Search results for: plant disease classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9039

Search results for: plant disease classification

9009 Fusarium Wilt of Tomato: Plant Growth, Physiology and Biological Disease Management

Authors: Amna Shoaib, Sidrah Hanif, Rashid Mehmood

Abstract:

Current research work was carried out to check influence of farmyard manure (FYM) in Lycopersicon esculentum L. against Fusarium oxysporum f. sp. lycopersici (FO) in copper polluted soil. Silt-loam soil naturally enriched with 70 ppm of Cu was inoculated with 1 x 106 spore suspensions of FO and incorporated with 0%, 1%, 1.5% or 2% FYM. The multilateral interaction of host-pathogen-metal-organic amendment was assessed in terms of morphology, growth, yield, physiology, biochemistry and metal uptake in tomato plant after 30 and 60 days of sowing. When soil was inoculated with FO, plant growth and biomass were significantly increased during vegetative stage, while declining during flowering stage with substantial increase in productivity over control. Infected plants exhibited late wilting and disease severity was found on 26-50% of plant during reproductive stage. Incorporation of up to 1% FYM suppressed disease severity, improved plant growth and biomass, while it decreased yield. Rest of manure doses was found ineffective in suppressing disease. Content of total chlorophyll, sugar and protein were significantly declined in FO inoculated plants and incorporation of FYM caused significant reduction or no influence on sugar and chlorophyll content, and no pronounced difference among different FYM doses were observed. On the other hand, proline, peroxidase, catalase and nitrate reductase activity were found to be increased in infected plants and incorporation of 1-2% FYM further enhanced the activity of these enzymes. Tomato plant uptake of 30-40% of copper naturally present in the soil and incorporation of 1-2% FYM markedly decreased plant uptake of metal by 15-30%, while increased Cu retention in soil. Present study concludes that lower dose (1%) of FYM could be used to manage disease, increase growth and biomass, while being ineffective for yield and productivity in Cu-polluted soil. Altered physiology/biochemistry of plant in response to any treatment could be served as basis for resistant against pathogen and metal homeostasis in plants.

Keywords: Lycopersicon esculentum, copper, Fusarium wilt, farm yard manure

Procedia PDF Downloads 415
9008 Predication Model for Leukemia Diseases Based on Data Mining Classification Algorithms with Best Accuracy

Authors: Fahd Sabry Esmail, M. Badr Senousy, Mohamed Ragaie

Abstract:

In recent years, there has been an explosion in the rate of using technology that help discovering the diseases. For example, DNA microarrays allow us for the first time to obtain a "global" view of the cell. It has great potential to provide accurate medical diagnosis, to help in finding the right treatment and cure for many diseases. Various classification algorithms can be applied on such micro-array datasets to devise methods that can predict the occurrence of Leukemia disease. In this study, we compared the classification accuracy and response time among eleven decision tree methods and six rule classifier methods using five performance criteria. The experiment results show that the performance of Random Tree is producing better result. Also it takes lowest time to build model in tree classifier. The classification rules algorithms such as nearest- neighbor-like algorithm (NNge) is the best algorithm due to the high accuracy and it takes lowest time to build model in classification.

Keywords: data mining, classification techniques, decision tree, classification rule, leukemia diseases, microarray data

Procedia PDF Downloads 321
9007 A Custom Convolutional Neural Network with Hue, Saturation, Value Color for Malaria Classification

Authors: Ghazala Hcini, Imen Jdey, Hela Ltifi

Abstract:

Malaria disease should be considered and handled as a potential restorative catastrophe. One of the most challenging tasks in the field of microscopy image processing is due to differences in test design and vulnerability of cell classifications. In this article, we focused on applying deep learning to classify patients by identifying images of infected and uninfected cells. We performed multiple forms, counting a classification approach using the Hue, Saturation, Value (HSV) color space. HSV is used since of its superior ability to speak to image brightness; at long last, for classification, a convolutional neural network (CNN) architecture is created. Clusters of focus were used to deliver the classification. The highlights got to be forbidden, and a few more clamor sorts are included in the information. The suggested method has a precision of 99.79%, a recall value of 99.55%, and provides 99.96% accuracy.

Keywords: deep learning, convolutional neural network, image classification, color transformation, HSV color, malaria diagnosis, malaria cells images

Procedia PDF Downloads 90
9006 Wheat Dihaploid and Somaclonal Lines Screening for Resistance to P. nodorum

Authors: Lidia Kowalska, Edward Arseniuk

Abstract:

Glume and leaf blotch is a disease of wheat caused by necrotrophic fungus Parastagonospora nodorum. It is a serious pathogen in many wheat-growing areas throughout the world. Use of resistant cultivars is the most effective and economical means to control the above-mentioned disease. Plant breeders and pathologists have worked intensively to incorporate resistance to the pathogen in new cultivars. Conventional methods of breeding for resistance can be supported by using the biotechnological ones, i.e., somatic embryogenesis and androgenesis. Therefore, an effort was undertaken to compare genetic variation in P. nodorum resistance among winter wheat somaclones, dihaploids and conventional varieties. For the purpose, a population of 16 somaclonal and 4 dihaploid wheat lines from six crosses were used to assess their resistance to P. nodorum under field conditions. Lines were grown in disease-free (fungicide protected) and inoculated micro plots in 2 replications of a split-plot design in a single environment. The plant leaves were inoculated with a mixture of P. nodorum isolates three times. Spore concentrations were adjusted to 4 x 10⁶ of viable spores per one milliliter. The disease severity was rated on a scale, where > 90% – susceptible, < 10% - resistant. Disease ratings of plant leaves showed statistically significant differences among all lines tested. Higher resistance to P. nodorum was observed more often on leaves of somaclonal lines than on dihaploid ones. On average, disease, severity reached 15% on leaves of somaclones and 30% on leaves of dihaploids. Some of the genotypes were showing low leaf infection, e.g. dihaploid D-33 (disease severity 4%) and a somaclone S-1 (disease severity 2%). The results from this study prove that dihaploid and somaclonal variation might be successfully used as an additional source of wheat resistance to the pathogen and it could be recommended to use in commercial breeding programs. The reported results prove that biotechnological methods may effectively be used in breeding for disease resistance of wheat to fungal necrotrophic pathogens.

Keywords: glume and leaf blotch, somaclonal, androgenic variation, wheat, resistance breeding

Procedia PDF Downloads 122
9005 Micro/Nano-Sized Emulsions Exhibit Antifungal Activity against Cucumber Downy Mildew

Authors: Kai-Fen Tu, Jenn-Wen Huang, Yao-Tung Lin

Abstract:

Cucumber is a major economic crop in the world. The global production of cucumber in 2017 was more than 71 million tonnes. Nonetheless, downy mildew, caused by Pseudoperonospora cubensis, is a devastating and common disease on cucumber in around 80 countries and causes severe economic losses. The long-term usage of fungicide also leads to the occurrence of fungicide resistance and decreases host resistance. In this study, six types of oil (neem oil, moringa oil, soybean oil, cinnamon oil, clove oil, and camellia oil) were selected to synthesize micro/nano-sized emulsions, and the disease control efficacy of micro/nano-sized emulsions were evaluated. Moreover, oil concentrations (0.125% - 1%) and droplet size of emulsion were studied. Results showed cinnamon-type emulsion had the best efficacy among these oils. The disease control efficacy of these emulsions increased as the oil concentration increased. Both disease incidence and disease severity were measured by detached leaf and pot experiment, respectively. For the droplet size effect, results showed that the 114 nm of droplet size synthesized by 0.25% cinnamon oil emulsion had the lowest disease incidence (6.67%) and lowest disease severity (33.33%). The release of zoospore was inhibited (5.33%), and the sporangia germination was damaged. These results suggest that cinnamon oil emulsion will be a valuable and environmentally friendly alternative to control cucumber downy mildew. The economic loss caused by plant disease could also be reduced.

Keywords: downy mildew, emulsion, oil droplet size, plant protectant

Procedia PDF Downloads 128
9004 In vitro Antiviral Activity of Ocimum sanctum against Animal Viruses

Authors: Anjana Goel, Ashok Kumar Bhatia

Abstract:

Ocimum sanctum, a well known medicinal plant is used for various alignments in Ayurvedic medicines. It was found to be effective in treating the humans suffering from different viral infections like chicken pox, small pox, measles and influenza. In addition, curative effect of the plant in malignant patients was also reported. In the present study, leaves of this plant were screened against animal viruses i.e. Bovine Herpes Virus-type-1 (BHV-1), Foot and Mouth disease virus (FMDV) and Newcastle Disease Virus (NDV). BHV-1 and FMDV were screened in MDBK and BHK cell lines respectively using cytopathic inhibition test. While NDV was propagated in chick embryo fibroblast culture and tested by haemagglutination inhibition test. Maximum non toxic dose of aqueous extract of Ocimum sanctum leaves was calculated by MTT assay in all the cell cultures and nontoxic doses were used for antiviral activity against viruses. 98.4% and 85.3% protection were recorded against NDV and BHV-1 respectively. However, Ocimum sanctum extract failed to show any inhibitory effect on the cytopathic effect caused by FMD virus. It can be concluded that Ocimum sanctum is a very effective remedy for curing viral infections in animals also.

Keywords: bovine herpes virus-type-1, foot and mouth disease virus, newcastle disease virus, Ocimum sanctum

Procedia PDF Downloads 273
9003 Analysis and Rule Extraction of Coronary Artery Disease Data Using Data Mining

Authors: Rezaei Hachesu Peyman, Oliyaee Azadeh, Salahzadeh Zahra, Alizadeh Somayyeh, Safaei Naser

Abstract:

Coronary Artery Disease (CAD) is one major cause of disability in adults and one main cause of death in developed. In this study, data mining techniques including Decision Trees, Artificial neural networks (ANNs), and Support Vector Machine (SVM) analyze CAD data. Data of 4948 patients who had suffered from heart diseases were included in the analysis. CAD is the target variable, and 24 inputs or predictor variables are used for the classification. The performance of these techniques is compared in terms of sensitivity, specificity, and accuracy. The most significant factor influencing CAD is chest pain. Elderly males (age > 53) have a high probability to be diagnosed with CAD. SVM algorithm is the most useful way for evaluation and prediction of CAD patients as compared to non-CAD ones. Application of data mining techniques in analyzing coronary artery diseases is a good method for investigating the existing relationships between variables.

Keywords: classification, coronary artery disease, data-mining, knowledge discovery, extract

Procedia PDF Downloads 659
9002 Sensitive Analysis of the ZF Model for ABC Multi Criteria Inventory Classification

Authors: Makram Ben Jeddou

Abstract:

The ABC classification is widely used by managers for inventory control. The classical ABC classification is based on the Pareto principle and according to the criterion of the annual use value only. Single criterion classification is often insufficient for a closely inventory control. Multi-criteria inventory classification models have been proposed by researchers in order to take into account other important criteria. From these models, we will consider the ZF model in order to make a sensitive analysis on the composite score calculated for each item. In fact, this score based on a normalized average between a good and a bad optimized index can affect the ABC items classification. We will then focus on the weights assigned to each index and propose a classification compromise.

Keywords: ABC classification, multi criteria inventory classification models, ZF-model

Procedia PDF Downloads 508
9001 Application of Deep Learning Algorithms in Agriculture: Early Detection of Crop Diseases

Authors: Manaranjan Pradhan, Shailaja Grover, U. Dinesh Kumar

Abstract:

Farming community in India, as well as other parts of the world, is one of the highly stressed communities due to reasons such as increasing input costs (cost of seeds, fertilizers, pesticide), droughts, reduced revenue leading to farmer suicides. Lack of integrated farm advisory system in India adds to the farmers problems. Farmers need right information during the early stages of crop’s lifecycle to prevent damage and loss in revenue. In this paper, we use deep learning techniques to develop an early warning system for detection of crop diseases using images taken by farmers using their smart phone. The research work leads to building a smart assistant using analytics and big data which could help the farmers with early diagnosis of the crop diseases and corrective actions. The classical approach for crop disease management has been to identify diseases at crop level. Recently, ImageNet Classification using the convolutional neural network (CNN) has been successfully used to identify diseases at individual plant level. Our model uses convolution filters, max pooling, dense layers and dropouts (to avoid overfitting). The models are built for binary classification (healthy or not healthy) and multi class classification (identifying which disease). Transfer learning is used to modify the weights of parameters learnt through ImageNet dataset and apply them on crop diseases, which reduces number of epochs to learn. One shot learning is used to learn from very few images, while data augmentation techniques are used to improve accuracy with images taken from farms by using techniques such as rotation, zoom, shift and blurred images. Models built using combination of these techniques are more robust for deploying in the real world. Our model is validated using tomato crop. In India, tomato is affected by 10 different diseases. Our model achieves an accuracy of more than 95% in correctly classifying the diseases. The main contribution of our research is to create a personal assistant for farmers for managing plant disease, although the model was validated using tomato crop, it can be easily extended to other crops. The advancement of technology in computing and availability of large data has made possible the success of deep learning applications in computer vision, natural language processing, image recognition, etc. With these robust models and huge smartphone penetration, feasibility of implementation of these models is high resulting in timely advise to the farmers and thus increasing the farmers' income and reducing the input costs.

Keywords: analytics in agriculture, CNN, crop disease detection, data augmentation, image recognition, one shot learning, transfer learning

Procedia PDF Downloads 120
9000 Heuristic of Style Transfer for Real-Time Detection or Classification of Weather Conditions from Camera Images

Authors: Hamed Ouattara, Pierre Duthon, Frédéric Bernardin, Omar Ait Aider, Pascal Salmane

Abstract:

In this article, we present three neural network architectures for real-time classification of weather conditions (sunny, rainy, snowy, foggy) from images. Inspired by recent advances in style transfer, two of these architectures -Truncated ResNet50 and Truncated ResNet50 with Gram Matrix and Attention- surpass the state of the art and demonstrate re-markable generalization capability on several public databases, including Kaggle (2000 images), Kaggle 850 images, MWI (1996 images) [1], and Image2Weather [2]. Although developed for weather detection, these architectures are also suitable for other appearance-based classification tasks, such as animal species recognition, texture classification, disease detection in medical images, and industrial defect identification. We illustrate these applications in the section “Applications of Our Models to Other Tasks” with the “SIIM-ISIC Melanoma Classification Challenge 2020” [3].

Keywords: weather simulation, weather measurement, weather classification, weather detection, style transfer, Pix2Pix, CycleGAN, CUT, neural style transfer

Procedia PDF Downloads 12
8999 Plant Identification Using Convolution Neural Network and Vision Transformer-Based Models

Authors: Virender Singh, Mathew Rees, Simon Hampton, Sivaram Annadurai

Abstract:

Plant identification is a challenging task that aims to identify the family, genus, and species according to plant morphological features. Automated deep learning-based computer vision algorithms are widely used for identifying plants and can help users narrow down the possibilities. However, numerous morphological similarities between and within species render correct classification difficult. In this paper, we tested custom convolution neural network (CNN) and vision transformer (ViT) based models using the PyTorch framework to classify plants. We used a large dataset of 88,000 provided by the Royal Horticultural Society (RHS) and a smaller dataset of 16,000 images from the PlantClef 2015 dataset for classifying plants at genus and species levels, respectively. Our results show that for classifying plants at the genus level, ViT models perform better compared to CNN-based models ResNet50 and ResNet-RS-420 and other state-of-the-art CNN-based models suggested in previous studies on a similar dataset. ViT model achieved top accuracy of 83.3% for classifying plants at the genus level. For classifying plants at the species level, ViT models perform better compared to CNN-based models ResNet50 and ResNet-RS-420, with a top accuracy of 92.5%. We show that the correct set of augmentation techniques plays an important role in classification success. In conclusion, these results could help end users, professionals and the general public alike in identifying plants quicker and with improved accuracy.

Keywords: plant identification, CNN, image processing, vision transformer, classification

Procedia PDF Downloads 105
8998 Remote Sensing-Based Prediction of Asymptomatic Rice Blast Disease Using Hyperspectral Spectroradiometry and Spectral Sensitivity Analysis

Authors: Selvaprakash Ramalingam, Rabi N. Sahoo, Dharmendra Saraswat, A. Kumar, Rajeev Ranjan, Joydeep Mukerjee, Viswanathan Chinnasamy, K. K. Chaturvedi, Sanjeev Kumar

Abstract:

Rice is one of the most important staple food crops in the world. Among the various diseases that affect rice crops, rice blast is particularly significant, causing crop yield and economic losses. While the plant has defense mechanisms in place, such as chemical indicators (proteins, salicylic acid, jasmonic acid, ethylene, and azelaic acid) and resistance genes in certain varieties that can protect against diseases, susceptible varieties remain vulnerable to these fungal diseases. Early prediction of rice blast (RB) disease is crucial, but conventional techniques for early prediction are time-consuming and labor-intensive. Hyperspectral remote sensing techniques hold the potential to predict RB disease at its asymptomatic stage. In this study, we aimed to demonstrate the prediction of RB disease at the asymptomatic stage using non-imaging hyperspectral ASD spectroradiometer under controlled laboratory conditions. We applied statistical spectral discrimination theory to identify unknown spectra of M. Oryzae, the fungus responsible for rice blast disease. The infrared (IR) region was found to be significantly affected by RB disease. These changes may result in alterations in the absorption, reflection, or emission of infrared radiation by the affected plant tissues. Our research revealed that the protein spectrum in the IR region is impacted by RB disease. In our study, we identified strong correlations in the region (Amide group - I) around X 1064 nm and Y 1300 nm with the Lambda / Lambda derived spectra methods for protein detection. During the stages when the disease is developing, typically from day 3 to day 5, the plant's defense mechanisms are not as effective. This is especially true for the PB-1 variety of rice, which is highly susceptible to rice blast disease. Consequently, the proteins in the plant are adversely affected during this critical time. The spectral contour plot reveals the highly correlated spectral regions 1064 nm and Y 1300 nm associated with RB disease infection. Based on these spectral sensitivities, we developed new spectral disease indices for predicting different stages of disease emergence. The goal of this research is to lay the foundation for future UAV and satellite-based studies aimed at long-term monitoring of RB disease.

Keywords: rice blast, asymptomatic stage, spectral sensitivity, IR

Procedia PDF Downloads 87
8997 A New Approach for Improving Accuracy of Multi Label Stream Data

Authors: Kunal Shah, Swati Patel

Abstract:

Many real world problems involve data which can be considered as multi-label data streams. Efficient methods exist for multi-label classification in non streaming scenarios. However, learning in evolving streaming scenarios is more challenging, as the learners must be able to adapt to change using limited time and memory. Classification is used to predict class of unseen instance as accurate as possible. Multi label classification is a variant of single label classification where set of labels associated with single instance. Multi label classification is used by modern applications, such as text classification, functional genomics, image classification, music categorization etc. This paper introduces the task of multi-label classification, methods for multi-label classification and evolution measure for multi-label classification. Also, comparative analysis of multi label classification methods on the basis of theoretical study, and then on the basis of simulation was done on various data sets.

Keywords: binary relevance, concept drift, data stream mining, MLSC, multiple window with buffer

Procedia PDF Downloads 586
8996 Biocontrol Potential of Growth Promoting Rhizobacteria against Root Rot of Chili and Enhancement of Plant Growth

Authors: Kiran Nawaz, Waheed Anwar, Sehrish Iftikhar, Muhammad Nasir Subhani, Ahmad Ali Shahid

Abstract:

Plant growth promoting rhizobacteria (PGPR) have been extensively studied and applied for the biocontrol of many soilborne diseases. These rhizobacteria are very efficient against root rot and many other foliar diseases associated with solanaceous plants. These bacteria may inhibit the growth of various pathogens through direct inhibition of target pathogens or indirectly by the initiation of systemic resistance (ISR) which is active all over the complete plant. In the present study, 20 different rhizobacterial isolates were recovered from the root zone of healthy chili plants. All soil samples were collected from various chili-growing areas in Punjab. All isolated rhizobacteria species were evaluated in vitro and in vivo against Phytophthora capsici. Different species of Bacillus and Pseudomonas were tested for the antifungal activity against P. capsici the causal organism of Root rot disease in different crops together with chili. Dual culture and distance culture bioassay were carried out to study the antifungal potential of volatile and diffusible metabolites secreted from rhizobacteria. After seven days of incubation at 22°C, growth inhibition rate was recorded. Growth inhibition rate depended greatly on the tested bacteria and screening methods used. For diffusible metabolites, inhibition rate was 35-62% and 20-45% for volatile metabolites. The screening assay for plant growth promoting and disease inhibition potential of chili associated PGPR indicated 42-100% reduction in disease severity and considerable enhancement in roots fresh weight by 55-87%, aerial parts fresh weight by 35-65% and plant height by 65-76% as compared to untreated control and pathogen-inoculated plants. Pseudomonas flourescene, B. thuringiensis, and B. subtilis were found to be the most efficient isolates in inhibiting P. capsici radial growth, increase plant growth and suppress disease severity.

Keywords: rhizobacteria, chili, phytophthora, root rot

Procedia PDF Downloads 263
8995 Plant as an Alternative for Anti Depressant Drugs St John's Wort

Authors: Mahdi Akhbardeh

Abstract:

St John's wort plant can help to treat depression disease through decreasing this disease symptom, due to having some similar features of Prozac (Fluoxetine Hcl) pill. People suffering from slight depression who have fear of using antidepressants side effects can use St John's wort drops under doctor observation. This method of treatment is proposed specially to those women who are spending menopause or depression resulted from this period. St John's wort plant have proposed traditional and plant medicine as newest researches in treating mood disorders compared to Prozac (Fluoxetine Hcl) drug in treating depression disease which is being administrated in clinic research center of Washington. Objective: the aim of this study is to find an alternative treatment method in people suffering from depression which are treated with Prozac (Fluoxetine Hcl). Almost 70 percent of treatment failures with Prozac (Fluoxetine Hcl) drug in patients suffering from slight to normal depression is due to intensive side effects including: decrease in blood pressure, reduce in sexual desire and 30 percent of it is due to this drug affectless in treatment procedure which leads to leaving treatment. Results of Hypercuim plant function are exactly similar to antidepressants. Increase in serotonin amount in brain synopsis terminal end causes increase in existence time of this material in this part. In fact these two drugs have similar function. Though side effects of Hypercuim plant(St John's wort) including headache and slight nausea tolerable. Results: St John's wort plant can be used lonely in slight to normal depressions in which patients are avoiding Prozac (Fluoxetine Hcl) drug due to it's side effects. In intensive depressions through which general patients don’t indicate positive response to drug, it is probably expected relative or even complete treatment through combining antidepressants drugs with this plant. This treatment method has been investigated and confirmed in clinical tests and researches.

Keywords: depression, St John's wort, Prozac, antidepressant

Procedia PDF Downloads 488
8994 Rhizosphere Microbiome Involvement in the Natural Suppression of Soybean Cyst Nematode in Disease Suppressive Soil

Authors: M. Imran Hamid, Muzammil Hussain, Yunpeng Wu, Meichun Xiang, Xingzhong Liu

Abstract:

The rhizosphere microbiome elucidate multiple functioning in the soil suppressiveness against plant pathogens. Soybean rhizosphere microbial communities may involve in the natural suppression of soybean cyst nematode (SCN) populations in disease suppressive soils. To explore these ecological mechanisms of microbes, a long term monoculture suppressive soil were taken into account for further investigation to test the disease suppressive ability by using different treatments. The designed treatments are as, i) suppressive soil (S), ii) conducive soil (C), iii) conducive soil mixed with 10% (w/w) suppressive soil (CS), iv) suppressive soil treated at 80°C for 1 hr (S80), and v) suppressive soil treated with formalin (SF). By using an ultra-high-throughput sequencing approach, we identified the key bacterial and fungal taxa involved in SCN suppression. The Phylum-level investigation of bacteria revealed that Actinobacteria, Bacteroidetes, and Proteobacteria in the rhizosphere soil of soybean seedlings were more abundant in the suppressive soil than in the conducive soil. The phylum-level analysis of fungi in rhizosphere soil indicated that relative abundance of Ascomycota was higher in suppressive soil than in the conducive soil, where Basidiomycota was more abundant. Transferring suppressive soil to conducive soil increased the population of Ascomycota in the conducive soil by lowering the populations of Basidiomycota. The genera, such as, Pochonia, Purpureocillium, Fusarium, Stachybotrys that have been well documented as bio-control agents of plant nematodes were far more in the disease suppressive soils. Our results suggested that the plants engage a subset of functional microbial groups in the rhizosphere for initial defense upon nematode attack and protect the plant roots later on by nematodes to response for suppression of SCN in disease-suppressive soils.

Keywords: disease suppressive soil, high-throughput sequencing, rhizosphere microbiome, soybean cyst nematode

Procedia PDF Downloads 153
8993 A Survey of Skin Cancer Detection and Classification from Skin Lesion Images Using Deep Learning

Authors: Joseph George, Anne Kotteswara Roa

Abstract:

Skin disease is one of the most common and popular kinds of health issues faced by people nowadays. Skin cancer (SC) is one among them, and its detection relies on the skin biopsy outputs and the expertise of the doctors, but it consumes more time and some inaccurate results. At the early stage, skin cancer detection is a challenging task, and it easily spreads to the whole body and leads to an increase in the mortality rate. Skin cancer is curable when it is detected at an early stage. In order to classify correct and accurate skin cancer, the critical task is skin cancer identification and classification, and it is more based on the cancer disease features such as shape, size, color, symmetry and etc. More similar characteristics are present in many skin diseases; hence it makes it a challenging issue to select important features from a skin cancer dataset images. Hence, the skin cancer diagnostic accuracy is improved by requiring an automated skin cancer detection and classification framework; thereby, the human expert’s scarcity is handled. Recently, the deep learning techniques like Convolutional neural network (CNN), Deep belief neural network (DBN), Artificial neural network (ANN), Recurrent neural network (RNN), and Long and short term memory (LSTM) have been widely used for the identification and classification of skin cancers. This survey reviews different DL techniques for skin cancer identification and classification. The performance metrics such as precision, recall, accuracy, sensitivity, specificity, and F-measures are used to evaluate the effectiveness of SC identification using DL techniques. By using these DL techniques, the classification accuracy increases along with the mitigation of computational complexities and time consumption.

Keywords: skin cancer, deep learning, performance measures, accuracy, datasets

Procedia PDF Downloads 132
8992 Enhanced CNN for Rice Leaf Disease Classification in Mobile Applications

Authors: Kayne Uriel K. Rodrigo, Jerriane Hillary Heart S. Marcial, Samuel C. Brillo

Abstract:

Rice leaf diseases significantly impact yield production in rice-dependent countries, affecting their agricultural sectors. As part of precision agriculture, early and accurate detection of these diseases is crucial for effective mitigation practices and minimizing crop losses. Hence, this study proposes an enhancement to the Convolutional Neural Network (CNN), a widely-used method for Rice Leaf Disease Image Classification, by incorporating MobileViTV2—a recently advanced architecture that combines CNN and Vision Transformer models while maintaining fewer parameters, making it suitable for broader deployment on edge devices. Our methodology utilizes a publicly available rice disease image dataset from Kaggle, which was validated by a university structural biologist following the guidelines provided by the Philippine Rice Institute (PhilRice). Modifications to the dataset include renaming certain disease categories and augmenting the rice leaf image data through rotation, scaling, and flipping. The enhanced dataset was then used to train the MobileViTV2 model using the Timm library. The results of our approach are as follows: the model achieved notable performance, with 98% accuracy in both training and validation, 6% training and validation loss, and a Receiver Operating Characteristic (ROC) curve ranging from 95% to 100% for each label. Additionally, the F1 score was 97%. These metrics demonstrate a significant improvement compared to a conventional CNN-based approach, which, in a previous 2022 study, achieved only 78% accuracy after using 5 convolutional layers and 2 dense layers. Thus, it can be concluded that MobileViTV2, with its fewer parameters, outperforms traditional CNN models, particularly when applied to Rice Leaf Disease Image Identification. For future work, we recommend extending this model to include datasets validated by international rice experts and broadening the scope to accommodate biotic factors such as rice pest classification, as well as abiotic stressors such as climate, soil quality, and geographic information, which could improve the accuracy of disease prediction.

Keywords: convolutional neural network, MobileViTV2, rice leaf disease, precision agriculture, image classification, vision transformer

Procedia PDF Downloads 29
8991 Multi-Classification Deep Learning Model for Diagnosing Different Chest Diseases

Authors: Bandhan Dey, Muhsina Bintoon Yiasha, Gulam Sulaman Choudhury

Abstract:

Chest disease is one of the most problematic ailments in our regular life. There are many known chest diseases out there. Diagnosing them correctly plays a vital role in the process of treatment. There are many methods available explicitly developed for different chest diseases. But the most common approach for diagnosing these diseases is through X-ray. In this paper, we proposed a multi-classification deep learning model for diagnosing COVID-19, lung cancer, pneumonia, tuberculosis, and atelectasis from chest X-rays. In the present work, we used the transfer learning method for better accuracy and fast training phase. The performance of three architectures is considered: InceptionV3, VGG-16, and VGG-19. We evaluated these deep learning architectures using public digital chest x-ray datasets with six classes (i.e., COVID-19, lung cancer, pneumonia, tuberculosis, atelectasis, and normal). The experiments are conducted on six-classification, and we found that VGG16 outperforms other proposed models with an accuracy of 95%.

Keywords: deep learning, image classification, X-ray images, Tensorflow, Keras, chest diseases, convolutional neural networks, multi-classification

Procedia PDF Downloads 93
8990 Classification of Attacks Over Cloud Environment

Authors: Karim Abouelmehdi, Loubna Dali, Elmoutaoukkil Abdelmajid, Hoda Elsayed, Eladnani Fatiha, Benihssane Abderahim

Abstract:

The security of cloud services is the concern of cloud service providers. In this paper, we will mention different classifications of cloud attacks referred by specialized organizations. Each agency has its classification of well-defined properties. The purpose is to present a high-level classification of current research in cloud computing security. This classification is organized around attack strategies and corresponding defenses.

Keywords: cloud computing, classification, risk, security

Procedia PDF Downloads 548
8989 Trichoderma spp Consortium and Its Efficacy as Biological Control Agent of Ganoderma Disease of Oil Palm (Elaies guineensis Jacquin)

Authors: Habu Musa, Nusaibah Binti Syd Ali

Abstract:

Oil palm industries particularly in Malaysia and Indonesia are being devastated by Ganoderma disease caused by Ganoderma spp. To date, this disease has been causing serious oil palm yield losses and collapse of oil palm trees, thus affecting its contribution to the producer’s economy. Research on sustainable and eco-friendly remedy to counter Ganoderma disease is on the upsurge to avoid the current control measures via synthetic fungicides. Trichoderma species have been the most studied and valued microbes as biological control agents in an effort to combat a wide range of plant diseases sustainably. Therefore, in this current study, the potential of Trichoderma spp. (Trichoderma asperellum, Trichoderma harzianum, and Trichoderma virens) as a consortium approach was evaluated as biological control agents against Ganoderma disease on oil palm. The consortium of Trichoderma spp. applied found to be the most effective treatment in suppressing Ganoderma disease with 83.03% and 89.16% from the foliar and bole symptoms respectively. Besides, it exhibited tremendous enhancement in the oil palm seedling vegetative growth parameters. Also, it had highly induced significant activity of peroxidase, polyphenol oxidase and total phenolic content was recorded in the consortium treatment compared to the control treatment. Disease development was slower in the seedlings treated with consortium of Trichoderma spp. compared to the positive control, which exhibited with the highest percentage of disease severity.

Keywords: biological control, ganoderma disease, trichoderma, disease severity

Procedia PDF Downloads 277
8988 SVM-RBN Model with Attentive Feature Culling Method for Early Detection of Fruit Plant Diseases

Authors: Piyush Sharma, Devi Prasad Sharma, Sulabh Bansal

Abstract:

Diseases are fairly common in fruits and vegetables because of the changing climatic and environmental circumstances. Crop diseases, which are frequently difficult to control, interfere with the growth and output of the crops. Accurate disease detection and timely disease control measures are required to guarantee high production standards and good quality. In India, apples are a common crop that may be afflicted by a variety of diseases on the fruit, stem, and leaves. It is fungi, bacteria, and viruses that trigger the early symptoms of leaf diseases. In order to assist farmers and take the appropriate action, it is important to develop an automated system that can be used to detect the type of illnesses. Machine learning-based image processing can be used to: this research suggested a system that can automatically identify diseases in apple fruit and apple plants. Hence, this research utilizes the hybrid SVM-RBN model. As a consequence, the model may produce results that are more effective in terms of accuracy, precision, recall, and F1 Score, with respective values of 96%, 99%, 94%, and 93%.

Keywords: fruit plant disease, crop disease, machine learning, image processing, SVM-RBN

Procedia PDF Downloads 65
8987 Automatic Detection of Sugarcane Diseases: A Computer Vision-Based Approach

Authors: Himanshu Sharma, Karthik Kumar, Harish Kumar

Abstract:

The major problem in crop cultivation is the occurrence of multiple crop diseases. During the growth stage, timely identification of crop diseases is paramount to ensure the high yield of crops, lower production costs, and minimize pesticide usage. In most cases, crop diseases produce observable characteristics and symptoms. The Surveyors usually diagnose crop diseases when they walk through the fields. However, surveyor inspections tend to be biased and error-prone due to the nature of the monotonous task and the subjectivity of individuals. In addition, visual inspection of each leaf or plant is costly, time-consuming, and labour-intensive. Furthermore, the plant pathologists and experts who can often identify the disease within the plant according to their symptoms in early stages are not readily available in remote regions. Therefore, this study specifically addressed early detection of leaf scald, red rot, and eyespot types of diseases within sugarcane plants. The study proposes a computer vision-based approach using a convolutional neural network (CNN) for automatic identification of crop diseases. To facilitate this, firstly, images of sugarcane diseases were taken from google without modifying the scene, background, or controlling the illumination to build the training dataset. Then, the testing dataset was developed based on the real-time collected images from the sugarcane field from India. Then, the image dataset is pre-processed for feature extraction and selection. Finally, the CNN-based Visual Geometry Group (VGG) model was deployed on the training and testing dataset to classify the images into diseased and healthy sugarcane plants and measure the model's performance using various parameters, i.e., accuracy, sensitivity, specificity, and F1-score. The promising result of the proposed model lays the groundwork for the automatic early detection of sugarcane disease. The proposed research directly sustains an increase in crop yield.

Keywords: automatic classification, computer vision, convolutional neural network, image processing, sugarcane disease, visual geometry group

Procedia PDF Downloads 116
8986 Parkinson's Disease Gene Identification Using Physicochemical Properties of Amino Acids

Authors: Priya Arora, Ashutosh Mishra

Abstract:

Gene identification, towards the pursuit of mutated genes, leading to Parkinson’s disease, puts forward a challenge towards proactive cure of the disorder itself. Computational analysis is an effective technique for exploring genes in the form of protein sequences, as the theoretical and manual analysis is infeasible. The limitations and effectiveness of a particular computational method are entirely dependent on the previous data that is available for disease identification. The article presents a sequence-based classification method for the identification of genes responsible for Parkinson’s disease. During the initiation phase, the physicochemical properties of amino acids transform protein sequences into a feature vector. The second phase of the method employs Jaccard distances to select negative genes from the candidate population. The third phase involves artificial neural networks for making final predictions. The proposed approach is compared with the state of art methods on the basis of F-measure. The results confirm and estimate the efficiency of the method.

Keywords: disease gene identification, Parkinson’s disease, physicochemical properties of amino acid, protein sequences

Procedia PDF Downloads 141
8985 Better Defined WHO International Classification of Disease Codes for Relapsing Fever Borreliosis, and Lyme Disease Education Aiding Diagnosis, Treatment Improving Human Right to Health

Authors: Mualla McManus, Jenna Luche Thaye

Abstract:

World Health Organisation International Classification of Disease codes were created to define disease including infections in order to guide and educate diagnosticians. Most infectious diseases such as syphilis are clearly defined by their ICD 10 codes and aid/help to educate the clinicians in syphilis diagnosis and treatment globally. However, current ICD 10 codes for relapsing fever Borreliosis and Lyme disease are less clearly defined and can impede appropriate diagnosis especially if the clinician is not familiar with the symptoms of these infectious diseases. This is despite substantial number of scientific articles published in peer-reviewed journals about relapsing fever and Lyme disease. In the USA there are estimated 380,000 people annually contacting Lyme disease, more cases than breast cancer and 6x HIV/AIDS cases. This represents estimated 0.09% of the USA population. If extrapolated to the global population (7billion), 0.09% equates to 63 million people contracting relapsing fever or Lyme disease. In many regions, the rate of contracting some form of infection from tick bite may be even higher. Without accurate and appropriate diagnostic codes, physicians are impeded in their ability to properly care for their patients, leaving those patients invisible and marginalized within the medical system and to those guiding public policy. This results in great personal hardship, pain, disability, and expense. This unnecessarily burdens health care systems, governments, families, and society as a whole. With accurate diagnostic codes in place, robust data can guide medical and public health research, health policy, track mortality and save health care dollars. Better defined ICD codes are the way forward in educating the diagnosticians about relapsing fever and Lyme diseases.

Keywords: WHO ICD codes, relapsing fever, Lyme diseases, World Health Organisation

Procedia PDF Downloads 194
8984 Features Reduction Using Bat Algorithm for Identification and Recognition of Parkinson Disease

Authors: P. Shrivastava, A. Shukla, K. Verma, S. Rungta

Abstract:

Parkinson's disease is a chronic neurological disorder that directly affects human gait. It leads to slowness of movement, causes muscle rigidity and tremors. Gait serve as a primary outcome measure for studies aiming at early recognition of disease. Using gait techniques, this paper implements efficient binary bat algorithm for an early detection of Parkinson's disease by selecting optimal features required for classification of affected patients from others. The data of 166 people, both fit and affected is collected and optimal feature selection is done using PSO and Bat algorithm. The reduced dataset is then classified using neural network. The experiments indicate that binary bat algorithm outperforms traditional PSO and genetic algorithm and gives a fairly good recognition rate even with the reduced dataset.

Keywords: parkinson, gait, feature selection, bat algorithm

Procedia PDF Downloads 549
8983 Comparative Efficacy of Benomyl and Three Plant Extracts in the Control of Cowpea Anthracnose Caused by Colletotrichum lindemuthianum Sensu Lato

Authors: M. J. Falade

Abstract:

Field experiment was conducted to compare the efficacy of hot water extracts of three plants (Ricinus communis, Jatropha gossypifolia and Datura stramonium) with benomyl in the control of cowpea anthracnose disease. Three concentrations of the extracts (65, 50 and 30%) were used in the study. Result from the experiment shows that all the extracts at the tested concentration reduced the incidence and severity of the disease. D. stramonium at 65% concentration compares favourably with that of benomyl fungicide in reducing incidence and severity of infection. At 65% concentration of D. stramonium, incidence of the disease was 22% on pooled mean basis, and this was not significantly different from that of benomyl (21%). Similarly, the percentage of normal seeds recorded at this same concentration of the extract was 85% and was not significantly different from that of benomyl (86%). In terms of disease severity trace infections were observed on the cowpea plants at this concentration of the extract and that of benomyl. However, at lower concentrations of all the extracts, significant variations were observed on incidence of disease and percentage of normal seeds such that values obtained from use of benomyl were higher than those obtained from the use of the extracts. The study, therefore, shows that extracts of these indigenous plants can be used as a substitute for the benomyl fungicide in the management of anthracnose disease.

Keywords: benomyl, C. lindemuthianum, disease incidence, disease severity

Procedia PDF Downloads 284
8982 A Review: Detection and Classification Defects on Banana and Apples by Computer Vision

Authors: Zahow Muoftah

Abstract:

Traditional manual visual grading of fruits has been one of the agricultural industry’s major challenges due to its laborious nature as well as inconsistency in the inspection and classification process. The main requirements for computer vision and visual processing are some effective techniques for identifying defects and estimating defect areas. Automated defect detection using computer vision and machine learning has emerged as a promising area of research with a high and direct impact on the visual inspection domain. Grading, sorting, and disease detection are important factors in determining the quality of fruits after harvest. Many studies have used computer vision to evaluate the quality level of fruits during post-harvest. Many studies have used computer vision to evaluate the quality level of fruits during post-harvest. Many studies have been conducted to identify diseases and pests that affect the fruits of agricultural crops. However, most previous studies concentrated solely on the diagnosis of a lesion or disease. This study focused on a comprehensive study to identify pests and diseases of apple and banana fruits using detection and classification defects on Banana and Apples by Computer Vision. As a result, the current article includes research from these domains as well. Finally, various pattern recognition techniques for detecting apple and banana defects are discussed.

Keywords: computer vision, banana, apple, detection, classification

Procedia PDF Downloads 107
8981 Rejuvenation of Peanut Seedling from Collar Rot Disease by Azotobacter sp. RA2

Authors: Ravi R. Patel, Vasudev R. Thakkar

Abstract:

Use of plant growth-promoting rhizobacteria (PGPR) to increase the production and decrees disease occurrence is a recent method in agriculture. An RA2 rhizospheric culture was isolated from peanut rhizosphere from Junagadh region of Gujarat, India and showed different direct and indirect plant growth promoting activity like indole acetic acid, gibberellic acid, siderophore, hydrogen cyanide, Ammonia and (1-Aminocyclopropane-1-Carboxylate) deaminase production, N2 fixation, phosphate and potassium solubilization in vitro. RA2 was able to protect peanut germinating seedling from A. niger infection and reduce collar rot disease incidence 60-35% to 72-41% and increase germination percentage from 70-82% to 75-97% in two varieties GG20 and GG2 of peanut. RA2 was found to induce resistance in A. hypogaea L. seedlings via induction of different defense-related enzymes like phenylalanine ammonia lyase, peroxidase, polyphenol oxidase, lipoxygenase and pathogenesis related protein like chitinase, ß – 1,3- glucanase. Jasmonic acid one of the major signaling molecules of inducing systemic resistance was also found to induced due to RA2 treatments. RA2 bacterium was also promoting peanut growth and reduce A. niger infection in pot studies. 16S rDNA sequence of RA2 showed 99 % homology to Azotobacter species.

Keywords: plant growth promoting rhizobacteria, peanut, aspergillus niger, induce systemic resistance

Procedia PDF Downloads 243
8980 Review and Comparison of Associative Classification Data Mining Approaches

Authors: Suzan Wedyan

Abstract:

Data mining is one of the main phases in the Knowledge Discovery Database (KDD) which is responsible of finding hidden and useful knowledge from databases. There are many different tasks for data mining including regression, pattern recognition, clustering, classification, and association rule. In recent years a promising data mining approach called associative classification (AC) has been proposed, AC integrates classification and association rule discovery to build classification models (classifiers). This paper surveys and critically compares several AC algorithms with reference of the different procedures are used in each algorithm, such as rule learning, rule sorting, rule pruning, classifier building, and class allocation for test cases.

Keywords: associative classification, classification, data mining, learning, rule ranking, rule pruning, prediction

Procedia PDF Downloads 537