Search results for: advanced oxidation technologies
6266 Optimizing Oxidation Process Parameters of Al-Li Base Alloys Using Taguchi Method
Authors: Muna K. Abbass, Laith A. Mohammed, Muntaha K. Abbas
Abstract:
The oxidation of Al-Li base alloy containing small amounts of rare earth (RE) oxides such as 0.2 wt% Y2O3 and 0.2wt% Nd2O3 particles have been studied at temperatures: 400ºC, 500ºC and 550°C for 60hr in a dry air. Alloys used in this study were prepared by melting and casting in a permanent steel mould under controlled atmosphere. Identification of oxidation kinetics was carried out by using weight gain/surface area (∆W/A) measurements while scanning electron microscopy (SEM) and x-ray diffraction analysis were used for micro structural morphologies and phase identification of the oxide scales. It was observed that the oxidation kinetic for all studied alloys follows the parabolic law in most experimental tests under the different oxidation temperatures. It was also found that the alloy containing 0.2 wt %Y 2O3 particles possess the lowest oxidation rate and shows great improvements in oxidation resistance compared to the alloy containing 0.2 wt % Nd2O3 particles and Al-Li base alloy. In this work, Taguchi method is performed to estimate the optimum weight gain /area (∆W/A) parameter in oxidation process of Al-Li base alloys to obtain a minimum thickness of oxidation layer. Taguchi method is used to formulate the experimental layout, to analyses the effect of each parameter (time, temperature and alloy type) on the oxidation generation and to predict the optimal choice for each parameter and analyzed the effect of these parameters on the weight gain /area (∆W/A) parameter. The analysis shows that, the temperature significantly affects on the (∆W/A) parameter.Keywords: Al-Li base alloy, oxidation, Taguchi method, temperature
Procedia PDF Downloads 3726265 Microstructures of Si Surfaces Fabricated by Electrochemical Anodic Oxidation with Agarose Stamps
Abstract:
This paper investigates the fabrication of microstructures on Si surfaces by using electrochemical anodic oxidation with agarose stamps. The fabricating process is based on a selective anodic oxidation reaction that occurs in the contact area between a stamp and a Si substrate. The stamp which is soaked in electrolyte previously acts as a current flow channel. After forming the oxide patterns as an etching mask, a KOH aqueous is used for the wet etching of Si. A complicated microstructure array of 1 cm2 was fabricated by the method with high accuracy.Keywords: microstructures, anodic oxidation, silicon, agarose stamps
Procedia PDF Downloads 3056264 Phenol Degradation via Photocatalytic Oxidation Using Fe Doped TiO₂
Authors: Sherif Ismail
Abstract:
Degradation of phenol-contaminated wastewater using Photocatalytic oxidation process was investigated in batch experiments using Fe doped TiO₂. Moreover, the effect of oxygen aeration on the performance of photocatalytic oxidation process by iron (Fe⁺²) doped titanium dioxide (TiO₂) was assessed. Photocatalytic oxidation using Fe doped TiO₂ effectively reduce the phenol concentration in wastewater with optimum condition of light intensity, pH, catalyst-dosing and initial concentration of phenol were 50 W/m2, 5.3, 600 mg/l and 10 mg/l respectively. The results obtained that removal efficiency of phenol was 88% after 180 min in case of N₂ addition. However, aeration by oxygen resulted in a 99% removal efficiency in 120 min. The results of photo-catalysis oxidation experiments fitted the pseudo-first-order kinetic equation with high correlation. Costs estimation of 30 m3/d full-scale photo-catalysis oxidation plant was assessed.Keywords: phenol degradation, Fe-doped TiO2, AOPs, cost analysis
Procedia PDF Downloads 1636263 Microstructure and Oxidation Behaviors of Al, Y Modified Silicide Coatings Prepared on an Nb-Si Based Ultrahigh Temperature Alloy
Authors: Xiping Guo, Jing Li
Abstract:
The microstructure of an Si-Al-Y co-deposition coating prepared on an Nb-Si based ultra high temperature alloy by pack cementation process at 1250°C for eight hours was studied. The results showed that the coating was composed of a (Nb,X)Si₂ (X represents Ti, Cr and Hf elements) outer layer, a (Ti,Nb)₅Si₄ middle layer and an Al, Cr-rich inner layer. For comparison, the oxidation behaviors of the coating at 800, 1050 and 1350°C were investigated respectively. Linear oxidation kinetics was found with the parabolic rate constants of 5.29×10⁻², 9×10⁻²and 5.81 mg² cm⁻⁴ h⁻¹, respectively. Catastrophic pesting oxidation has not been found at 800°C even for 100 h. The surface of the scale was covered by compact glassy SiO₂ film. The coating was able to effectively protect the Nb-Si based alloy from oxidation at 1350°C for at least 100 h. The formation process of the scale was testified following an epitaxial growth mechanism. The mechanism responsible for the oxidation behavior of the Si-Al-Y co-deposition coating at 800, 1050 and 1350°C was proposed.Keywords: Nb-Si based ultra high temperature alloy, oxidation resistance, pack cementation, silicide coating, Al and Y modified
Procedia PDF Downloads 4046262 Exploring Unexplored Horizons: Advanced Fluid Mechanics Solutions for Sustainable Energy Technologies
Authors: Elvira S. Castillo, Surupa Shaw
Abstract:
This paper explores advanced applications of fluid mechanics in the context of sustainable energy. By examining the integration of fluid dynamics with renewable energy technologies, the research uncovers previously underutilized strategies for improving efficiency. Through theoretical analyses, the study demonstrates how fluid mechanics can be harnessed to optimize renewable energy systems. The findings contribute to expanding knowledge in sustainable energy by offering practical insights and methodologies for future research and technological advancements to address global energy challenges.Keywords: fluid mechanics, sustainable energy, energy efficiency, green energy
Procedia PDF Downloads 506261 Investigating Water-Oxidation Using a Ru(III) Carboxamide Water Coordinated Complex
Authors: Yosra M. Badiei, Evelyn Ortiz, Marisa Portenti, David Szalda
Abstract:
Water-oxidation half-reaction is a critical reaction that can be driven by a sustainable energy source (e.g., solar or wind) and be coupled with a chemical fuel making reaction which stores the released electrons and protons from water (e.g., H₂ or methanol). The use of molecular water-oxidation catalysts (WOC) allow the rationale design of redox active metal centers and provides a better understanding of their structure-activity-relationship. Herein, the structure of a Ru(III) complex bearing a doubly deprotonated N,N'-bis(aryl)pyridine-2,6-dicarboxamide ligand which contains a water molecule in its primary coordination sphere was elucidated by single-crystal X-ray diffraction. Further spectroscopic experimental data and pH-dependent electrochemical studies reveal its water-oxidation reactivity. Emphasis on mechanistic details for O₂ formation of this complex will be addressed.Keywords: water-oxidation, catalysis, ruthenium, artificial photosynthesis
Procedia PDF Downloads 2016260 Theoretical Study of the Mechanism of the Oxidation of Linoleic Acid by 1O2
Authors: Rayenne Djemil
Abstract:
The mechanism of oxidation reaction of linoleic acid C18: 2 (9 cis12) by singlet oxygen 1O2 were theoretically investigated via using quantum chemical methods. We explored the four reaction pathways at PM3, Hartree-Fock HF and, B3LYP functional associated with the base 6-31G (d) level. The results are in favor of the first and the last reaction ways. The transition states were found by QST3 method. Thus the pathways between the transition state structures and their corresponding minima have been identified by the IRC calculations. The thermodynamic study showed that the four ways of oxidation of linoleic acid are spontaneous, exothermic and, the enthalpy values confirm that conjugate hydroperoxydes are the most favorable products.Keywords: echanism, quantum mechanics, oxidation, linoleic acid H
Procedia PDF Downloads 4466259 Oxidation of Alcohols Types Using Nano-Graphene Oxide (NGO) as Heterogeneous Catalyst
Authors: Ali Gharib, Leila Vojdanifard, Nader Noroozi Pesyan, Mina Roshani
Abstract:
We describe an efficient method for oxidation of alcohols to related aldehydes and ketones by hydrogen peroxide as oxidizing agent, under reflux conditions. Nano-graphene oxide (NGO) as a heterogeneous catalyst was used and had their activity compared with other various catalysts. This catalyst was found to be an excellent catalyst for oxidation of alcohols. The effects of various parameters, including catalyst type, nature of the substituent in the alcohols and temperature, on the yield of the carboxylic acids were studied. Nano-graphene oxide was synthesized by the oxidation of graphite powders. This nanocatalyst was found to be highly efficient in this reaction and products were obtained in good to excellent yields. The recovered nano-catalyst was successfully reused for several runs without significant loss in its catalytic activity.Keywords: nano-graphene oxide, oxidation, aldehyde, ketone, catalyst
Procedia PDF Downloads 4246258 The Examination of Parents’ Perceptions and Motivations Regarding Type 1 Diabetes Management Technologies
Authors: Maria Dora Horvath, Norbert Buzas, Zsanett Tesch
Abstract:
Diabetes management poses many unique challenges for children and their parents. The use of a diabetes management device should not be one of these challenges as the purpose of these devices is to make the management more convenient. The objective of our study was to examine how demographical, psychological and diabetes-related factors determine the choices parents make regarding their child’s diabetes management technologies and how they perceive advanced devices. We conducted the study using an online questionnaire with 318 parents (mostly mothers). The questions of the survey were about demographical, diabetes-related and psychological factors (diabetes management problems, diabetes management competence). In addition, we asked the parents opinions about advanced diabetes management devices. We expanded our data with semi-structured in-depth interviews. 61 % of the participants Self-Monitored Blood Glucose (SMBG), and 39 % used a Continuous Glucose Monitoring System (CGM). Considering insulin administration, 58 % used Multiple Daily Insulin Injections (MDII) and 42 % used Continuous Subcutaneous Insulin Infusion (CSII). Parents who used diverse combinations of diabetes management devices showed significant differences in age (parents’ and child’s), the monthly cost of diabetes, the duration of diabetes, the highest level of education and average monthly household income. CGM users perceived diabetes management problems significantly more severe than SMBG users and CSII users felt significantly more competent in diabetes management than MDII users. Avoiding CGM use due to lack of financial resources was determined by diagnosis duration. While avoiding its use by the cause of the child rejecting, it was determined by the child’s age and diabetes competence. Using MDII instead of CSII because of the child’s rejection was determined by the monthly cost of diabetes and child’s age. We conducted a complex empirical study in which we examined perceptions and experiences of advanced and less advanced diabetes management technologies comprehensively. Our study highlights the factors that fundamentally influence parents’ motivations and choices about diabetes management technologies. These results could contribute to developing diabetes management technologies more suitable for children living with type 1 diabetes and their parents.Keywords: advanced diabetes management technologies, children living with type 1 diabetes, diabetes management, motivation, parents
Procedia PDF Downloads 1356257 Self-Assembled ZnFeAl Layered Double Hydroxides as Highly Efficient Fenton-Like Catalysts
Authors: Marius Sebastian Secula, Mihaela Darie, Gabriela Carja
Abstract:
Ibuprofen is a non-steroidal anti-inflammatory drug (NSAIDs) and is among the most frequently detected pharmaceuticals in environmental samples and among the most widespread drug in the world. Its concentration in the environment is reported to be between 10 and 160 ng L-1. In order to improve the abatement efficiency of this compound for water source prevention and reclamation, the development of innovative technologies is mandatory. AOPs (advanced oxidation processes) are known as highly efficient towards the oxidation of organic pollutants. Among the promising combined treatments, photo-Fenton processes using layered double hydroxides (LDHs) attracted significant consideration especially due to their composition flexibility, high surface area and tailored redox features. This work presents the self-supported Fe, Mn or Ti on ZnFeAl LDHs obtained by co-precipitation followed by reconstruction method as novel efficient photo-catalysts for Fenton-like catalysis. Fe, Mn or Ti/ZnFeAl LDHs nano-hybrids were tested for the degradation of a model pharmaceutical agent, the anti-inflammatory agent ibuprofen, by photocatalysis and photo-Fenton catalysis, respectively, by means of a lab-scale system consisting of a batch reactor equipped with an UV lamp (17 W). The present study presents comparatively the degradation of Ibuprofen in aqueous solution UV light irradiation using four different types of LDHs. The newly prepared Ti/ZnFeAl 4:1 catalyst results in the best degradation performance. After 60 minutes of light irradiation, the Ibuprofen removal efficiency reaches 95%. The slowest degradation of Ibuprofen solution occurs in case of Fe/ZnFeAl 4:1 LDH, (67% removal efficiency after 60 minutes of process). Evolution of Ibuprofen degradation during the photo Fenton process is also studied using Ti/ZnFeAl 2:1 and 4:1 LDHs in the presence and absence of H2O2. It is found that after 60 min the use of Ti/ZnFeAl 4:1 LDH in presence of 100 mg/L H2O2 leads to the fastest degradation of Ibuprofen molecule. After 120 min, both catalysts Ti/ZnFeAl 4:1 and 2:1 result in the same value of removal efficiency (98%). In the absence of H2O2, Ibuprofen degradation reaches only 73% removal efficiency after 120 min of degradation process. Acknowledgements: This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS - UEFISCDI, project number PN-II-RU-TE-2014-4-0405.Keywords: layered double hydroxide, advanced oxidation process, micropollutant, heterogeneous Fenton
Procedia PDF Downloads 2296256 Assistive Technologies and the 'Myth' of Independent Living: A Sociological Understanding of Assistive Technologies for Locomotor Disabled in India
Authors: Pavani K. Sree, Ragahava Reddy Chandri
Abstract:
Independent living and living with dignity have been the hallmarks of the movement of the persons with disabilities across the globe against the oppression perpetuated by society in the form of social and physical structural barriers. Advancements in assistive technologies have been providing a new lease of life to persons with disabilities. However, access to these technologies is marred by the issues of affordability and availability. Poor from the developing countries find it difficult to make independent living or live with dignity because of lack of access and inability to afford the advance technologies. Class and gender appear to be key factors influencing the access to modern assistive technologies. The present paper attempts to understand the dynamics of class and gender in accessing advanced technologies in the Indian context. Based on an empirical study in which data were collected from persons with locomotor disabilities and service providers, the paper finds that the advance technologies are expensive and inaccessible to all persons with disabilities. The paper also finds that men with disabilities are prioritized by the members of the family for the use of advance technologies while women with disabilities are forced to live with not so advanced technologies. The paper finds that the state institutions working in the field of prosthetics and assistive technologies fail to deliver to the requirements of the poor. It was found that because of lack of facilities at the state institutions the cost of prosthetics, in the case of orthopedically challenged, is expensive and unaffordable for the poor. It was found that while rich male access the private services the poor women depend on the state institutions. It may be said that the social, cultural stereotypes extend not only to the state organizations but also to the use of prosthetics. Thus the notions of independent living and living with dignity in third world countries context are still elusive.Keywords: accessibility, assistive technology, class, gender, state
Procedia PDF Downloads 3006255 Inter-Filling of CaO and MgO Mixed Layer in Surface Behavior of Al-Mg Alloys Containing Al2Ca
Authors: Seong-Ho Ha, Young-Ok Yoon, Shae K. Kim
Abstract:
Oxide layer of normal Al-Mg alloy can be characterized by upper MgO and lower MgAl2O4 spinel. The formation of the MgO outmost layer occurs by the surface segregation of Mg in the initial oxidation. After then, the oxidation is proceeded with the formation of MgA12O4 spinel beneath the MgO. Growth of the oxide layer is accelerated by constant formation of MgA12O4 spinel. On the other hand, the oxidation resistance of Al-Mg alloys can be significantly improved simply by Mg+Al2Ca master alloy use as the Mg alloying element and such an improvement is attributed to the CaO/MgO mixed layer. Al-Mg alloy containing Al2Ca shows CaO as the upper layer and MgO as the lower one without MgA12O4 spinel. Such a dense oxide film acts as a protective layer. However, the CaO/MgO scale has the outmost MgO, partly, after a long time exposure to a harsh oxidation condition. The aim of this study is to investigate the inter-filling behaviour of CaO and MgO mixed layer in oxidation resistance mechanism of Al-Mg alloys containing Al2Ca. The process of outmost MgO layer formation will be clarified.Keywords: Al-Mg alloy, Al2Ca, oxidation, MgO
Procedia PDF Downloads 2836254 Comparison of Structure and Corrosion Properties of Titanium Oxide Films Prepared by Thermal Oxidation, DC Plasma Oxidation, and by the Sol-Gel
Authors: O. Çomaklı, M. Yazıcı, T. Yetim, A. F. Yetim, A. Çelik
Abstract:
In this work, TiO₂ films were deposited on Cp-Ti substrates by thermal oxidation, DC plasma oxidation, and by the sol-gel method. Microstructures of uncoated and TiO₂ film coated samples were examined by X-ray diffraction and SEM. Thin oxide film consisting of anatase (A) and rutile (R) TiO₂ structures was observed on the surface of CP-Ti by under three different treatments. Also, the more intense anatase and rutile peaks appeared at samples plasma oxidized at 700˚C. The thicknesses of films were about 1.8 μm at the TiO₂ film coated samples by sol-gel and about 2.7 μm at thermal oxidated samples, while it was measured as 3.9 μm at the plasma oxidated samples. Electrochemical corrosion behaviour of uncoated and coated specimens was mainly carried out by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) in simulated body fluid (SBF) solution. Results showed that at the plasma oxidated samples exhibited a better resistance property to corrosion than that of other treatments.Keywords: TiO₂, CP-Ti, corrosion properties, thermal oxidation, plasma oxidation, sol-gel
Procedia PDF Downloads 2826253 Advanced Technologies and Algorithms for Efficient Portfolio Selection
Authors: Konstantinos Liagkouras, Konstantinos Metaxiotis
Abstract:
In this paper we present a classification of the various technologies applied for the solution of the portfolio selection problem according to the discipline and the methodological framework followed. We provide a concise presentation of the emerged categories and we are trying to identify which methods considered obsolete and which lie at the heart of the debate. On top of that, we provide a comparative study of the different technologies applied for efficient portfolio construction and we suggest potential paths for future work that lie at the intersection of the presented techniques.Keywords: portfolio selection, optimization techniques, financial models, stochastic, heuristics
Procedia PDF Downloads 4326252 The Effect of Oxidation Stability Improvement in Calophyllum Inophyllum Palm Oil Methyl Ester Production
Authors: Natalina, Hwai Chyuan Onga, W. T. Chonga
Abstract:
Oxidation stability of biodiesel is very important in fuel handling especially for remote location of biodiesel application. Variety of feedstocks and biodiesel production process resulted many variation of biodiesel oxidation stability. The current study relates to investigation of the impact of fatty acid composition that caused by natural and production process of calophyllum inophyllum palm oil methyl ester that correlated with improvement of biodiesel oxidation stability. Firstly, biodiesel was produced from crude oil of palm oil, calophyllum inophyllum and mixing of calophyllum inophyllum and palm oil. The production process of calophyllum inophyllum palm oil methyl ester (CIPOME) was divided by including washing process and without washing. Secondly, the oxidation stability was measured from the palm oil methyl ester (POME), calophyllum inophyllum methyl ester (CIME), CIPOME with washing process and CIPOME without washing process. Then, in order to find the differences of fatty acid compositions all of the biodiesels were measured by gas chromatography analysis. It was found that mixing calophyllum inophyllum into palm oil increased the oxidation stability. Washing process influenced the CIPOME fatty acid composition, and reduction of washing process during the production process gave significant oxidation stability number of CIPOME (38 h to 114 h).Keywords: biodiesel, oxidation stability, calophyllum inophyllum, water content
Procedia PDF Downloads 2706251 A Review of Intelligent Fire Management Systems to Reduce Wildfires
Authors: Nomfundo Ngombane, Topside E. Mathonsi
Abstract:
Remote sensing and satellite imaging have been widely used to detect wildfires; nevertheless, the technologies present some limitations in terms of early wildfire detection as the technologies are greatly influenced by weather conditions and can miss small fires. The fires need to have spread a few kilometers for the technologies to provide accurate detection. The South African Advanced Fire Information System uses MODIS (Moderate Resolution Imaging Spectroradiometer) as satellite imaging. MODIS has limitations as it can exclude small fires and can fall short in validating fire vulnerability. Thus in the future, a Machine Learning algorithm will be designed and implemented for the early detection of wildfires. A simulator will be used to evaluate the effectiveness of the proposed solution, and the results of the simulation will be presented.Keywords: moderate resolution imaging spectroradiometer, advanced fire information system, machine learning algorithm, detection of wildfires
Procedia PDF Downloads 786250 Influence of Grain Shape, Size and Grain Boundary Diffusion on High Temperature Oxidation of Metal
Authors: Sneha Samal, Iva Petrikova, Bohdana Marvalova
Abstract:
Influence of grain size, shape and grain boundary diffusion at high temperature oxidation of pure metal is investigated as the function of microstructure evolution in this article. The oxidized scale depends on the geometrical parameter of the metal-scale system and grain shape, size, diffusion through boundary layers and influence of the contamination. The creation of the inner layer and the morphological structure develops from the internal stress generated during the growth of the scale. The oxidation rate depends on the cation and anion mobile transport of the metal in the inward and outward direction of the diffusion layer. Oxidation rate decreases with decreasing the grain size of the pure metal, whereas zinc deviates from this principle. A strong correlation between the surface roughness evolution, grain size, crystalline properties and oxidation mechanism of the oxidized metal was established.Keywords: high temperature oxidation, pure metals, grain size, shape and grain boundary
Procedia PDF Downloads 4976249 Student Records Management System Using Smart Cards and Biometric Technology for Educational Institutions
Authors: Patrick O. Bobbie, Prince S. Attrams
Abstract:
In recent times, the rapid change in new technologies has spurred up the way and manner records are handled in educational institutions. Also, there is a need for reliable access and ease-of use to these records, resulting in increased productivity in organizations. In academic institutions, such benefits help in quality assessments, institutional performance, and assessments of teaching and evaluation methods. Students in educational institutions benefit the most when advanced technologies are deployed in accessing records. This research paper discusses the use of biometric technologies coupled with smartcard technologies to provide a unique way of identifying students and matching their data to financial records to grant them access to restricted areas such as examination halls. The system developed in this paper, has an identity verification component as part of its main functionalities. A systematic software development cycle of analysis, design, coding, testing and support was used. The system provides a secured way of verifying student’s identity and real time verification of financial records. An advanced prototype version of the system has been developed for testing purposes.Keywords: biometrics, smartcards, identity-verification, fingerprints
Procedia PDF Downloads 4196248 Isolation of Soil Thiobacterii and Determination of Their Bio-Oxidation Activity
Authors: A. Kistaubayeva, I. Savitskaya, D. Ibrayeva, M. Abdulzhanova, N. Voronova
Abstract:
36 strains of sulfur-oxidizing bacteria were isolated in Southern Kazakhstan soda-saline soils and identified. Screening of strains according bio-oxidation (destruction thiosulfate to sulfate) and enzymatic (Thiosulfate dehydrogenises and thiosulfate reductase) activity was conducted. There were selected modes of aeration and culture conditions (pH, temperature), which provide optimum harvest cells. These strains can be used in bio-melioration technology.Keywords: elemental sulfur, oxidation activity, Тhiobacilli, fertilizers, heterotrophic S-oxidizers
Procedia PDF Downloads 3846247 Effect of Particle Size and Concentration of Pomegranate (Punica granatum l.) Peel Powder on Suppression of Oxidation of Edible Plant Oils
Authors: D. G. D. C. L. Munasinghe, M. S. Gunawardana, P. H. P. Prasanna, C. S. Ranadheera, T. Madhujith
Abstract:
Lipid oxidation is an important process that affects the shelf life of edible oils. Oxidation produces off flavors, off odors and chemical compounds that lead to adverse health effects. Chemical mechanisms such as autoxidation, photo-oxidation and thermal oxidation are responsible for lipid oxidation. Refined, Bleached and Deodorized (RBD) coconut oil, Virgin Coconut Oil (VCO) and corn oil are widely used plant oils. Pomegranate fruit is known to possess high antioxidative efficacy. Peel of pomegranate contains high antioxidant activity than aril and pulp membrane. The study attempted to study the effect of particle size and concentration of pomegranate peel powder on suppression of oxidation of RBD coconut oil, VCO and corn oil. Pomegranate peel powder was incorporated into each oil sample as micro (< 250 µm) and nano particles (280 - 300 nm) at 100 ppm and 200 ppm concentrations. The control sample of each oil was prepared, devoid of pomegranate peel powder. The stability of oils against autoxidation was evaluated by storing oil samples at 60 °C for 28 days. The level of oxidation was assessed by peroxide value and thiobarbituric acid reactive substances on 0,1,3,5,7,14 and 28 day, respectively. VCO containing pomegranate particles of 280 - 300 nm at 200 ppm showed the highest oxidative stability followed by RBD coconut oil and corn oil. Results revealed that pomegranate peel powder with 280 - 300 nm particle size at 200 ppm concentration was the best in mitigating oxidation of RBD coconut oil, VCO and corn oil. There is a huge potential of utilizing pomegranate peel powder as an antioxidant agent in reducing oxidation of edible plant oils.Keywords: antioxidant, autoxidation, micro particles, nano particles, pomegranate peel powder
Procedia PDF Downloads 4536246 Characteristic of Oxidation Resistant High-Entropy Alloys for Application in Zero-Emission Technologies
Authors: Wojciech J. Nowak, Natalia Maciaszek, Marcin Drajewicz
Abstract:
A constant requirement to reduce greenhouse gas emissions in combination with the desire to increase gas turbine efficiency results in a continuous trend to increase the operating temperature of gas turbines. An increase in operating temperature will result in lower fuel consumption, and a higher combustion temperature will result in lower pollution release. Moreover, there is a strong trend for hydrogen to be used as an alternative and clean fuel. However, using hydrogen or hydrogen-rich fuel results in a higher combustion temperature, as well as an increase in the water vapor content in the exhaust gases. Commonly used Ni-base alloys have their limits. Moreover, the presence of water vapor worsens the oxidation behavior of Ni-based alloys at a high temperature. Therefore, a new brand of materials is demanded to be used in gas turbines operated with hydrogen-rich fuel. High-entropy alloys (HEAs) seem to be very promising materials to replace commonly used Ni-based alloys. HEAs are the group of materials consisting of at least five main equiatomic elements. These alloys can be doped by other elements in amounts less than 5 at. % in total. Thus, in the present study, NiCoCrAlFe-X alloys are studied in terms of oxidation behavior during exposure to dry and wet atmospheres up to 1000 h. NiCoCrAlFe-X alloys are doped with minor alloying elements in amounts ranging from 1-5 at.%. The effect of the chemical composition on oxidation resistance in dry and wet atmospheres will be shown and discussed.Keywords: high entropy alloys, oxidation resistance, hydrogen fuel, water vapor
Procedia PDF Downloads 496245 Application of Tocopherol as Antioxidant to Reduce Decomposition Process on Palm Oil Biodiesel
Authors: Supriyono, Sumardiyono, Rendy J. Pramono
Abstract:
Biodiesel is one of the alternative fuels promising for substituting petrodiesel as energy source which has an advantage as it is sustainable and eco-friendly. Due to the raw material that tends to decompose during storage, biodiesel also has the same characteristic that tends to decompose during storage. Biodiesel decomposition will form higher acid value as the result of oxidation to double bond on a fatty acid compound on biodiesel. Thus, free fatty acid value could be used to evaluate degradation of biodiesel due to the oxidation process. High free fatty acid on biodiesel could impact on the engine performance. Decomposition of biodiesel due to oxidation reaction could prevent by introducing a small amount of antioxidant. The origin of raw materials and the process for producing biodiesel will determine the effectiveness of antioxidant. Biodiesel made from high free fatty acid (FFA) crude palm oil (CPO) by using two steps esterification is vulnerable to oxidation process which is resulted in increasing on the FFA value. Tocopherol also known as vitamin E is one of the antioxidant that could improve the stability of biodiesel due to decomposition by the oxidation process. Tocopherol 0.5% concentration on palm oil biodiesel could reduce 13% of increasing FFA under temperature 80 °C and exposing time 180 minute.Keywords: antioxidant, palm oil biodiesel, decomposition, oxidation, tocopherol
Procedia PDF Downloads 3546244 High Temperature Oxidation Behavior of Aluminized Steel by Arc Spray and Cementation Techniques
Authors: Minoo Tavakoli, Alireza Kiani Rashid, Abbas Afrasiabi
Abstract:
An aluminum coating deposited on mild steel substrate by electric arc spray and diffused to the base steel material by diffusion treatment at 800 and 900°C for 1 and 3 hours in a static air. Alloy layers formed by diffusion at both temperatures were investigated, and their features were compared with those of pack cementation aluminized steel. High-temperature oxidation tests were carried out in air at 600 °C for 145 hours. Results indicated that the aluminide coatings obtained from this process have significantly improved the high-temperature oxidation resistance in both methods due to the Al2O3 scale formation. Furthermore, it showed that the isothermal oxidation resistance of arc spray technique is better than pack cementation method. This can be attributed to voids that formed at the intermetallic layer /Al layer interface which is increased in the pack cementation method.Keywords: electric arc spray, pack cementation, oxidation resistance, aluminized steel
Procedia PDF Downloads 4686243 Degradation of Chlorpyrifos Pesticide in Aqueous Solution and Chemical Oxygen Demand from Real Effluent with Hydrodynamic Cavitation Approach
Authors: Shrikant Randhavane, Anjali Khambete
Abstract:
Use of Pesticides is vital in attaining food security and protection from harmful pests and insects in living environment. Chlorpyrifos, an organophosphate pesticide is widely used worldwide for various purposes. Due to its wide use and applications, its residues are found in environmental matrices and persist in nature for long duration of time. This has an adverse effect on human, aquatic and living bodies. Use of different methodologies is need of an hour to treat such type of recalcitrant compound. The paper focuses on Hydrodynamic Cavitation (HC), a hybrid Advanced Oxidation Potential (AOP) method to degrade Chlorpyrifos in aqueous water. Obtained results show that optimum inlet pressure of 5 bars gave maximum degradation of 99.25% for lower concentration and 87.14% for higher concentration Chlorpyrifos solution in 1 hour treatment time. Also, with known initial concentrations, comparing treatment time with optimum pressure of 5 bars, degradation efficiency increases with Hydrodynamic Cavitation. The potential application of HC in removal of Chemical Oxygen Demand (COD) from real effluent with venturi as cavitating device reveals around 40% COD removal with 1 hour of treatment time.Keywords: advanced oxidation potential, cavitation, chlorpyrifos, COD
Procedia PDF Downloads 2196242 Influence of a Cationic Membrane in a Double Compartment Filter-Press Reactor on the Atenolol Electro-Oxidation
Authors: Alan N. A. Heberle, Salatiel W. Da Silva, Valentin Perez-Herranz, Andrea M. Bernardes
Abstract:
Contaminants of emerging concern are substances widely used, such as pharmaceutical products. These compounds represent risk for both wild and human life since they are not completely removed from wastewater by conventional wastewater treatment plants. In the environment, they can be harm even in low concentration (µ or ng/L), causing bacterial resistance, endocrine disruption, cancer, among other harmful effects. One of the most common taken medicine to treat cardiocirculatory diseases is the Atenolol (ATL), a β-Blocker, which is toxic to aquatic life. In this way, it is necessary to implement a methodology, which is capable to promote the degradation of the ATL, to avoid the environmental detriment. A very promising technology is the advanced electrochemical oxidation (AEO), which mechanisms are based on the electrogeneration of reactive radicals (mediated oxidation) and/or on the direct substance discharge by electron transfer from contaminant to electrode surface (direct oxidation). The hydroxyl (HO•) and sulfate (SO₄•⁻) radicals can be generated, depending on the reactional medium. Besides that, at some condition, the peroxydisulfate (S₂O₈²⁻) ion is also generated from the SO₄• reaction in pairs. Both radicals, ion, and the direct contaminant discharge can break down the molecule, resulting in the degradation and/or mineralization. However, ATL molecule and byproducts can still remain in the treated solution. On this wise, some efforts can be done to implement the AEO process, being one of them the use of a cationic membrane to separate the cathodic (reduction) from the anodic (oxidation) reactor compartment. The aim of this study is investigate the influence of the implementation of a cationic membrane (Nafion®-117) to separate both cathodic and anodic, AEO reactor compartments. The studied reactor was a filter-press, with bath recirculation mode, flow 60 L/h. The anode was an Nb/BDD2500 and the cathode a stainless steel, both bidimensional, geometric surface area 100 cm². The solution feeding the anodic compartment was prepared with ATL 100 mg/L using Na₂SO₄ 4 g/L as support electrolyte. In the cathodic compartment, it was used a solution containing Na₂SO₄ 71 g/L. Between both solutions was placed the membrane. The applied currents densities (iₐₚₚ) of 5, 20 and 40 mA/cm² were studied over 240 minutes treatment time. Besides that, the ATL decay was analyzed by ultraviolet spectroscopy (UV/Vis). The mineralization was determined performing total organic carbon (TOC) in TOC-L CPH Shimadzu. In the cases without membrane, the iₐₚₚ 5, 20 and 40 mA/cm² resulted in 55, 87 and 98 % ATL degradation at the end of treatment time, respectively. However, with membrane, the degradation, for the same iₐₚₚ, was 90, 100 and 100 %, spending 240, 120, 40 min for the maximum degradation, respectively. The mineralization, without membrane, for the same studied iₐₚₚ, was 40, 55 and 72 %, respectively at 240 min, but with membrane, all tested iₐₚₚ reached 80 % of mineralization, differing only in the time spent, 240, 150 and 120 min, for the maximum mineralization, respectively. The membrane increased the ATL oxidation, probably due to avoid oxidant ions (S₂O₈²⁻) reduction on the cathode surface.Keywords: contaminants of emerging concern, advanced electrochemical oxidation, atenolol, cationic membrane, double compartment reactor
Procedia PDF Downloads 1366241 Efficiently Degradation of Perfluorooctanoic Acid, an Emerging Contaminant, by a Hybrid Process of Membrane Distillation Process and Electro-Fenton
Authors: Afrouz Yousefi, Mohtada Sadrzadeh
Abstract:
The widespread presence of poly- and perfluoroalkyl substances (PFAS) poses a significant concern due to their ability to accumulate in living organisms and their persistence in the environment, thanks to their robust carbon-fluorine (C-F) bonds, which require substantial energy to break (485 kJ/mol). The prevalence of toxic PFAS compounds can be highly detrimental to ecosystems, wildlife, and human health. Ongoing efforts are dedicated to investigating methods for fully breaking down and eliminating PFAS from the environment. Among the various techniques employed, advanced oxidation processes have shown promise in completely breaking down emerging contaminants in wastewater. However, the drawback lies in the relatively slow reaction rates of these processes and the substantial energy input required, which currently impedes their widespread commercial adoption. We developed a hybrid process, comprising electro-Fenton as an advanced oxidation process and membrane distillation, to simultaneously degrade organic PFAS pollutants and extract pure water from the mixture. In this study, environmentally persistent perfluorooctanoic acid (PFOA), as an emerging contaminant, was used to study the effectiveness of the electro-Fenton/membrane distillation hybrid system. The PFOA degradation studies were conducted in two modes: electro-Fenton and electro-Fenton coupled with membrane distillation. High-performance liquid chromatography with ultraviolet detection (HPLC-UV), ion-chromatography (measuring fluoride ion concentration), total organic carbon (TOC) decay, mineralization current efficiency (MCE), and specific energy consumption (SEC) were evaluated for a single EF and hybrid EF-MD processes. In contrast to a single EF reaction, TOC decay improved significantly in the EF-MD process. Overall, the MCE of hybrid processes surpassed 100% while it remained under 50% for a single EF reaction. Calculations of specific energy consumption (SEC) demonstrated a substantial decrease of nearly one-third in energy usage when integrating the EF reaction with the MD process.Keywords: water treatment, PFAS, membrane distillation, electro-Fenton, advanced oxidation
Procedia PDF Downloads 636240 Fenton Sludge's Catalytic Ability with Synergistic Effects During Reuse for Landfill Leachate Treatment
Authors: Mohd Salim Mahtab, Izharul Haq Farooqi, Anwar Khursheed
Abstract:
Advanced oxidation processes (AOPs) based on Fenton are versatile options for treating complex wastewaters containing refractory compounds. However, the classical Fenton process (CFP) has limitations, such as high sludge production and reagent dosage, which limit its broad use and result in secondary contamination. As a result, long-term solutions are required for process intensification and the removal of these impediments. This study shows that Fenton sludge could serve as a catalyst in the Fe³⁺/Fe²⁺ reductive pathway, allowing non-regenerated sludge to be reused for complex wastewater treatment, such as landfill leachate treatment, even in the absence of Fenton's reagents. Experiments with and without pH adjustments in stages I and II demonstrated that an acidic pH is desirable. Humic compounds in leachate could improve the cycle of Fe³⁺/Fe²⁺ under optimal conditions, and the chemical oxygen demand (COD) removal efficiency was 22±2% and 62±2%% in stages I and II, respectively. Furthermore, excellent total suspended solids (TSS) removal (> 95%) and color removal (> 80%) were obtained in stage II. The processes underlying synergistic (oxidation/coagulation/adsorption) effects were addressed. The design of the experiment (DOE) is growing increasingly popular and has thus been implemented in the chemical, water, and environmental domains. The relevance of the statistical model for the desired response was validated using the explicitly stated optimal conditions. The operational factors, characteristics of reused sludge, toxicity analysis, cost calculation, and future research objectives were also discussed. Reusing non-regenerated Fenton sludge, according to the study's findings, can minimize hazardous solid toxic emissions and total treatment costs.Keywords: advanced oxidation processes, catalysis, Fe³⁺/Fe²⁺ cycle, fenton sludge
Procedia PDF Downloads 896239 Reducing Environmental Impact of Olive Oil Production in Sakaka City Using Combined Chemical, Physical, and Biological Treatment
Authors: Abdullah Alhajoj, Bassam Alowaiesh
Abstract:
This work aims to reduce the risks of discharging olive mill waste directly to the environment without treatment in Sakaka City, KSA. The organic loads expressed by chemical oxygen demand (COD) and biological oxygen demand (BOD) of the produced wastewater (OMWW) as well as the solid waste (OMW) were evaluated. The wastes emitted from the three-phase centrifuge decanters was found to be higher than that emitted from the two-phase centrifuge decanters. The olive mill wastewater (OMWW) was treated using advanced oxidation combined with filtration treatment. The results indicated that the concentration of COD, BOD, TSS, oil and grease and phenol was reduced by using complex sand filtration from 72150, 21660 10256, 36430, and 1470 mg/l to 980, 421, 58, 68, and 0.35 mg/l for three-phase OMWW and from 150562, 17955, 15325, 19658 and 2153 mg/l to 1050, 501, 29, 0.75, and 0.29 mg/l, respectively. While, by using modified trickling filter (packed with the neck of waste plastic bottles the concentration of the previously mentioned parameters was reduced to 1190, 570, 55, 0.85, and 0.3 mg/l, respectively. This work supports the application of such treatment technique for reducing the environmental threats of olive mill waste effluents in Saudi Arabia.Keywords: two-phase, three-phase, olive mill, olive oil, waste treatment, filtration, advanced oxidation, waste plastic bottles
Procedia PDF Downloads 1536238 Treatment of Cutting Oily-Wastewater by Sono-Fenton Process: Experimental Approach and Combined Process
Authors: Pisut Painmanakul, Thawatchai Chintateerachai, Supanid Lertlapwasin, Nusara Rojvilavan, Tanun Chalermsinsuwan, Nattawin Chawaloesphonsiya, Onanong Larpparisudthi
Abstract:
Conventional coagulation, advance oxidation process (AOPs), and the combined process were evaluated and compared for its suitability to treat the stabilized cutting-oil wastewater. The 90% efficiency was obtained from the coagulation at Al2(SO4)3 dosage of 150 mg/L and pH 7. On the other hands, efficiencies of AOPs for 30 minutes oxidation time were 10% for acoustic oxidation, 12% for acoustic oxidation with hydrogen peroxide, 76% for Fenton, and 92% sono-Fenton processes. The highest efficiency for effective oil removal of AOPs required large amount of chemical. Therefore, AOPs were studied as a post-treatment after conventional separation process. The efficiency was considerable as the effluent COD can pass the standard required for industrial wastewater discharge with less chemical and energy consumption.Keywords: cutting oily-wastewater, advance oxidation process, sono-fenton, combined process
Procedia PDF Downloads 3556237 Ultra-Low NOx Combustion Technology of Liquid Fuel Burner
Authors: Sewon Kim, Changyeop Lee
Abstract:
A new concept of in-furnace partial oxidation combustion is successfully applied in this research. The burner is designed such that liquid fuel is prevaporized in the furnace then injected into a fuel rich combustion zone so that a partial oxidation reaction occurs. The effects of equivalence ratio, thermal load, injection distance and fuel distribution ratio on the NOx and CO are experimentally investigated. This newly developed burner showed very low NOx emission level, about 15 ppm when light oil is used as a fuel.Keywords: burner, low NOx, liquid fuel, partial oxidation
Procedia PDF Downloads 342