Search results for: fraud triangle analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28246

Search results for: fraud triangle analysis

28216 Design and Evaluation on Sierpinski-Triangle Acoustic Diffusers Based on Fractal Theory

Authors: Lingge Tan, Hongpeng Xu, Jieun Yang, Maarten Hornikx

Abstract:

Acoustic diffusers are important components in enhancing the quality of room acoustics. This paper provides a type of modular diffuser based on the Sierpinski Triangle of the plane and combines it with fractal theory to expand the effective frequency range. In numerical calculations and full-scale model experiments, the effect of fractal design elements on normal-incidence diffusion coefficients is examined. It is demonstrated the reasonable times of iteration of modules is three, and the coverage density is 58.4% in the design frequency from 125Hz to 4kHz.

Keywords: acoustic diffuser, fractal, Sierpinski-triangle, diffusion coefficient

Procedia PDF Downloads 158
28215 Application All Digits Number Benford Law in Financial Statement

Authors: Teguh Sugiarto

Abstract:

Background: The research aims to explore if there is fraud in a financial statement, use the Act stated that Benford's distribution all digits must compare the number will follow the trend of lower number. Research methods: This research uses all the analysis number being in Benford's law. After receiving the results of the analysis of all the digits, the author makes a distinction between implementation using the scale above and below 5%, the rate of occurrence of difference. With the number which have differences in the range of 5%, then can do the follow-up and the detection of the onset of fraud against the financial statements. The findings: From the research that has been done can be drawn the conclusion that the average of all numbers appear in the financial statements, and compare the rates of occurrence of numbers according to the characteristics of Benford's law. About the existence of errors and fraud in the financial statements of PT medco Energy Tbk did not occur. Conclusions: The study concludes that Benford's law can serve as indicator tool in detecting the possibility of in financial statements to case studies of PT Medco Energy Tbk for the fiscal year 2000-2010.

Keywords: Benford law, first digits, all digits number Benford law, financial statement

Procedia PDF Downloads 241
28214 A Comparative Study on Occupational Fraud and Prosecution

Authors: Michelle Odudu

Abstract:

Ghana and Nigeria are known for their high levels of Occupational Fraud in public offices. The governments of both countries have emphasised their commitment to reducing the losses caused to the state by pledging their allegiance to the counter-fraud agencies to help tackle Occupational Fraud. Yet it seems that the prosecution of such cases is ineffective as high-profile fraudsters can operate with immunity and their cases remain unprosecuted. This research project was based on in-depth examinations of 50 occupational fraud cases involving high-profile individuals in both countries. In doing so, it established the characteristics of those who were prosecuted; the extent to which prosecutions were effectively managed; the barriers to effective prosecutions; and the similarities or differences between the occurrences in both countries. The aim of the project is to examine the practice of and barriers to prosecution of large-scale occupational fraud of those in senior public positions in Ghana and Nigeria. The study drew on the experiences of stakeholders such as defence and prosecution barristers, academics, and fraud analysts via semi-structured interviews and questionnaires. 13 interviews were conducted in Ghana and in Nigeria, where respondents were recruited using a snowball approach. Questionnaires were physically distributed: 20 of the staff at EOCO and 10 to NGO staff in Ghana; 6 and 5 came back, respectively. The empirical data collected suggests that there is no lack of will on the agencies’ part to at least commence proceedings. However, various impediments hamper a successful completion of prosecution. Challenges were more evident in Nigeria, where agencies are less effective at retrieving stolen assets and changing social norms. This is further compounded by several cultural and political factors, which create limitations leaving many cases ‘still pending’.

Keywords: comparative, prosecution, punishment, international, whitecollar, fraud

Procedia PDF Downloads 138
28213 Efficient Credit Card Fraud Detection Based on Multiple ML Algorithms

Authors: Neha Ahirwar

Abstract:

In the contemporary digital era, the rise of credit card fraud poses a significant threat to both financial institutions and consumers. As fraudulent activities become more sophisticated, there is an escalating demand for robust and effective fraud detection mechanisms. Advanced machine learning algorithms have become crucial tools in addressing this challenge. This paper conducts a thorough examination of the design and evaluation of a credit card fraud detection system, utilizing four prominent machine learning algorithms: random forest, logistic regression, decision tree, and XGBoost. The surge in digital transactions has opened avenues for fraudsters to exploit vulnerabilities within payment systems. Consequently, there is an urgent need for proactive and adaptable fraud detection systems. This study addresses this imperative by exploring the efficacy of machine learning algorithms in identifying fraudulent credit card transactions. The selection of random forest, logistic regression, decision tree, and XGBoost for scrutiny in this study is based on their documented effectiveness in diverse domains, particularly in credit card fraud detection. These algorithms are renowned for their capability to model intricate patterns and provide accurate predictions. Each algorithm is implemented and evaluated for its performance in a controlled environment, utilizing a diverse dataset comprising both genuine and fraudulent credit card transactions.

Keywords: efficient credit card fraud detection, random forest, logistic regression, XGBoost, decision tree

Procedia PDF Downloads 72
28212 Cyberfraud Schemes: Modus Operandi, Tools and Techniques and the Role of European Legislation as a Defense Strategy

Authors: Papathanasiou Anastasios, Liontos George, Liagkou Vasiliki, Glavas Euripides

Abstract:

The purpose of this paper is to describe the growing problem of various cyber fraud schemes that exist on the internet and are currently among the most prevalent. The main focus of this paper is to provide a detailed description of the modus operandi, tools, and techniques utilized in four basic typologies of cyber frauds: Business Email Compromise (BEC) attacks, investment fraud, romance scams, and online sales fraud. The paper aims to shed light on the methods employed by cybercriminals in perpetrating these types of fraud, as well as the strategies they use to deceive and victimize individuals and businesses on the internet. Furthermore, this study outlines defense strategies intended to tackle the issue head-on, with a particular emphasis on the crucial role played by European Legislation. European legislation has proactively adapted to the evolving landscape of cyber fraud, striving to enhance cybersecurity awareness, bolster user education, and implement advanced technical controls to mitigate associated risks. The paper evaluates the advantages and innovations brought about by the European Legislation while also acknowledging potential flaws that cybercriminals might exploit. As a result, recommendations for refining the legislation are offered in this study in order to better address this pressing issue.

Keywords: business email compromise, cybercrime, European legislation, investment fraud, NIS, online sales fraud, romance scams

Procedia PDF Downloads 102
28211 A Review of How COVID-19 Has Created an Insider Fraud Pandemic and How to Stop It

Authors: Claire Norman-Maillet

Abstract:

Insider fraud, including its various synonyms such as occupational, employee or internal fraud, is a major financial crime threat whereby an employee defrauds (or attempts to defraud) their current, prospective, or past employer. ‘Employee’ covers anyone employed by the company, including contractors, directors, and part time staff; they may be a solo bad actor or working in collusion with others, whether internal or external. Insider fraud is even more of a concern given the impacts of the Coronavirus pandemic, which has generated multiple opportunities to commit insider fraud. Insider fraud is something that is not necessarily thought of as a significant financial crime threat; the focus of most academics and practitioners has historically been on that of ‘external fraud’ against businesses or entities where an individual or group has no professional ties. Without the face-to-face, ‘over the shoulder’ capabilities of staff being able to keep an eye on their employees, there is a heightened reliance on trust and transparency. With this, naturally, comes an increased risk of insider fraud perpetration. The objective of the research is to better understand how companies are impacted by insider fraud, and therefore how to stop it. This research will make both an original contribution and stimulate debate within the financial crime field. The financial crime landscape is never static – criminals are always creating new ways to perpetrate financial crime, and new legislation and regulations are implemented as attempts to strengthen controls, in addition to businesses doing what they can internally to detect and prevent it. By focusing on insider fraud specifically, the research will be more specific and will be of greater use to those in the field. To achieve the aims of the research, semi-structured interviews were conducted with 22 individuals who either work in financial services and deal with insider fraud or work within insider fraud perpetration in a recruitment or advisory capacity. This was to enable the sourcing of information from a wide range of individuals in a setting where they were able to elaborate on their answers. The principal recruitment strategy was engaging with the researcher’s network on LinkedIn. The interviews were then transcribed and analysed thematically. Main findings in the research suggest that insider fraud has been ignored owing to the denial of accepting the possibility that colleagues would defraud their employer. Whilst Coronavirus has led to a significant rise in insider fraud, this type of crime has been a major risk to businesses since their inception, however have never been given the financial or strategic backing required to be mitigated, until it's too late. Furthermore, Coronavirus should have led to companies tightening their access rights, controls and policies to mitigate the insider fraud risk. However, in most cases this has not happened. The research concludes that insider fraud needs to be given a platform upon which to be recognised as a threat to any company and given the same level of weighting and attention by Executive Committees and Boards as other types of economic crime.

Keywords: fraud, insider fraud, economic crime, coronavirus, Covid-19

Procedia PDF Downloads 70
28210 An Anatomic Approach to the Lingual Artery in the Carotid Triangle in South Indian Population

Authors: Ashwin Rai, Rajalakshmi Rai, Rajanigandha Vadgoankar

Abstract:

Lingual artery is the chief artery of the tongue and the neighboring structures pertaining to the oral cavity. At the carotid triangle, this artery arises from the external carotid artery opposite to the tip of greater cornua of hyoid bone, undergoes a tortuous course with its first part being crossed by the hypoglossal nerve and runs beneath the digastric muscle. Then it continues to supply the tongue as the deep lingual artery. The aim of this study is to draw surgeon's attention to the course of lingual artery in this area since it can be accidentally lesioned causing an extensive hemorrhage in certain surgical or dental procedures. The study was conducted on 44 formalin fixed head and neck specimens focusing on the anatomic relations of lingual artery. In this study, we found that the lingual artery is located inferior to the digastric muscle and the hypoglossal nerve contradictory to the classical description. This data would be useful during ligation of lingual artery to avoid injury to the hypoglossal nerve in surgeries related to the anterior triangle of neck.

Keywords: anterior triangle, digastric muscle, hypoglossal nerve, lingual artery

Procedia PDF Downloads 181
28209 Application of Intelligent City and Hierarchy Intelligent Buildings in Kuala Lumpur

Authors: Jalalludin Abdul Malek, Zurinah Tahir

Abstract:

When the Multimedia Super Corridor (MSC) was launched in 1995, it became the catalyst for the implementation of the intelligent city concept, an area that covers about 15 x 50 kilometres from Kuala Lumpur City Centre (KLCC), Putrajaya and Kuala Lumpur International Airport (KLIA). The concept of intelligent city means that the city has an advanced infrastructure and infostructure such as information technology, advanced telecommunication systems, electronic technology and mechanical technology to be utilized for the development of urban elements such as industries, health, services, transportation and communications. For example, the Golden Triangle of Kuala Lumpur has also many intelligent buildings developed by the private sector such as the KLCC Tower to implement the intelligent city concept. Consequently, the intelligent buildings in the Golden Triangle can be linked directly to the Putrajaya Intelligent City and Cyberjaya Intelligent City within the confines of the MSC. However, the reality of the situation is that there are not many intelligent buildings within the Golden Triangle Kuala Lumpur scope which can be considered of high-standard intelligent buildings as referred to by the Intelligence Quotient (IQ) building standard. This increases the need to implement the real ‘intelligent city’ concept. This paper aims to show the strengths and weaknesses of the intelligent buildings in the Golden Triangle by taking into account aspects of 'intelligence' in the areas of technology and infrastructure of buildings.

Keywords: intelligent city concepts, intelligent building, Golden Triangle, Kuala Lumpur

Procedia PDF Downloads 300
28208 Reservoir Characterization using Comparative Petrophysical Testing Approach Acquired with Facies Architecture Properties Analysis

Authors: Axel Priambodo, Dwiharso Nugroho

Abstract:

Studies conducted to map the reservoir properties based on facies architecture in which to determine the distribution of the petrophysical properties and calculate hydrocarbon reserves in study interval. Facies Architecture analysis begins with stratigraphic correlation that indicates the area is divided into different system tracts. The analysis of distribution patterns and compiling core analysis with facies architecture model show that there are three estuarine facies appear. Formation evaluation begins with shale volume calculation using Asquith-Krygowski and Volan Triangle Method. Proceed to the calculation of the total and effective porosity using the Bateman-Konen and Volan Triangle Method. After getting the value of the porosity calculation was continued to determine the effective water saturation and non-effective by including parameters of water resistivity and resistivity clay. The results of the research show that the Facies Architecture on the field in divided into three main facies which are Estuarine Channel, Estuarine Sand Bar, and Tidal Flat. The petrophysics analysis are done by comparing different methods also shows that the Volan Triangle Method does not give a better result of the Volume Shale than the Gamma Ray Method, but on the other hand, the Volan Triangle Methode is better on calculating porosity compared to the Bateman-Konen Method. The effective porosity distributions are affected by the distribution of the facies. Estuarine Sand Bar has a low porosity number and Estuarine Channel has a higher number of the porosity. The effective water saturation is controlled by structure where on the closure zone the water saturation is lower than the area beneath it. It caused by the hydrocarbon accumulation on the closure zone.

Keywords: petrophysics, geology, petroleum, reservoir

Procedia PDF Downloads 334
28207 Fraud Detection in Credit Cards with Machine Learning

Authors: Anjali Chouksey, Riya Nimje, Jahanvi Saraf

Abstract:

Online transactions have increased dramatically in this new ‘social-distancing’ era. With online transactions, Fraud in online payments has also increased significantly. Frauds are a significant problem in various industries like insurance companies, baking, etc. These frauds include leaking sensitive information related to the credit card, which can be easily misused. Due to the government also pushing online transactions, E-commerce is on a boom. But due to increasing frauds in online payments, these E-commerce industries are suffering a great loss of trust from their customers. These companies are finding credit card fraud to be a big problem. People have started using online payment options and thus are becoming easy targets of credit card fraud. In this research paper, we will be discussing machine learning algorithms. We have used a decision tree, XGBOOST, k-nearest neighbour, logistic-regression, random forest, and SVM on a dataset in which there are transactions done online mode using credit cards. We will test all these algorithms for detecting fraud cases using the confusion matrix, F1 score, and calculating the accuracy score for each model to identify which algorithm can be used in detecting frauds.

Keywords: machine learning, fraud detection, artificial intelligence, decision tree, k nearest neighbour, random forest, XGBOOST, logistic regression, support vector machine

Procedia PDF Downloads 153
28206 Enhanced Automated Teller Machine Using Short Message Service Authentication Verification

Authors: Rasheed Gbenga Jimoh, Akinbowale Nathaniel Babatunde

Abstract:

The use of Automated Teller Machine (ATM) has become an important tool among commercial banks, customers of banks have come to depend on and trust the ATM conveniently meet their banking needs. Although the overwhelming advantages of ATM cannot be over-emphasized, its alarming fraud rate has become a bottleneck in it’s full adoption in Nigeria. This study examined the menace of ATM in the society another cost of running ATM services by banks in the country. The researcher developed a prototype of an enhanced Automated Teller Machine Authentication using Short Message Service (SMS) Verification. The developed prototype was tested by Ten (10) respondents who are users of ATM cards in the country and the data collected was analyzed using Statistical Package for Social Science (SPSS). Based on the results of the analysis, it is being envisaged that the developed prototype will go a long way in reducing the alarming rate of ATM fraud in Nigeria.

Keywords: ATM, ATM fraud, e-banking, prototyping

Procedia PDF Downloads 329
28205 A Comprehensive Framework for Fraud Prevention and Customer Feedback Classification in E-Commerce

Authors: Samhita Mummadi, Sree Divya Nagalli, Harshini Vemuri, Saketh Charan Nakka, Sumesh K. J.

Abstract:

One of the most significant challenges faced by people in today’s digital era is an alarming increase in fraudulent activities on online platforms. The fascination with online shopping to avoid long queues in shopping malls, the availability of a variety of products, and home delivery of goods have paved the way for a rapid increase in vast online shopping platforms. This has had a major impact on increasing fraudulent activities as well. This loop of online shopping and transactions has paved the way for fraudulent users to commit fraud. For instance, consider a store that orders thousands of products all at once, but what’s fishy about this is the massive number of items purchased and their transactions turning out to be fraud, leading to a huge loss for the seller. Considering scenarios like these underscores the urgent need to introduce machine learning approaches to combat fraud in online shopping. By leveraging robust algorithms, namely KNN, Decision Trees, and Random Forest, which are highly effective in generating accurate results, this research endeavors to discern patterns indicative of fraudulent behavior within transactional data. Introducing a comprehensive solution to this problem in order to empower e-commerce administrators in timely fraud detection and prevention is the primary motive and the main focus. In addition to that, sentiment analysis is harnessed in the model so that the e-commerce admin can tailor to the customer’s and consumer’s concerns, feedback, and comments, allowing the admin to improve the user’s experience. The ultimate objective of this study is to ramp up online shopping platforms against fraud and ensure a safer shopping experience. This paper underscores a model accuracy of 84%. All the findings and observations that were noted during our work lay the groundwork for future advancements in the development of more resilient and adaptive fraud detection systems, which will become crucial as technologies continue to evolve.

Keywords: behavior analysis, feature selection, Fraudulent pattern recognition, imbalanced classification, transactional anomalies

Procedia PDF Downloads 35
28204 Generating a Functional Grammar for Architectural Design from Structural Hierarchy in Combination of Square and Equal Triangle

Authors: Sanaz Ahmadzadeh Siyahrood, Arghavan Ebrahimi, Mohammadjavad Mahdavinejad

Abstract:

Islamic culture was accountable for a plethora of development in astronomy and science in the medieval term, and in geometry likewise. Geometric patterns are reputable in a considerable number of cultures, but in the Islamic culture the patterns have specific features that connect the Islamic faith to mathematics. In Islamic art, three fundamental shapes are generated from the circle shape: triangle, square and hexagon. Originating from their quiddity, each of these geometric shapes has its own specific structure. Even though the geometric patterns were generated from such simple forms as the circle and the square, they can be combined, duplicated, interlaced, and arranged in intricate combinations. So in order to explain geometrical interaction principles between square and equal triangle, in the first definition step, all types of their linear forces individually and in the second step, between them, would be illustrated. In this analysis, some angles will be created from intersection of their directions. All angles are categorized to some groups and the mathematical expressions among them are analyzed. Since the most geometric patterns in Islamic art and architecture are based on the repetition of a single motif, the evaluation results which are obtained from a small portion, is attributable to a large-scale domain while the development of infinitely repeating patterns can represent the unchanging laws. Geometric ornamentation in Islamic art offers the possibility of infinite growth and can accommodate the incorporation of other types of architectural layout as well, so the logic and mathematical relationships which have been obtained from this analysis are applicable in designing some architecture layers and developing the plan design.

Keywords: angle, equal triangle, square, structural hierarchy

Procedia PDF Downloads 198
28203 Optimize Data Evaluation Metrics for Fraud Detection Using Machine Learning

Authors: Jennifer Leach, Umashanger Thayasivam

Abstract:

The use of technology has benefited society in more ways than one ever thought possible. Unfortunately, though, as society’s knowledge of technology has advanced, so has its knowledge of ways to use technology to manipulate people. This has led to a simultaneous advancement in the world of fraud. Machine learning techniques can offer a possible solution to help decrease this advancement. This research explores how the use of various machine learning techniques can aid in detecting fraudulent activity across two different types of fraudulent data, and the accuracy, precision, recall, and F1 were recorded for each method. Each machine learning model was also tested across five different training and testing splits in order to discover which testing split and technique would lead to the most optimal results.

Keywords: data science, fraud detection, machine learning, supervised learning

Procedia PDF Downloads 201
28202 The Advantages of Using DNA-Barcoding for Determining the Fraud in Seafood

Authors: Elif Tugce Aksun Tumerkan

Abstract:

Although seafood is an important part of human diet and categorized highly traded food industry internationally, it is remain overlooked generally in the global food security aspect. Food product authentication is the main interest in the aim of both avoids commercial fraud and to consider the risks that might be harmful to human health safety. In recent years, with increasing consumer demand for regarding food content and it's transparency, there are some instrumental analyses emerging for determining food fraud depend on some analytical methodologies such as proteomic and metabolomics. While, fish and seafood consumed as fresh previously, within advanced technology, processed or packaged seafood consumption have increased. After processing or packaging seafood, morphological identification is impossible when some of the external features have been removed. The main fish and seafood quality-related issues are the authentications of seafood contents such as mislabelling products which may be contaminated and replacement partly or completely, by lower quality or cheaper ones. For all mentioned reasons, truthful consistent and easily applicable analytical methods are needed for assurance the correct labelling and verifying of seafood products. DNA-barcoding methods become popular robust that used in taxonomic research for endangered or cryptic species in recent years; they are used for determining food traceability also. In this review, when comparing the other proteomic and metabolic analysis, DNA-based methods are allowing a chance to identification all type of food even as raw, spiced and processed products. This privilege caused by DNA is a comparatively stable molecule than protein and other molecules. Furthermore showing variations in sequence based on different species and founding in all organisms, make DNA-based analysis more preferable. This review was performed to clarify the main advantages of using DNA-barcoding for determining seafood fraud among other techniques.

Keywords: DNA-barcoding, genetic analysis, food fraud, mislabelling, packaged seafood

Procedia PDF Downloads 172
28201 Financial Statement Fraud: The Need for a Paradigm Shift to Forensic Accounting

Authors: Ifedapo Francis Awolowo

Abstract:

The unrelenting series of embarrassing audit failures should stimulate a paradigm shift in accounting. And in this age of information revolution, there is need for a constant improvement on the products or services one offers to the market in order to be relevant. This study explores the perceptions of external auditors, forensic accountants and accounting academics on whether a paradigm shift to forensic accounting can reduce financial statement frauds. Through Neo-empiricism/inductive analytical approach, findings reveal that a paradigm shift to forensic accounting might be the right step in the right direction in order to increase the chances of fraud prevention and detection in the financial statement. This research has implication on accounting education on the need to incorporate forensic accounting into present day accounting curriculum. Accounting professional bodies, accounting standard setters and accounting firms all have roles to play in incorporating forensic accounting education into accounting curriculum. Particularly, there is need to alter the ISA 240 to make the prevention and detection of frauds the responsibilities of bot those charged with the management and governance of companies and statutory auditors.

Keywords: financial statement fraud, forensic accounting, fraud prevention and detection, auditing, audit expectation gap, corporate governance

Procedia PDF Downloads 371
28200 Profit-Based Artificial Neural Network (ANN) Trained by Migrating Birds Optimization: A Case Study in Credit Card Fraud Detection

Authors: Ashkan Zakaryazad, Ekrem Duman

Abstract:

A typical classification technique ranks the instances in a data set according to the likelihood of belonging to one (positive) class. A credit card (CC) fraud detection model ranks the transactions in terms of probability of being fraud. In fact, this approach is often criticized, because firms do not care about fraud probability but about the profitability or costliness of detecting a fraudulent transaction. The key contribution in this study is to focus on the profit maximization in the model building step. The artificial neural network proposed in this study works based on profit maximization instead of minimizing the error of prediction. Moreover, some studies have shown that the back propagation algorithm, similar to other gradient–based algorithms, usually gets trapped in local optima and swarm-based algorithms are more successful in this respect. In this study, we train our profit maximization ANN using the Migrating Birds optimization (MBO) which is introduced to literature recently.

Keywords: neural network, profit-based neural network, sum of squared errors (SSE), MBO, gradient descent

Procedia PDF Downloads 479
28199 Design and Analysis of a New Dual-Band Microstrip Fractal Antenna

Authors: I. Zahraoui, J. Terhzaz, A. Errkik, El. H. Abdelmounim, A. Tajmouati, L. Abdellaoui, N. Ababssi, M. Latrach

Abstract:

This paper presents a novel design of a microstrip fractal antenna based on the use of Sierpinski triangle shape, it’s designed and simulated by using FR4 substrate in the operating frequency bands (GPS, WiMAX), the design is a fractal antenna with a modified ground structure. The proposed antenna is simulated and validated by using CST Microwave Studio Software, the simulated results presents good performances in term of radiation pattern and matching input impedance.

Keywords: dual-band antenna, fractal antenna, GPS band, modified ground structure, sierpinski triangle, WiMAX band

Procedia PDF Downloads 449
28198 Application of Two Stages Adaptive Neuro-Fuzzy Inference System to Improve Dissolved Gas Analysis Interpretation Techniques

Authors: Kharisma Utomo Mulyodinoto, Suwarno, A. Abu-Siada

Abstract:

Dissolved Gas Analysis is one of impressive technique to detect and predict internal fault of transformers by using gas generated by transformer oil sample. A number of methods are used to interpret the dissolved gas from transformer oil sample: Doernenberg Ratio Method, IEC (International Electrotechnical Commission) Ratio Method, and Duval Triangle Method. While the assessment of dissolved gas within transformer oil samples has been standardized over the past two decades, analysis of the results is not always straight forward as it depends on personnel expertise more than mathematical formulas. To get over this limitation, this paper is aimed at improving the interpretation of Doernenberg Ratio Method, IEC Ratio Method, and Duval Triangle Method using Two Stages Adaptive Neuro-Fuzzy Inference System (ANFIS). Dissolved gas analysis data from 520 faulty transformers was analyzed to establish the proposed ANFIS model. Results show that the developed ANFIS model is accurate and can standardize the dissolved gas interpretation process with accuracy higher than 90%.

Keywords: ANFIS, dissolved gas analysis, Doernenberg ratio method, Duval triangular method, IEC ratio method, transformer

Procedia PDF Downloads 153
28197 Secure Distance Bounding Protocol on Ultra-WideBand Based Mapping Code

Authors: Jamel Miri, Bechir Nsiri, Ridha Bouallegue

Abstract:

Ultra WidBand-IR physical layer technology has seen a great development during the last decade which makes it a promising candidate for short range wireless communications, as they bring considerable benefits in terms of connectivity and mobility. However, like all wireless communication they suffer from vulnerabilities in terms of security because of the open nature of the radio channel. To face these attacks, distance bounding protocols are the most popular counter measures. In this paper, we presented a protocol based on distance bounding to thread the most popular attacks: Distance Fraud, Mafia Fraud and Terrorist fraud. In our work, we study the way to adapt the best secure distance bounding protocols to mapping code of ultra-wideband (TH-UWB) radios. Indeed, to ameliorate the performances of the protocol in terms of security communication in TH-UWB, we combine the modified protocol to ultra-wideband impulse radio technology (IR-UWB). The security and the different merits of the protocols are analyzed.

Keywords: distance bounding, mapping code ultrawideband, terrorist fraud, physical layer technology

Procedia PDF Downloads 303
28196 A Comprehensive Survey on Machine Learning Techniques and User Authentication Approaches for Credit Card Fraud Detection

Authors: Niloofar Yousefi, Marie Alaghband, Ivan Garibay

Abstract:

With the increase of credit card usage, the volume of credit card misuse also has significantly increased, which may cause appreciable financial losses for both credit card holders and financial organizations issuing credit cards. As a result, financial organizations are working hard on developing and deploying credit card fraud detection methods, in order to adapt to ever-evolving, increasingly sophisticated defrauding strategies and identifying illicit transactions as quickly as possible to protect themselves and their customers. Compounding on the complex nature of such adverse strategies, credit card fraudulent activities are rare events compared to the number of legitimate transactions. Hence, the challenge to develop fraud detection that are accurate and efficient is substantially intensified and, as a consequence, credit card fraud detection has lately become a very active area of research. In this work, we provide a survey of current techniques most relevant to the problem of credit card fraud detection. We carry out our survey in two main parts. In the first part, we focus on studies utilizing classical machine learning models, which mostly employ traditional transnational features to make fraud predictions. These models typically rely on some static physical characteristics, such as what the user knows (knowledge-based method), or what he/she has access to (object-based method). In the second part of our survey, we review more advanced techniques of user authentication, which use behavioral biometrics to identify an individual based on his/her unique behavior while he/she is interacting with his/her electronic devices. These approaches rely on how people behave (instead of what they do), which cannot be easily forged. By providing an overview of current approaches and the results reported in the literature, this survey aims to drive the future research agenda for the community in order to develop more accurate, reliable and scalable models of credit card fraud detection.

Keywords: Credit Card Fraud Detection, User Authentication, Behavioral Biometrics, Machine Learning, Literature Survey

Procedia PDF Downloads 126
28195 Study on the Self-Location Estimate by the Evolutional Triangle Similarity Matching Using Artificial Bee Colony Algorithm

Authors: Yuji Kageyama, Shin Nagata, Tatsuya Takino, Izuru Nomura, Hiroyuki Kamata

Abstract:

In previous study, technique to estimate a self-location by using a lunar image is proposed. We consider the improvement of the conventional method in consideration of FPGA implementation in this paper. Specifically, we introduce Artificial Bee Colony algorithm for reduction of search time. In addition, we use fixed point arithmetic to enable high-speed operation on FPGA.

Keywords: SLIM, Artificial Bee Colony Algorithm, location estimate, evolutional triangle similarity

Procedia PDF Downloads 522
28194 The Planner's Pentangle: A Proposal for a 21st-Century Model of Planning for Sustainable Development

Authors: Sonia Hirt

Abstract:

The Planner's Triangle, an oft-cited model that visually defined planning as the search for sustainability to balance the three basic priorities of equity, economy, and environment, has influenced planning theory and practice for a quarter of a century. In this essay, we argue that the triangle requires updating and expansion. Even if planners keep sustainability as their key core aspiration at the center of their imaginary geometry, the triangle's vertices have to be rethought. Planners should move on to a 21st-century concept. We propose a Planner's Pentangle with five basic priorities as vertices of a new conceptual polygon. These five priorities are Wellbeing, Equity, Economy, Environment, and Esthetics (WE⁴). The WE⁴ concept more accurately and fully represents planning’s history. This is especially true in the United States, where public art and public health played pivotal roles in the establishment of the profession in the late 19th and early 20th centuries. It also more accurately represents planning’s future. Both health/wellness and aesthetic concerns are becoming increasingly important in the 21st century. The pentangle can become an effective tool for understanding and visualizing planning's history and present. Planning has a long history of representing urban presents and future as conceptual models in visual form. Such models can play an important role in understanding and shaping practice. For over two decades, one such model, the Planner's Triangle, stood apart as the expression of planning's pursuit for sustainability. But if the model is outdated and insufficiently robust, it can diminish our understanding of planning practice, as well as the appreciation of the profession among non-planners. Thus, we argue for a new conceptual model of what planners do.

Keywords: sustainable development, planning for sustainable development, planner's triangle, planner's pentangle, planning and health, planning and art, planning history

Procedia PDF Downloads 144
28193 A Qualitative Research of Online Fraud Decision-Making Process

Authors: Semire Yekta

Abstract:

Many online retailers set up manual review teams to overcome the limitations of automated online fraud detection systems. This study critically examines the strategies they adapt in their decision-making process to set apart fraudulent individuals from non-fraudulent online shoppers. The study uses a mix method research approach. 32 in-depth interviews have been conducted alongside with participant observation and auto-ethnography. The study found out that all steps of the decision-making process are significantly affected by a level of subjectivity, personal understandings of online fraud, preferences and judgments and not necessarily by objectively identifiable facts. Rather clearly knowing who the fraudulent individuals are, the team members have to predict whether they think the customer might be a fraudster. Common strategies used are relying on the classification and fraud scorings in the automated fraud detection systems, weighing up arguments for and against the customer and making a decision, using cancellation to test customers’ reaction and making use of personal experiences and “the sixth sense”. The interaction in the team also plays a significant role given that some decisions turn into a group discussion. While customer data represent the basis for the decision-making, fraud management teams frequently make use of Google search and Google Maps to find out additional information about the customer and verify whether the customer is the person they claim to be. While this, on the one hand, raises ethical concerns, on the other hand, Google Street View on the address and area of the customer puts customers living in less privileged housing and areas at a higher risk of being classified as fraudsters. Phone validation is used as a final measurement to make decisions for or against the customer when previous strategies and Google Search do not suffice. However, phone validation is also characterized by individuals’ subjectivity, personal views and judgment on customer’s reaction on the phone that results in a final classification as genuine or fraudulent.

Keywords: online fraud, data mining, manual review, social construction

Procedia PDF Downloads 345
28192 Seismic Performance of RC Frames Equipped with Friction Panels Under Different Slip Load Distributions

Authors: Neda Nabid, Iman Hajirasouliha, Sanaz Shirinbar

Abstract:

One of the most challenging issues in earthquake engineering is to find effective ways to reduce earthquake forces and damage to structural and non-structural elements under strong earthquakes. While friction dampers are the most efficient systems to improve the seismic performance of substandard structures, their optimum design is a challenging task. This research aims to find more appropriate slip load distribution pattern for efficient design of friction panels. Non-linear dynamic analyses are performed on 3, 5, 10, 15, and 20-story RC frame using Drain-2dx software to find the appropriate range of slip loads and investigate the effects of different distribution patterns (cantilever, uniform, triangle, and reverse triangle) under six different earthquake records. The results indicate that using triangle load distribution can significantly increase the energy dissipation capacity of the frame and reduce the maximum inter-storey drift, and roof displacement.

Keywords: friction panels, slip load, distribution patterns, RC frames, energy dissipation

Procedia PDF Downloads 437
28191 An Assessment of Impact of Financial Statement Fraud on Profit Performance of Manufacturing Firms in Nigeria: A Study of Food and Beverage Firms in Nigeria

Authors: Wale Agbaje

Abstract:

The aim of this research study is to assess the impact of financial statement fraud on profitability of some selected Nigerian manufacturing firms covering (2002-2016). The specific objectives focused on to ascertain the effect of incorrect asset valuation on return on assets (ROA) and to ascertain the relationship between improper expense recognition and return on assets (ROA). To achieve these objectives, descriptive research design was used for the study while secondary data were collected from the financial reports of the selected firms and website of security and exchange commission. The analysis of covariance (ANCOVA) was used and STATA II econometric method was used in the analysis of the data. Altman model and operating expenses ratio was adopted in the analysis of the financial reports to create a dummy variable for the selected firms from 2002-2016 and validation of the parameters were ascertained using various statistical techniques such as t-test, co-efficient of determination (R2), F-statistics and Wald chi-square. Two hypotheses were formulated and tested using the t-statistics at 5% level of significance. The findings of the analysis revealed that there is a significant relationship between financial statement fraud and profitability in Nigerian manufacturing industry. It was revealed that incorrect assets valuation has a significant positive relationship and so also is the improper expense recognition on return on assets (ROA) which serves as a proxy for profitability. The implication of this is that distortion of asset valuation and expense recognition leads to decreasing profit in the long run in the manufacturing industry. The study therefore recommended that pragmatic policy options need to be taken in the manufacturing industry to effectively manage incorrect asset valuation and improper expense recognition in order to enhance manufacturing industry performance in the country and also stemming of financial statement fraud should be adequately inculcated into the internal control system of manufacturing firms for the effective running of the manufacturing industry in Nigeria.

Keywords: Althman's Model, improper expense recognition, incorrect asset valuation, return on assets

Procedia PDF Downloads 163
28190 An Attentional Bi-Stream Sequence Learner (AttBiSeL) for Credit Card Fraud Detection

Authors: Mohsen Hasirian, Amir Shahab Shahabi

Abstract:

Modern societies, marked by expansive Internet connectivity and the rise of e-commerce, are now integrated with digital platforms at an unprecedented level. The efficiency, speed, and accessibility of e-commerce have garnered a substantial consumer base. Against this backdrop, electronic banking has undergone rapid proliferation within the realm of online activities. However, this growth has inadvertently given rise to an environment conducive to illicit activities, notably electronic payment fraud, posing a formidable challenge to the domain of electronic banking. A pivotal role in upholding the integrity of electronic commerce and business transactions is played by electronic fraud detection, particularly in the context of credit cards which underscores the imperative of comprehensive research in this field. To this end, our study introduces an Attentional Bi-Stream Sequence Learner (AttBiSeL) framework that leverages attention mechanisms and recurrent networks. By incorporating bidirectional recurrent layers, specifically bidirectional Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) layers, the proposed model adeptly extracts past and future transaction sequences while accounting for the temporal flow of information in both directions. Moreover, the integration of an attention mechanism accentuates specific transactions to varying degrees, as manifested in the output of the recurrent networks. The effectiveness of the proposed approach in automatic credit card fraud classification is evaluated on the European Cardholders' Fraud Dataset. Empirical results validate that the hybrid architectural paradigm presented in this study yields enhanced accuracy compared to previous studies.

Keywords: credit card fraud, deep learning, attention mechanism, recurrent neural networks

Procedia PDF Downloads 56
28189 Credit Card Fraud Detection with Ensemble Model: A Meta-Heuristic Approach

Authors: Gong Zhilin, Jing Yang, Jian Yin

Abstract:

The purpose of this paper is to develop a novel system for credit card fraud detection based on sequential modeling of data using hybrid deep learning models. The projected model encapsulates five major phases are pre-processing, imbalance-data handling, feature extraction, optimal feature selection, and fraud detection with an ensemble classifier. The collected raw data (input) is pre-processed to enhance the quality of the data through alleviation of the missing data, noisy data as well as null values. The pre-processed data are class imbalanced in nature, and therefore they are handled effectively with the K-means clustering-based SMOTE model. From the balanced class data, the most relevant features like improved Principal Component Analysis (PCA), statistical features (mean, median, standard deviation) and higher-order statistical features (skewness and kurtosis). Among the extracted features, the most optimal features are selected with the Self-improved Arithmetic Optimization Algorithm (SI-AOA). This SI-AOA model is the conceptual improvement of the standard Arithmetic Optimization Algorithm. The deep learning models like Long Short-Term Memory (LSTM), Convolutional Neural Network (CNN), and optimized Quantum Deep Neural Network (QDNN). The LSTM and CNN are trained with the extracted optimal features. The outcomes from LSTM and CNN will enter as input to optimized QDNN that provides the final detection outcome. Since the QDNN is the ultimate detector, its weight function is fine-tuned with the Self-improved Arithmetic Optimization Algorithm (SI-AOA).

Keywords: credit card, data mining, fraud detection, money transactions

Procedia PDF Downloads 136
28188 AI Applications in Accounting: Transforming Finance with Technology

Authors: Alireza Karimi

Abstract:

Artificial Intelligence (AI) is reshaping various industries, and accounting is no exception. With the ability to process vast amounts of data quickly and accurately, AI is revolutionizing how financial professionals manage, analyze, and report financial information. In this article, we will explore the diverse applications of AI in accounting and its profound impact on the field. Automation of Repetitive Tasks: One of the most significant contributions of AI in accounting is automating repetitive tasks. AI-powered software can handle data entry, invoice processing, and reconciliation with minimal human intervention. This not only saves time but also reduces the risk of errors, leading to more accurate financial records. Pattern Recognition and Anomaly Detection: AI algorithms excel at pattern recognition. In accounting, this capability is leveraged to identify unusual patterns in financial data that might indicate fraud or errors. AI can swiftly detect discrepancies, enabling auditors and accountants to focus on resolving issues rather than hunting for them. Real-Time Financial Insights: AI-driven tools, using natural language processing and computer vision, can process documents faster than ever. This enables organizations to have real-time insights into their financial status, empowering decision-makers with up-to-date information for strategic planning. Fraud Detection and Prevention: AI is a powerful tool in the fight against financial fraud. It can analyze vast transaction datasets, flagging suspicious activities and reducing the likelihood of financial misconduct going unnoticed. This proactive approach safeguards a company's financial integrity. Enhanced Data Analysis and Forecasting: Machine learning, a subset of AI, is used for data analysis and forecasting. By examining historical financial data, AI models can provide forecasts and insights, aiding businesses in making informed financial decisions and optimizing their financial strategies. Artificial Intelligence is fundamentally transforming the accounting profession. From automating mundane tasks to enhancing data analysis and fraud detection, AI is making financial processes more efficient, accurate, and insightful. As AI continues to evolve, its role in accounting will only become more significant, offering accountants and finance professionals powerful tools to navigate the complexities of modern finance. Embracing AI in accounting is not just a trend; it's a necessity for staying competitive in the evolving financial landscape.

Keywords: artificial intelligence, accounting automation, financial analysis, fraud detection, machine learning in finance

Procedia PDF Downloads 65
28187 The Role of Technology in Managing Election Logistics and Preventing Fraud in Nigeria and Uganda: A Comparative Analysis

Authors: Sifiso Vilakazi, Lerato Mzenzi

Abstract:

The incorporation of technology has brought about a considerable evolution in election management, providing answers to persistent issues with fraud, inefficiency, and logistical complexity. The paper offers a comparative review of the effects of technology advancements on election logistics and fraud prevention in Uganda and Nigeria. Both nations have embraced technology such as digital fraud prevention systems, biometric voter registration, and electronic results transmission while having different political environments and electoral problems. Nevertheless, these innovations' varied results raise important concerns about how technology can enhance vote integrity. For improved transparency and lower voter fraud, the Independent National Electoral Commission (INEC) of Nigeria has deployed electronic voting machines, biometric voter identification, and the INEC Result Viewing (IReV) portal. Despite these developments, technological setbacks and logistical difficulties, particularly during the 2023 elections, uncovered weaknesses that stoked distrust and electoral conflicts by exposing flaws, including device breakdowns, insufficient cybersecurity protections, and transmission delays in results. Comparably, Uganda has used electronic result transmission technologies and biometric voter verification since 2016 to increase election efficiency and combat ballot stuffing and impersonation. Nevertheless, problems, including remote logistical challenges and internet outages during the 2021 elections, have reduced the efficacy of these tools. This paper maintains that while technology might reduce election-related stress and potentially reduce fraud, its efficacy depends on several variables, such as political will, public confidence, and infrastructure. Furthermore, it draws attention to the necessity of more robust legislative frameworks, ongoing investments in cybersecurity, and implementation plans that are customized to the particular difficulties presented by each nation's voting system locally. The results imply that although technology can help Ugandan and Nigerian election management, it cannot guarantee electoral integrity and must be used in conjunction with more extensive institutional changes. Through providing insights into how African nations might use technological advancements to improve democratic governance while addressing context-specific problems, the research adds to the expanding body of literature on the use of technology in election management.

Keywords: elections, Nigeria, Uganda, Africa, management, innovation

Procedia PDF Downloads 17