformation threshold for the constant strain rate assumption. The non-deformed (INIT – post-SPS process) and post-SHPB microstructure (B1 to B5) were investigated by EBSD. It was observed that while the strain rate is increased, the average grain size within the core decreases. An in-depth analysis of grains and grain boundaries was made to highlight the thermal (such as dynamic recrystallization) or mechanical (such as grains fragmentation by dislocation) contribution within the “core” and “shell.” One of the most widely used methods for determining the dynamic behavior of materials is the SHPB technique developed by Kolsky. A 3D simulation of the SHPB test was created through ABAQUS in dynamic explicit. This 3D simulation allows taking into account all modes of vibration. An inverse approach was used to identify the material parameters from the equation of Johnson-Cook (JC) by minimizing the difference between the numerical and experimental data. The JC’s parameters were identified using B1 and B5 samples configurations. Predictively, identified parameters of JC’s equation shows good result for the other sample configuration. Furthermore, mean rise of temperature within the harmonic Nickel sample can be obtained through ABAQUS and show an elevation of about 35°C for all fives samples. At this temperature, a thermal mechanism cannot be activated. Therefore, grains fragmentation within the core is mainly due to mechanical phenomena for a fixed final strain of 20%.

Keywords: 3D simulation, fragmentation, harmonic structure, high strain rate, Johnson-cook model, microstructure

Procedia PDF Downloads 216
389 Study of Anti-Symmetric Flexural Mode Propagation along Wedge Tip with a Crack

Authors: Manikanta Prasad Banda, Che Hua Yang

Abstract:

Anti-symmetric wave propagation along the particle motion of the wedge waves is known as anti-symmetric flexural (ASF) modes which travel along the wedge tips of the mid-plane apex with a small truncation. This paper investigates the characteristics of the ASF modes propagation with the wedge tip crack. The simulation and experimental results obtained by a three-dimensional (3-D) finite element model explained the contact acoustic non-linear (CAN) behavior in explicit dynamics in ABAQUS and the ultrasonic non-destructive testing (NDT) method is used for defect detection. The effect of various parameters on its high and low-level conversion modes are known for complex reflections and transmissions involved with direct reflections and transmissions. The results are used to predict the location of crack through complex transmission and reflection coefficients.

Keywords: ASF mode, crack detection, finite elements method, laser ultrasound technique, wedge waves

Procedia PDF Downloads 124
388 Three-Dimensional Jet Refraction Simulation Using a Gradient Term Suppression and Filtering Method

Authors: Lican Wang, Rongqian Chen, Yancheng You, Ruofan Qiu

Abstract:

In the applications of jet engine, open-jet wind tunnel and airframe, there wildly exists a shear layer formed by the velocity and temperature gradients between jet flow and surrounded medium. The presence of shear layer will refract and reflect the sound path that consequently influences the measurement results in far-field. To investigate and evaluate the shear layer effect, a gradient term suppression and filtering method is adopted to simulate sound propagation through a steady sheared flow in three dimensions. Two typical configurations are considered: one is an incompressible and cold jet flow in wind tunnel and the other is a compressible and hot jet flow in turbofan engine. A numerically linear microphone array is used to localize the position of given sound source. The localization error is presented and linearly fitted.

Keywords: aeroacoustic, linearized Euler equation, acoustic propagation, source localization

Procedia PDF Downloads 182
387 Comparison of Different Methods of Evaluating Nozzle Junction Stresses under External Loads

Authors: Vinod Kumar, Arun Kumar, Surjit Angra

Abstract:

This paper addresses the junction stress analysis of orthogonally intersecting thin walled cylindrical shell and thin walled cylindrical nozzle subjected to external loading on nozzle. Junction stresses have been calculated theoretically by welding research council (WRC) bulletins 107 and 297 for different nozzle loads. WRC bulletins 107 and 297 have been used by design engineers for calculating nozzle-vessel junction stresses since their publication. They give simple empirical relations and easy in application. Also 3D FEA in which material is elastic has been done in ANSYS software with 8 node solid element model and results of FEA have been compared with WRC results. Stress intensities obtained by WRC 297 are generally slightly higher than obtained by WRC 107. Membrane stresses obtained by FEA are much higher than WRC and membrane plus bending stresses obtained by FEA are lower than WRC.

Keywords: FEA, junction stress, solid element, WRC 107, WRC 297

Procedia PDF Downloads 562
386 Morphology, Qualitative, and Quantitative Elemental Analysis of Pheasant Eggshells in Thailand

Authors: Kalaya Sribuddhachart, Mayuree Pumipaiboon, Mayuva Youngsabanant-Areekijseree

Abstract:

The ultrastructure of 20 species of pheasant eggshells in Thailand, (Simese Fireback, Lophura diardi), (Silver Pheasant, Lophura nycthemera), (Kalij Pheasant, Lophura leucomelanos crawfurdii), (Kalij Pheasant, Lophura leucomelanos lineata), (Red Junglefowl, Gallus gallus spadiceus), (Crested Fireback, Lophura ignita rufa), (Green Peafowl, Pavo muticus), (Indian Peafowl, Pavo cristatus), (Grey Peacock Pheasant, Polyplectron bicalcaratum bicalcaratum), (Lesser Bornean Fireback, Lophura ignita ignita), (Green Junglefowl, Gallus varius), (Hume's Pheasant, Syrmaticus humiae humiae), (Himalayan Monal, Lophophorus impejanus), Golden Pheasant, Chrysolophus pictus, (Ring-Neck Pheasant, Phasianus sp.), (Reeves’s Pheasant, Syrmaticus reevesi), (Polish Chicken, Gallus sp.), (Brahma Chicken, Gallus sp.), (Yellow Golden Pheasant, Chrysolophus pictus luteus), and (Lady Amhersts Pheasant, Chrysolophus amherstiae) were studied by Secondary electron imaging (SEI) and Energy dispersive X-ray analysis (EDX) detectors of scanning electron microscope. Generally, all pheasant eggshells showed 3 layers of cuticle, palisade, and mammillary. The total thickness was ranging from 190.28±5.94-838.96±16.31µm. The palisade layer is the most thickness layer following by mammillary and cuticle layers. The palisade layer in all pheasant eggshells consisted of numerous vesicle holes that were firmly forming as network thorough the layer. The vesicle holes in all pheasant eggshells had difference porosity ranging from 0.44±0.11-0.23±0.05 µm. While the mammillary layer was the most compact layer with a variable shape (broad-base V and U-shape) connect to shell membrane. Elemental analysis by of 20 specie eggshells showed 9 apparent elements including carbon (C), oxygen (O), calcium (Ca), phosphorous (P), sulfur (S), magnesium (Mg), silicon (Si), aluminum (Al), and copper (Cu) at the percentage of 28.90- 8.33%, 60.64-27.61%, 55.30-14.49%, 1.97-0.03%, 0.08-0.03%, 0.50-0.16%, 0.30-0.04%, 0.06-0.02%, and 2.67-1.73%, respectively. It was found that Ca, C, and O showed highest elemental compositions, which essential for pheasant embryonic development, mainly presented as composited structure of calcium carbonate (CaCO3) more than 97%. Meanwhile, Mg, S, Si, Al, and P were major inorganic constituents of the eggshells which directly related to an increase of the shell hardness. Finally, the percentage of heavy metal copper (Cu) has been observed in 4 eggshell species. There are Golden Pheasant (2.67±0.16%), Indian Peafowl (2.61±0.13%), Green Peafowl (1.97±0.74%), and Silver Pheasant (1.73±0.11%), respectively. A non-significant difference was found in the percentages of 9 elements in all pheasant eggshells. This study is useful to provide the information of biology and taxonomic of pheasant study in Thailand for conservation.

Keywords: pheasants eggshells, secondary electron imaging (SEI) and energy dispersive X-ray analysis (EDX), morphology, Thailand

Procedia PDF Downloads 223
385 A Secure Routing Algorithm for ‎Underwater Wireless Sensor Networks

Authors: Seyed Mahdi Jameii

Abstract:

Underwater wireless sensor networks have been attracting the interest of many ‎researchers lately, and the past three decades have beheld the rapid progress of ‎underwater acoustic communication. One of the major problems in underwater wireless ‎sensor networks is how to transfer data from the moving node to the base stations and ‎choose the optimized route for data transmission. Secure routing in underwater ‎wireless sensor network (UWCNs) is necessary for packet delivery. Some routing ‎protocols are proposed for underwater wireless sensor networks. However, a few ‎researches have been done on secure routing in underwater sensor networks. In this ‎article, a secure routing protocol is provided to resist against wormhole and sybil ‎attacks. The results indicated acceptable performance in terms of increasing the packet ‎delivery ratio with regards to the attacks, increasing network lifetime by creating ‎balance in the network energy consumption, high detection rates against the attacks, ‎and low-end to end delay.‎

Keywords: attacks, routing, security, underwater wireless sensor networks

Procedia PDF Downloads 405
384 Dialect and Gender Variations in the Place and Manner of Articulation of the Korean Fricatives

Authors: Kyung-Im Han

Abstract:

This study examines dialect and gender variations in the place and manner of articulation between the two Korean fricatives, /s/ and /s’/, as produced by speakers of the Daegu and Jeju dialects. The acoustic parameters of center of gravity and skewness for the place of articulation, and the rise time and the amplitude rise slope for the manner of articulation were measured. The study results revealed a gender effect, but no dialect effect, for the center of gravity and the skewness. No main effect for either the gender or dialect was found for the rise time and the amplitude rise slope. These findings indicated that, with regard to the place of articulation, Korean fricative sound differences are a gender distinction, not a dialectal one.

Keywords: dialect, gender, Korean fricative, manner of articulation, place of articulation, spectral moments

Procedia PDF Downloads 224
383 Flexible Design of Triboelectric Nanogenerators for Efficient Vibration Energy Harvesting

Authors: Meriam Khelifa

Abstract:

In recent years, many studies have focused on the harvesting of the vibrations energy to produce electrical energy using contact separation (CS) triboelectric nanogenerators (TENG). The simplest design for a TENG consists of a capacitor comprising a single moving electrode. The conversion efficiency of vibration energy into electrical energy can, in principle, reach 100%. But to actually achieve this objective, it is necessary to optimize the parameters of the TENG, such as the dielectric constant and the thickness of the insulator, the load resistance, etc. In particular, the use of a switch which is actioned at optimal times within the TENG cycle is essential. Using numerical modeling and experimental design, we applied a methodology to find the TENG parameters which optimize the energy transfer efficiency (ETE) to almost 100% for any vibration frequency and amplitude. The rather simple design of a TENG is promising as an environment friendly device. It opens the doors for harvesting acoustic vibrations from the environment and to design effective protection against environmental noise.

Keywords: vibrations, CS TENG, efficiency, design of experiments

Procedia PDF Downloads 80
382 Removal of Copper(II) and Lead(II) from Aqueous Phase by Plum Stone Activated Carbon

Authors: Serife Parlayici, Erol Pehlivan

Abstract:

In this study, plum stone shell activated carbon (PS-AC) was prepared to adsorb Cu(II) and Pb(II) ions in aqueous solutions. Some important parameters that influence the adsorption of metal ions such as pH, contact time and metal concentration have been systematically investigated in batch type reactors. The characterization of adsorbent is carried out by means of FTIR and SEM. It was found that the adsorption capacities of PS-AC were pH-dependent, and the optimal pH values were 4.5 and 5.0 for Cu(II) and Pb(II), respectively. The adsorption was rapid and the equilibrium was reached within 60 minutes to remove of Cu(II) and Pb(II) ions. The adsorption stability was studied in various doses of adsorbent. Langmuir, Freundlich and D-R adsorption models were used to describe adsorption equilibrium studies of PS-AC. Adsorption data showed that the adsorption of Cu(II) and Pb(II) is compatible with Langmuir isotherm model. The result showed that adsorption capacities calculated from the Langmuir isotherm were 33.22 mg/g and 57.80 mg/g for Cu(II) and Pb(II), respectively.

Keywords: plum-stone, activated carbon, copper and lead, isotherms

Procedia PDF Downloads 354