Search results for: waste recycling and land-filling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2981

Search results for: waste recycling and land-filling

2951 Municipal Solid Waste Management Using Life Cycle Assessment Approach: Case Study of Maku City, Iran

Authors: L. Heidari, M. Jalili Ghazizade

Abstract:

This paper aims to determine the best environmental and economic scenario for Municipal Solid Waste (MSW) management of the Maku city by using Life Cycle Assessment (LCA) approach. The functional elements of this study are collection, transportation, and disposal of MSW in Maku city. Waste composition and density, as two key parameters of MSW, have been determined by field sampling, and then, the other important specifications of MSW like chemical formula, thermal energy and water content were calculated. These data beside other information related to collection and disposal facilities are used as a reliable source of data to assess the environmental impacts of different waste management options, including landfills, composting, recycling and energy recovery. The environmental impact of MSW management options has been investigated in 15 different scenarios by Integrated Waste Management (IWM) software. The photochemical smog, greenhouse gases, acid gases, toxic emissions, and energy consumption of each scenario are measured. Then, the environmental indices of each scenario are specified by weighting these parameters. Economic costs of scenarios have been also compared with each other based on literature. As final result, since the organic materials make more than 80% of the waste, compost can be a suitable method. Although the major part of the remaining 20% of waste can be recycled, due to the high cost of necessary equipment, the landfill option has been suggested. Therefore, the scenario with 80% composting and 20% landfilling is selected as superior environmental and economic scenario. This study shows that, to select a scenario with practical applications, simultaneously environmental and economic aspects of different scenarios must be considered.

Keywords: IWM software, life cycle assessment, Maku, municipal solid waste management

Procedia PDF Downloads 240
2950 Reverse Logistics in Clothing Recycling: A Case Study in Chengdu

Authors: Guo Yan

Abstract:

Clothing recycling bin is a traditional way to collect textile waste in many areas. In the clothing recycling business, the transportation cost normally takes over 50% of total costs. This case gives a good way to reduce transportation cost by reverse logistics system. In this reverse logistics system, there are offline strategic alliance partners, such as transport firms, convenience stores, laundries, and post office which are integrated onto the mobile APP. Offline strategic alliance partners provide the service of textile waste collection, and transportation by their vacant vehicles return journey from convenience stores, laundries and post offices to sorting centers. The results of the case study provide the strategic alliance with a valuable and light - asset business model by using the logistics of offline memberships. The company in this case just focuses on textile waste sorting, reuse, recycling etc. The research method of this paper is a case study of a clothing recycling company in Chengdu by field research and interview; the analysis is based on the theory of the reverse logistics system.

Keywords: closed-loop recycles system, clothing recycling, end-of-life clothing, sharing economy, strategic alliance, reverse logistics.

Procedia PDF Downloads 149
2949 Processes for Valorization of Valuable Products from Kerf Slurry Waste

Authors: Nadjib Drouiche, Abdenour Lami, Salaheddine Aoudj, Tarik Ouslimane

Abstract:

Although solar cells manufacturing is a conservative industry, economics drivers continue to encourage innovation, feedstock savings and cost reduction. Kerf slurry waste is a complex product containing both valuable substances as well as contaminants. The valuable substances are: i) high purity silicon, ii) polyethylene glycol, and iii) silicon carbide. The contaminants mainly include metal fragments and organics. Therefore, recycling of the kerf slurry waste is an important subject not only from the treatment of waste but also from the recovery of valuable products. The present paper relates to processes for the recovery of valuable products from the kerf slurry waste in which they are contained, such products comprising nanoparticles, polyethylene glycol, high purity silicon, and silicon carbide.

Keywords: photovoltaic cell, Kerf slurry waste, recycling, silicon carbide

Procedia PDF Downloads 331
2948 Reduce, Reuse and Recycle: Grand Challenges in Construction Recovery Process

Authors: Abioye A. Oyenuga, Rao Bhamidiarri

Abstract:

Hurling a successful Construction and Demolition Waste (C&DW) recycling operation around the globe is a challenge today, predominantly because secondary materials markets are yet to be integrated. Reducing, Reusing and recycling of (C&DW) have been employed over the years, and various techniques have been investigated. However, the economic and environmental viability of its application seems limited. This paper discusses the costs and benefits in using secondary materials and focus on investigating reuse and recycling process for five major types of construction materials: concrete, metal, wood, cardboard/paper, and plasterboard. Data obtained from demolition specialist and contractors are considered and evaluated. With the date source, the research paper found that construction material recovery process fully incorporate the 3R’s process and shows how energy recovery by means of 3R's principles can be evaluated. This scrutiny leads to the empathy of grand challenges in construction material recovery process. Recommendations to deepen material recovery process are also discussed.

Keywords: construction and demolition waste (C&DW), 3R concept, recycling, reuse, waste management, UK

Procedia PDF Downloads 428
2947 Utilising Reuse and Recycling Strategies for Costume Design in Kuwait Theatre

Authors: Ali Dashti

Abstract:

Recycling materials within the realms of theatrical costume design and production is important. When a Kuwaiti play finishes its run, costumes are thrown away and new ones are designed when necessary. This practice indicates a lack of awareness of recycling strategies. This is a serious matter; tons of textile materials are being wasted rather than recycled. The current process of producing costumes for Kuwait theatre productions involves the conception and sketching of costumes, the purchase of new fabrics, and the employment of tailors for production. Since tailoring is outsourced, there is a shortage of designers who can make costumes autonomously. The current process does not incorporate any methods for recycling costumes. This combined with high levels of textile waste, results in significant ecological issues that demand immediate attention. However, data collected for this research paper, from a series of semi-structured interviews, have indicated that a lack of recycling facilities and increased textile waste do not present an area of concern within the Kuwaiti theatrical costume industry. This paper will review the findings of this research project and investigate the production processes used by costume designers in Kuwait. It will indicate how their behaviors, coupled with their lack of knowledge with using recycling strategies to create costumes, had increased textile waste and negatively affected Kuwait theatre costume design industry.

Keywords: costume, recycle, reuse, theatre

Procedia PDF Downloads 167
2946 Evaluating Environmental Impact of End-of-Life Cycle Cases for Brick Walls and Aerated Autoclave Concrete Walls

Authors: Ann Mariya Jose, Ashfina T.

Abstract:

Construction and demolition waste is one of the rising concerns globally due to the amount of waste generated annually, the area taken up by landfills, and the adverse environmental impacts that follow. One of the primary causes of the rise in construction and demolition waste is a lack of facilities and knowledge for incorporating recycled materials into new construction. Bricks are a conventional material that has been used for construction for centuries, and Autoclave Aerated Concrete (AAC) blocks are a new emergent material in the market. This study evaluates the impact brick walls, and AAC block walls have on the environment using the tool One Click LCA, considering three End of Life (EoL) scenarios: the materials are landfilled, recycled, and reused in a new building. The final objective of the study is to evaluate the environmental impact caused by these two different walls on the environmental factors such as Global Warming Potential (GWP), Acidification Potential (AP), Eutrophication Potential (EP), Ozone Depletion Potential (ODP), and Photochemical Ozone Creation Potential (POCP). The findings revealed that the GWP caused by landfilling is 16 times higher in bricks and 22 times higher in AAC blocks when compared to the reuse of materials. The study recommends the effective use of AAC blocks in construction and reuse of the same to reduce the overall emissions to the environment.

Keywords: construction and demolition waste, environmental impact, life cycle impact assessment, material recycling

Procedia PDF Downloads 106
2945 Energy Recovery Potential from Food Waste and Yard Waste in New York and Montréal

Authors: T. Malmir, U. Eicker

Abstract:

Landfilling of organic waste is still the predominant waste management method in the USA and Canada. Strategic plans for waste diversion from landfills are needed to increase material recovery and energy generation from waste. In this paper, we carried out a statistical survey on waste flow in the two cities New York and Montréal and estimated the energy recovery potential for each case. Data collection and analysis of the organic waste (food waste, yard waste, etc.), paper and cardboard, metal, glass, plastic, carton, textile, electronic products and other materials were done based on the reports published by the Department of Sanitation in New York and Service de l'Environnement in Montréal. In order to calculate the gas generation potential of organic waste, Buswell equation was used in which the molar mass of the elements was calculated based on their atomic weight and the amount of organic waste in New York and Montréal. Also, the higher and lower calorific value of the organic waste (solid base) and biogas (gas base) were calculated. According to the results, only 19% (598 kt) and 45% (415 kt) of New York and Montréal waste were diverted from landfills in 2017, respectively. The biogas generation potential of the generated food waste and yard waste amounted to 631 million m3 in New York and 173 million m3 in Montréal. The higher and lower calorific value of food waste were 3482 and 2792 GWh in New York and 441 and 354 GWh in Montréal, respectively. In case of yard waste, they were 816 and 681 GWh in New York and 636 and 531 GWh in Montréal, respectively. Considering the higher calorific value, this amount would mean a contribution of around 2.5% energy in these cities.

Keywords: energy recovery, organic waste, urban energy modelling with INSEL, waste flow

Procedia PDF Downloads 137
2944 Analysing Waste Management Options in the Printing Industry: Case of a South African Company

Authors: Stanley Fore

Abstract:

The case study company is one of the leading newsprint companies in South Africa. The company has achieved this status through operational expansion, diversification and investing in cutting-edge technology. They have a reputation for the highest quality and personalised service that transcends borders and industries. The company offers a wide variety of small and large scales printing services. The company is faced with the challenge of significant waste production during normal operations. The company generates 1200 kg of plastic waste and 60 – 70 tonnes of paper waste per month. The company operates a waste management process currently, whereby waste paper is sold, at low cost, to recycling firms for further processing. Having considered the quantity of waste being generated, the company has embarked on a venture to find a more profitable solution to its current waste production. As waste management and recycling is not the company’s core business, the aim of the venture is to implement a secondary profitable waste process business. The venture will be expedited as a strategic project. This research aims to estimate the financial feasibility of a selected solution as well as the impact of non-financial considerations thereof. The financial feasibility is analysed using metrics such as Payback period; internal rate of return and net present value.

Keywords: waste, printing industry, up-cycling, management

Procedia PDF Downloads 262
2943 Sustainability of Photovoltaic Recycling Planning

Authors: Jun-Ki Choi

Abstract:

The usage of valuable resources and the potential for waste generation at the end of the life cycle of photovoltaic (PV) technologies necessitate a proactive planning for a PV recycling infrastructure. To ensure the sustainability of PV in large scales of deployment, it is vital to develop and institute low-cost recycling technologies and infrastructure for the emerging PV industry in parallel with the rapid commercialization of these new technologies. There are various issues involved in the economics of PV recycling and this research examine those at macro and micro levels, developing a holistic interpretation of the economic viability of the PV recycling systems. This study developed mathematical models to analyze the profitability of recycling technologies and to guide tactical decisions for allocating optimal location of PV take-back centers (PVTBC), necessary for the collection of end of life products. The economic decision is usually based on the level of the marginal capital cost of each PVTBC, cost of reverse logistics, distance traveled, and the amount of PV waste collected from various locations. Results illustrated that the reverse logistics costs comprise a major portion of the cost of PVTBC; PV recycling centers can be constructed in the optimally selected locations to minimize the total reverse logistics cost for transporting the PV wastes from various collection facilities to the recycling center. In the micro- process level, automated recycling processes should be developed to handle the large amount of growing PV wastes economically. The market price of the reclaimed materials are important factors for deciding the profitability of the recycling process and this illustrates the importance of the recovering the glass and expensive metals from PV modules.

Keywords: photovoltaic, recycling, mathematical models, sustainability

Procedia PDF Downloads 255
2942 The Effect of Parameter Controls for Manure Composting in Waste Recycling Process

Authors: Junyoung Kim, Shangwha Cha, Soomee Kang, Jake S. Byun

Abstract:

This study shows the effect of parameter controls for livestock manure composting in waste recycling process for the development of a new design of a microorganism-oriented- composting system. Based on the preliminary studies, only the temperature control by changing mechanical mixing can reduce microorganisms’ biodegradability from 3 to 6 months to 15 days, saving the consumption of energy and manual labor. The final degree of fermentation in just 5 days of composting increased to ‘3’ comparing the compost standard level ‘4’ in Korea, others standards were all satisfied. This result shows that the controlling the optimum microorganism parameter using an ICT device connected to mixing condition can increase the effectiveness of fermentation system and reduce odor to nearly zero, and lead to upgrade the composting method than the conventional

Keywords: manure composting, odor removal, parameter control, waste recycling

Procedia PDF Downloads 310
2941 Management Options and Life Cycle Assessment of Municipal Solid Waste in Madinah, KSA

Authors: Abdelkader T. Ahmed, Ayed E. Alluqmani

Abstract:

The population growth in the KSA beside the increase in the urbanization level and standard of living improvement have resulted in the rapid growth of the country’s Municipal Solid Waste (MSW) generation. Municipalities are managing the MSW system in the KSA by collecting and getting rid of it by dumping it in nearest open landfill sites. Solid waste management is one of the main critical issues considered worldwide due to its significant impact on the environment and the public health. In this study, municipal solid waste (MSW) generation, composition and collection of Madinah city, as one of largest cities in KSA, were examined to provide an overview of current state of MSW management, an analysis of existing problem in MSW management, and recommendations for improving the waste treatment and management system in this area. These recommendations would be not specific to Madinah region, but also would be applied to other cities in KSA or any other regions with similar features. The trend of waste generation showed that current waste generation would be increased as much as two to three folds in 2030. Approximately 25% of total generated waste is disposed to a sanitary landfill, while 75% is sent to normal dumpsites. This study also investigated the environmental impacts of MSW through the Life Cycle Assessment (LCA) of waste generations and related processes. LCA results revealed that among the seven scenarios, recycling and composting are the best scenario for the solid waste management in Madinah and similar regions.

Keywords: municipal solid waste, waste recycling and land-filling, waste management, life cycle assessment

Procedia PDF Downloads 465
2940 Sustainable Approach to Fabricate Titanium Nitride Film on Steel Substrate by Using Automotive Plastics Waste

Authors: Songyan Yin, Ravindra Rajarao, Veena Sahajwalla

Abstract:

Automotive plastics waste (widely known as auto-fluff or ASR) is a complicated mixture of various plastics incorporated with a wide range of additives and fillers like titanium dioxide, magnesium oxide, and silicon dioxide. Automotive plastics waste is difficult to recycle and its landfilling poses the significant threat to the environment. In this study, a sustainable technology to fabricate protective nanoscale TiN thin film on a steel substrate surface by using automotive waste plastics as titanium and carbon resources is suggested. When heated automotive plastics waste with steel at elevated temperature in a nitrogen atmosphere, titanium dioxide contented in ASR undergo carbothermal reduction and nitridation reactions on the surface of the steel substrate forming a nanoscale thin film of titanium nitride on the steel surface. The synthesis of TiN film on steel substrate under this technology was confirmed by X-ray photoelectron spectrometer, high resolution X-ray diffraction, field emission scanning electron microscope, a high resolution transmission electron microscope fitted with energy dispersive X-ray spectroscopy, and inductively coupled plasma mass spectrometry techniques. This sustainably fabricated TiN film was verified of dense, well crystallized and could provide good oxidation resistance to the steel substrate. This sustainable fabrication technology is maneuverable, reproducible and of great economic and environmental benefit. It not only reduces the fabrication cost of TiN coating on steel surface, but also provides a sustainable environmental solution to recycling automotive plastics waste. Moreover, high value copper droplets and char residues were also extracted from this unique fabrication process.

Keywords: automotive plastics waste, carbonthermal reduction and nitirdation, sustainable, TiN film

Procedia PDF Downloads 394
2939 The Cultural Significance of Recycling - A Native American Perspective

Authors: Martin A. Curry

Abstract:

Madeline Island is a small island community in Wisconsin, USA. Located in Lake Superior, it has been home to the Anishinaabe/Ojibway people for 1000s of years and is known as Moningwankuaning Minis-"The Island of the Golden Breasted Woodpecker". The community relies on summer tourism as its source of income, with a small population of 400 year-round residents. Supervisor Martin A. Curry (Ojibway/German descent) has been working on a fiscally responsible, environmentally principled and culturally centered approach to waste diversion and recycling. The tenets of this program encompass plastics, paper, food waste, local farming, energy production and art education. Through creative writing for the local newspaper and creative interactions, Martin has worked to engage the community in a more robust interest in waste diversion, including setting up a free-will donation store that incorporates elder volunteering opportunities, a compost program that works with the local community garden, biodiesel production and an art program that works with children from the local island school to make paper, grow local food and paint murals. The entirety of this program is based on the Ojibway concept of Mino-Bimadiiziwiin- "The Good Life" and benefits the community and its guests and represents a microcosm of the global dilemmas of waste and recycling.

Keywords: recycling, waste diversion, island, Native American, art

Procedia PDF Downloads 120
2938 Survey and Analysis of the Operational Dilemma of the Existing Used Clothes Recycling Model in the Community

Authors: Qiaohui Zhong, Yiqi Kuang, Wanxun Cai, Libin Huang

Abstract:

As a community public facility, the popularity and perfection of old clothes recycling products directly affect people's impression of the whole city, which is related to the happiness index of residents' lives and is of great significance to the construction of eco-civilized cities and the realization of sustainable urban development. At present, China's waste clothing is characterized by large production and a high utilization rate, but the current rate of old clothes recycling is low, and the ‘one-size-fits-all’ recycling model makes people's motivation for old clothes recycling low, and old clothes recycling is in a dilemma. Based on the two online and offline recycling modes of old clothes recycling in Chinese communities, this paper conducts an in-depth survey on the public, operators, and regulators from the aspects of activity scene analysis, crowd attributes analysis, and community space analysis summarizes the difficulties of old clothes recycling for the public - nowhere to recycle, inconvenient to recycle and unwilling to recycle, and analyzes the factors that lead to these difficulties, and gives a solution with foreign experience to solve these problems. It also analyzes the factors that lead to these difficulties and gives targeted suggestions in combination with foreign experience, exploring and proposing a set of appropriate modern old-clothes recycling modes.

Keywords: community, old clothes recycling, recycling mode, sustainable urban development

Procedia PDF Downloads 49
2937 Recycling of Plastic Waste into Composites Using Kaolin as Reinforcement

Authors: Gloria P. Manu, Johnson K. Efavi, Abu Yaya, Grace K. Arkorful, Frank Godson

Abstract:

Plastics have been used extensively in both food and water packaging and other applications because of their inherent properties of low bulk densities and inertness as well as its low cost. Waste management of these plastics after usage is troubling in Ghana. One way of addressing the environmental problems associated with these plastic wastes is by recycling into useful products such as composites for energy and construction applications using natural or local materials as reinforcement. In this work, composites have been formed from waste low-density polyethylene (LDPE) and kaolin at temperatures as low as 70 ֯C using low-cost solvents like kerosene. Chemical surface modifications have been employed to improve the interfacial bonding resulting in the enhancement of properties of the composites. Kaolin particles of sizes ≤ 90µm were dispersed in the polyethylene matrix. The content of the LDPE was varied between 10, 20, 30, 40, 50, 60, and 70 %wt. Results obtained indicated that all the composites exhibited impressive compressive and flexural strengths with the 50%wt. composition having the highest strength. The hardness value of the composites increased as the polyethylene composition reduces and that of the kaolin increased. The average density and water of absorption of the composites were 530kg/m³ and 1.3% respectively.

Keywords: polyethylene, recycling, waste, composite, kaolin

Procedia PDF Downloads 174
2936 Spatial Assessment of Soil Contamination from Informal E-Waste Recycling Site in Agbogbloshie, Ghana

Authors: Kyere Vincent Nartey, Klaus Greve, Atiemo Sampson

Abstract:

E-waste is discarded electrical electronic equipment inclusive of all components, sub-assemblies and consumables which are part of the product at the time of discarding and known to contain both hazardous and valuable fractions. E-waste is recycled within the proposed ecological restoration of the Agbogbloshie enclave using crude and rudimental recycling procedures such as open burning and manual dismantling which result in pollution and contamination of soil, water and air. Using GIS, this study was conducted to examine the spatial distribution and extent of soil contamination by heavy metals from the e-waste recycling site in Agbogbloshie. From the month of August to November 2013, 146 soil samples were collected in addition to their coordinates using GPS. Elemental analysis performed on the collected soil samples using X-Ray fluorescence revealed over 30 elements including, Ni, Cr, Zn, Cu, Pb and Mn. Using geostatistical techniques in ArcGIS 10.1 spatial assessment and distribution maps were generated. Mathematical models or equations were used to estimate the degree of contamination and pollution index. Results from soil analysis from the Agbogbloshie enclave showed that levels of measured or observed elements were significantly higher than the Canadian EPA and Dutch environmental standards.

Keywords: e-waste, geostatistics, soil contamination, spatial distribution

Procedia PDF Downloads 515
2935 Circular Economy Initiatives in Denmark for the Recycling of Household Plastic Wastes

Authors: Rikke Lybæk

Abstract:

This paper delves into the intricacies of recycling household plastic waste within Denmark, employing an exploratory case study methodology to shed light on the technical, strategic, and market dynamics of the plastic recycling value chain. Focusing on circular economy principles, the research identifies critical gaps and opportunities in recycling processes, particularly regarding plastic packaging waste derived from households, with a notable absence in food packaging reuse initiatives. The study uncovers the predominant practice of downcycling in the current value chain, underscoring a disconnect between the potential for high-quality plastic recycling and the market's readiness to embrace such materials. Through detailed examination of three leading companies in Denmark's plastic industry, the paper highlights the existing support for recycling initiatives, yet points to the necessity of assured quality in sorted plastics to foster broader adoption. The analysis further explores the importance of reuse strategies to complement recycling efforts, aiming to alleviate the pressure on virgin feedstock. The paper ventures into future perspectives, discussing different approaches such as biological degradation methods, watermark technology for plastic traceability, and the potential for bio-based and PtX plastics. These avenues promise not only to enhance recycling efficiency but also to contribute to a more sustainable circular economy by reducing reliance on virgin materials. Despite the challenges outlined, the research demonstrates a burgeoning market for recycled plastics within Denmark, propelled by both environmental considerations and customer demand. However, the study also calls for a more harmonized and effective waste collection and sorting system to elevate the quality and quantity of recyclable plastics. By casting a spotlight on successful case studies and potential technological advancements, the paper advocates for a multifaceted approach to plastic waste management, encompassing not only recycling but also innovative reuse and reduction strategies to foster a more sustainable future. In conclusion, this study underscores the urgent need for innovative, coordinated efforts in the recycling and management of plastic waste to move towards a more sustainable and circular economy in Denmark. It calls for the adoption of comprehensive strategies that include improving recycling technologies, enhancing waste collection systems, and fostering a market environment that values recycled materials, thereby contributing significantly to environmental sustainability goals.

Keywords: case study, circular economy, Denmark, plastic waste, sustainability, waste management

Procedia PDF Downloads 108
2934 Understanding Consumer Recycling Behavior: A Literature Review of Motivational and Behavioral Aspects

Authors: Karin Johansson, Ola Johansson

Abstract:

Recycling is an important aspect of a sustainable society and depends to a large extent on consumers’ willingness to provide the voluntary work needed to take the first critical step in many return logistics systems. Based on a systematic review of articles on recycling behavior, this paper presents and discusses the findings in relation to Fogg’s Behavioral Model (FBM). Through the analysis of a corpus of 72 articles, the most important research contributions on recycling behavior are summarized and discussed. The choice of using FBM as a framework provides a new way of viewing previous research findings, and aids in identifying knowledge gaps. Based on the review, this work identifies and discusses four areas of potential interest for future research.

Keywords: recycling, reverse logistics, solid waste management, sustainability

Procedia PDF Downloads 144
2933 Waste Minimization through Vermicompost: An Alternative Approach

Authors: Mary Fabiola

Abstract:

Vermicompost is the product or process of composting using various worms. Large-scale vermicomposting is practiced in Canada, Italy, Japan, Malaysia, the Philippines, and the United States. The vermicompost may be used for farming, landscaping, and creating compost tea or for sale. Some of these operations produce worms for bait and/or home vermicomposting. As a processing system, The vermicomposting of organic waste is very simple. Worms ingest the waste material-break it up in their rudimentary. Gizzards, consume the digestible/putrefiable portion and then excrete a stable, Humus-like material that can be immediately marketed. Vermitechnology can be a promising technique that has shown its potential in certain challenging areas like augmentation of food production, waste recycling, management of solid wastes etc. There is no doubt that in India, where on side pollution is increasing due to accumulation of organic wastes and on the other side there is shortage of organic manure, which could increase the fertility and productivity of the land and produce nutritive and safe food. So, the scope for vermicomposting is enormous.

Keywords: pollution, solid wastes, vermicompost, waste recycling

Procedia PDF Downloads 431
2932 Concrete Recycling in Egypt for Construction Applications: A Technical and Financial Feasibility Model

Authors: Omar Farahat Hassanein, A. Samer Ezeldin

Abstract:

The construction industry is a very dynamic field. Every day new technologies and methods are developing to fasten the process and increase its efficiency. Hence, if a project uses fewer resources, it will be more efficient. This paper examines the recycling of concrete construction and demolition (C&D) waste to reuse it as aggregates in on-site applications for construction projects in Egypt and possibly in the Middle East. The study focuses on a stationary plant setting. The machinery set-up used in the plant is analyzed technically and financially. The findings are gathered and grouped to obtain a comprehensive cost-benefit financial model to demonstrate the feasibility of establishing and operating a concrete recycling plant. Furthermore, a detailed business plan including the time and hierarchy is proposed.

Keywords: construction wastes, recycling, sustainability, financial model, concrete recycling, concrete life cycle

Procedia PDF Downloads 417
2931 Research on Eco-Sustainable Recycling of Industrial Wastes

Authors: Liliana Crăc, Nicolae Giorgi, Gheorghe Fometescu

Abstract:

In Romania, billions of tonnes of wastes are generated yearly, an important amount being stored within industrial dumps that covers high soil areas and affects the environment quality, especially of ground and surface waters. Landfill represents in Romania the most important way for wastes removal, over 75% being generated every year, the costs with the dumps construction being considerable. In most of the cases, the wastes generated mainly by the energy industry, oil exploitation and metallurgy, are still considered wastes with NO-use, and their removal and neutralization represent for transport, handling and storing, high non-productive expenses which raise the cost of the useful products obtained. The paper presents a recycling idea of three types of wastes in order to use them for building materials manufacturing, by promoting ECOWASTES LIFE+ project, whose aim is to demonstrate that the recycling of waste from energy industry (coal combustion waste), petroleum extraction (drilling mud) and metallurgy (steelmaking slag) is technically feasible.

Keywords: fly ash, drilled solid wastes, metallurgical slag, recycling, building materials

Procedia PDF Downloads 312
2930 Detoxification and Recycling of the Harvested Microalgae using Eco-friendly Food Waste Recycling Technology with Salt-tolerant Mushroom Strains

Authors: J. M. Kim, Y. W. Jung, E. Lee, Y. K. Kwack, , S. K. Sim*

Abstract:

Cyanobacterial blooms in lakes, reservoirs, and rivers have been environmental and social issues due to its toxicity, odor, etc. Among the cyanotoxins, microcystins exist mostly within the cyanobacterial cells, and they are released from the cells. Therefore, an innovative technology is needed to detoxify the harvested microalgae for environment-friendly utilization of the harvested microalgae. This study develops detoxification method of microcystins in the harvested microalgae and recycling harvested microalgae with food waste using salt-tolerant mushroom strains and natural ecosystem decomposer. During this eco-friendly organic waste recycling process, diverse bacteria or various enzymes of the salt-tolerant mushroom strains decompose the microystins and cyclic peptides. Using PHLC/Mass analysis, it was verified that 99.8% of the microcystins of the harvested microalgae was detoxified in the harvested mushroom as well as in the recycled organic biomass. Further study is planned to verify the decomposition mechanisms of the microcystins by the bacteria or enzymes. In this study, the harvested microalgae is mixed with the food waste, and then the mixed toxic organic waste is used as mushroom compost by adjusting the water content of about 70% using cellulose such as sawdust cocopeats and cottonseeds. The mushroom compost is bottled, sterilized, and salt-tolerant mushroom spawn is inoculated. The mushroom is then cultured and growing in the temperature, humidity, and CO2 controlled environment. During the cultivation and growing process of the mushroom, microcystins are decomposed into non-toxic organic or inorganic compounds by diverse bacteria or various enzymes of the mushroom strains. Various enzymes of the mushroom strains decompose organics of the mixed organic waste and produce nutritious and antibiotic mushrooms. Cultured biomass compost after mushroom harvest can be used for organic fertilizer, functional bio-feed, and RE-100 biomass renewable energy source. In this eco-friendly organic waste recycling process, no toxic material, wastewater, nor sludge is generated; thus, sustainable with the circular economy.

Keywords: microalgae, microcystin, food waste, salt-tolerant mushroom strains, sustainability, circular economy

Procedia PDF Downloads 144
2929 From Waste Recycling to Waste Prevention by Households : Could Eco-Feedback Strategies Fill the Gap?

Authors: I. Dangeard, S. Meineri, M. Dupré

Abstract:

large body of research on energy consumption reveals that regular information on energy consumption produces a positive effect on behavior. The present research aims to test this feedback paradigm on waste management. A small-scale experiment on residual household waste was performed in a large french urban area, in partnership with local authorities, as part of the development of larger-scale project. A two-step door-to-door recruitment scheme led to 85 households answering a questionnaire. Among them, 54 accepted to participate in a study on waste (second step). Participants were then randomly assigned to one of the 3 experimental conditions : self-reported feedback on curbside waste, external feedback on waste weight based on information technologies, and no feedback for the control group. An additional control group was added, including households who were not requested to answer the questionnaire. Household residual waste was collected every week, and tags on curbside bins fed a database with waste weight of households. The feedback period lasted 14 weeks (february-may 2014). Quantitative data on waste weight were analysed, including these 14 weeks and the 7 previous weeks. Households were then contacted by phone in order to confirm the quantitative results. Regarding the recruitment questionnaire, results revealed high pro-environmental attitude on the NEP scale, high recycling behavior level and moderate level of source reduction behavior on the adapted 3R scale, but no statistical difference between the 3 experimental groups. Regarding the feedback manipulation paradigm, waste weight reveals important differences between households, but doesn't prove any statistical difference between the experimental conditions. Qualitative phone interviews confirm that recycling is a current practice among participants, whereas source reduction of waste is not, and mainly appears as a producer problem of packaging limitation. We conclude that triggering waste prevention behaviors among recycling households involves long-term feedback and should promote benchmarking, in order to clearly set waste reduction as an objective to be managed through feedback figures.

Keywords: eco-feedback, household waste, waste reduction, experimental research

Procedia PDF Downloads 394
2928 Gypsum Composites with CDW as Raw Material

Authors: R. Santos Jiménez, A. San-Antonio-González, M. del Río Merino, M. González Cortina, C. Viñas Arrebola

Abstract:

On average, Europe generates around 890 million tons of construction and demolition waste (CDW) per year and only 50% of these CDW are recycled. This is far from the objectives determined in the European Directive for 2020 and aware of this situation, the European Countries are implementing national policies to prevent the waste that can be avoidable and to promote measures to increase recycling and recovering. In Spain, one of these measures has been the development of a CDW recycling guide for the manufacture of mortar, concrete, bricks and lightweight aggregates. However, there is still not enough information on the possibility of incorporating CDW materials in the manufacture of gypsum products. In view of the foregoing, the Universidad Politécnica de Madrid is creating a database with information on the possibility of incorporating CDW materials in the manufacture of gypsum products. The objective of this study is to improve this database by analysing the feasibility of incorporating two different CDW in a gypsum matrix: ceramic waste bricks (perforated brick and double hollow brick), and extruded polystyrene (XPS) waste. Results show that it is possible to incorporate up to 25% of ceramic waste and 4% of XPS waste over the weight of gypsum in a gypsum matrix. Furhtermore, with the addition of ceramic waste an 8% of surface hardness increase and a 25% of capillary water absorption reduction can be obtained. On the other hand, with the addition of XPS, a 26% reduction of density and a 37% improvement of thermal conductivity can be obtained.

Keywords: CDW, waste materials, ceramic waste, XPS, construction materials, gypsum

Procedia PDF Downloads 511
2927 Optimizing Recycling and Reuse Strategies for Circular Construction Materials with Life Cycle Assessment

Authors: Zhongnan Ye, Xiaoyi Liu, Shu-Chien Hsu

Abstract:

Rapid urbanization has led to a significant increase in construction and demolition waste (C&D waste), underscoring the need for sustainable waste management strategies in the construction industry. Aiming to enhance the sustainability of urban construction practices, this study develops an optimization model to effectively suggest the optimal recycling and reuse strategies for C&D waste, including concrete and steel. By employing Life Cycle Assessment (LCA), the model evaluates the environmental impacts of adopted construction materials throughout their lifecycle. The model optimizes the quantity of materials to recycle or reuse, the selection of specific recycling and reuse processes, and logistics decisions related to the transportation and storage of recycled materials with the objective of minimizing the overall environmental impact, quantified in terms of carbon emissions, energy consumption, and associated costs, while adhering to a range of constraints. These constraints include capacity limitations, quality standards for recycled materials, compliance with environmental regulations, budgetary limits, and temporal considerations such as project deadlines and material availability. The strategies are expected to be both cost-effective and environmentally beneficial, promoting a circular economy within the construction sector, aligning with global sustainability goals, and providing a scalable framework for managing construction waste in densely populated urban environments. The model is helpful in reducing the carbon footprint of construction projects, conserving valuable resources, and supporting the industry’s transition towards a more sustainable future.

Keywords: circular construction, construction and demolition waste, material recycling, optimization modeling

Procedia PDF Downloads 57
2926 Circular Bio-economy of Copper and Gold from Electronic Wastes

Authors: Sadia Ilyas, Hyunjung Kim, Rajiv R. Srivastava

Abstract:

Current work has attempted to establish the linkages between circular bio-economy and recycling of copper and gold from urban mine by applying microbial activities instead of the smelter and chemical technologies. Thereafter, based on the potential of microbial approaches and research hypothesis, the structural model has been tested for a significance level of 99%, which is supported by the corresponding standardization co-efficient values. A prediction model applied to determine the recycling impact on circular bio-economy indicates to re-circulate 51,833 tons of copper and 58 tons of gold by 2030 for the production of virgin metals/raw-materials, while recycling rate of the accumulated e-waste remains to be 20%. This restoration volume of copper and gold through the microbial activities corresponds to mitigate 174 million kg CO₂ emissions and 24 million m³ water consumption if compared with the primary production activities. The study potentially opens a new window for environmentally-friendly biotechnological recycling of e-waste urban mine under the umbrella concept of circular bio-economy.

Keywords: urban mining, biobleaching, circular bio-economy, environmental impact

Procedia PDF Downloads 158
2925 Optimizing Recycling and Reuse Strategies for Circular Construction Materials with Life Cycle Assessment

Authors: Zhongnan Ye, Xiaoyi Liu, Shu-Chien Hsu

Abstract:

Rapid urbanization has led to a significant increase in construction and demolition waste (C&D waste), underscoring the need for sustainable waste management strategies in the construction industry. Aiming to enhance the sustainability of urban construction practices, this study develops an optimization model to effectively suggest the optimal recycling and reuse strategies for C&D waste, including concrete and steel. By employing Life Cycle Assessment (LCA), the model evaluates the environmental impacts of adopted construction materials throughout their lifecycle. The model optimizes the quantity of materials to recycle or reuse, the selection of specific recycling and reuse processes, and logistics decisions related to the transportation and storage of recycled materials with the objective of minimizing the overall environmental impact, quantified in terms of carbon emissions, energy consumption, and associated costs, while adhering to a range of constraints. These constraints include capacity limitations, quality standards for recycled materials, compliance with environmental regulations, budgetary limits, and temporal considerations such as project deadlines and material availability. The strategies are expected to be both cost-effective and environmentally beneficial, promoting a circular economy within the construction sector, aligning with global sustainability goals, and providing a scalable framework for managing construction waste in densely populated urban environments. The model is helpful in reducing the carbon footprint of construction projects, conserving valuable resources, and supporting the industry’s transition towards a more sustainable future.

Keywords: circular construction, construction and demolition waste, life cycle assessment, material recycling

Procedia PDF Downloads 82
2924 Employing Nudge as Artistic Strategy in Managing Lagos Waste Issues

Authors: Iranlade Festus Adeyem

Abstract:

This paper analyses the role played by the Nudge method as an artistic strategy in addressing the issues of Lagos waste management in Nigeria. As a Lagosian, experiential knowledge of Lagos’ dirty environment through careless littering, especially in the Lagos Mainland community, was helpful. Employing Nudge theory in creative waste recycling assists in persuading Lagosians through strategic sensitization to carefully weigh their options rather than being compelled to act in a dictated direction. Empirical awareness of Lagos’ environment and creative, reflective experiences were handy in inspiring the identified communities to subtly encourage the reuse, recycling and repurposing of generated waste instead of dumping it indiscriminately. The repurposed waste used to ‘upcycle’ and ‘downcycle’ contemporary artworks were displayed to highlight single-use materials as improvised alternatives to conventional ones. The Nudge concept application, therefore, persuades Lagosians, Lagos artists and trainees to see waste as untapped effective materials during the campaigns. Using the Nudge philosophy thus encourages Lagosians and creatives to use personal discretion in managing their generated waste naturally. Its application also helped intervene minimally in the Lagos waste objectives to prevent the attendant health issues that may occur. And inspire waste improvisation for the scarce, imported and expensive art materials in Lagos City.

Keywords: improvisation, nudge, upcycle and downcycle, strategy

Procedia PDF Downloads 14
2923 Influence of Plastic Waste Reinforcement on Compaction and Consolidation Behavior of Silty Soil

Authors: Maryam Meftahi, Yashar Hamidzadeh

Abstract:

In recent decades, the amount of solid waste production has been rising. In the meantime, plastic waste is one of the major parts of urban solid waste, so, recycling plastic waste from water bottles has become a serious challenge in the whole world. The experimental program includes the study of the effect of waste plastic fibers on maximum dry density (MDD), optimum moisture content (OMC) with different sizes and contents. Also, one dimensional consolidation tests were carried out to evaluate the benefit of utilizing randomly distributed waste plastics fiber to improve the engineering behavior of a tested soils. Silty soil specimens were prepared and tested at five different percentages of plastic waste content (i.e. 0.25%, 0.50%, 0.75%, 1% and 1.25% by weight of the parent soil). The size of plastic chips used, are 4 mm, 8 mm and 12 mm long and 4 mm in width. The results show that with the addition of waste plastic fibers, the MDD and OMC and also the compressibility of soil decrease significantly.

Keywords: silty soil, waste plastic, compaction, consolidation, reinforcement

Procedia PDF Downloads 175
2922 Influence of Processing Regime and Contaminants on the Properties of Postconsumer Thermoplastics

Authors: Fares Alsewailem

Abstract:

Material recycling of thermoplastic waste offers practical solution for municipal solid waste reduction. Post-consumer plastics such as polyethylene (PE), polyethyleneterephtalate (PET), and polystyrene (PS) may be separated from each other by physical methods such as density difference and hence processed as single plastic, however one should be cautious about the contaminants presence in the waste stream inform of paper, glue, etc. since these articles even in trace amount may deteriorate properties of the recycled plastics especially the mechanical properties. furthermore, melt processing methods used to recycle thermoplastics such as extrusion and compression molding may induce degradation of some of the recycled plastics such as PET and PS. In this research, it is shown that care should be taken when processing recycled plastics by melt processing means in two directions, first contaminants should be extremely minimized, and secondly melt processing steps should also be minimum.

Keywords: Recycling, PET, PS, HDPE, mechanical

Procedia PDF Downloads 284