Search results for: Cecilia Diaz
163 Causal Modeling of the Glucose-Insulin System in Type-I Diabetic Patients
Authors: J. Fernandez, N. Aguilar, R. Fernandez de Canete, J. C. Ramos-Diaz
Abstract:
In this paper, a simulation model of the glucose-insulin system for a patient undergoing diabetes Type 1 is developed by using a causal modeling approach under system dynamics. The OpenModelica simulation environment has been employed to build the so called causal model, while the glucose-insulin model parameters were adjusted to fit recorded mean data of a diabetic patient database. Model results under different conditions of a three-meal glucose and exogenous insulin ingestion patterns have been obtained. This simulation model can be useful to evaluate glucose-insulin performance in several circumstances, including insulin infusion algorithms in open-loop and decision support systems in closed-loop.Keywords: causal modeling, diabetes, glucose-insulin system, diabetes, causal modeling, OpenModelica software
Procedia PDF Downloads 330162 An Analysis of How Students Perceive Their Self-Efficacy in Online Speaking Classes
Authors: Heny Hartono, Cecilia Titiek Murniati
Abstract:
The pandemic has given teachers and students no other choice but having full online learning. In such an emergency situation as the time of the covid-19 pandemic, the application of LMS (Learner Management System) in higher education is the most reasonable solution for students and teachers. In fact, the online learning requires all elements of a higher education systems, including the human resources, infrastructure, and supporting systems such as the application, server, and stable internet connection. The readiness of the higher education institution in preparing the online system may secure those who are involved in the online learning process. It may also result in students’ self-efficacy in online learning. This research aimed to investigate how students perceive their self-efficacy in online English learning, especially in speaking classes which is considered as a productive language skill. This research collects qualitative data with narrative inquiry involving 25 students of speaking classes as the respondents. The results of this study show that students perceive their self-efficacy in speaking online classes as not very high.Keywords: self-efficacy, online learning, speaking class, college students, e-learning
Procedia PDF Downloads 99161 Pre-Service EFL Teachers' Perceptions of Written Corrective Feedback in a Wiki-Based Environment
Authors: Mabel Ortiz, Claudio Díaz
Abstract:
This paper explores Chilean pre-service teachers' perceptions about the provision of corrective feedback in a wiki environment during the collaborative writing of an argumentative essay. After conducting a semi-structured interview on 22 participants, the data were processed through the content analysis technique. The results show that students have positive perceptions about corrective feedback, provided through a wiki virtual environment, which in turn facilitates feedback provision and impacts language learning effectively. Some of the positive perceptions about virtual feedback refer to permanent access, efficiency, simultaneous revision and immediacy. It would then be advisable to integrate wiki-based feedback as a methodology for the language classroom and collaborative writing tasks.Keywords: argumentative essay, focused corrective feedback, perception, wiki environment
Procedia PDF Downloads 292160 Spatial Analysis of Park and Ride Users’ Dynamic Accessibility to Train Station: A Case Study in Perth
Authors: Ting (Grace) Lin, Jianhong (Cecilia) Xia, Todd Robinson
Abstract:
Accessibility analysis, examining people’s ability to access facilities and destinations, is a fundamental assessment for transport planning, policy making, and social exclusion research. Dynamic accessibility which measures accessibility in real-time traffic environment has been an advanced accessibility indicator in transport research. It is also a useful indicator to help travelers to understand travel time daily variability, assists traffic engineers to monitor traffic congestions, and finally develop effective strategies in order to mitigate traffic congestions. This research involved real-time traffic information by collecting travel time data with 15-minute interval via the TomTom® API. A framework for measuring dynamic accessibility was then developed based on the gravity theory and accessibility dichotomy theory through space and time interpolation. Finally, the dynamic accessibility can be derived at any given time and location under dynamic accessibility spatial analysis framework.Keywords: dynamic accessibility, hot spot, transport research, TomTom® API
Procedia PDF Downloads 389159 The Public Law Studies: Relationship Between Accountability, Environmental Education and Smart Cities
Authors: Aline Alves Bandeira, Luís Pedro Lima, Maria Cecília de Paula Silva, Paulo Henrique de Viveiros Tavares
Abstract:
Nowadays, the study of public policies regarding management efficiency is essential. Public policies are about what governments do or do not do, being an area that has grown worldwide, contributing through the knowledge of technologies and methodologies that monitor and evaluate the performance of public administrators. The information published on official government websites needs to provide for transparency and responsiveness of managers. Thus, transparency is a primordial factor for the execution of Accountability, providing, in this way, services to the citizen with the expansion of transparent, efficient, democratic information and that value administrative eco-efficiency. The ecologically balanced management of a Smart City must optimize environmental education, building a fairer society, which brings about equality in the use of quality environmental resources. Smart Cities add value in the construction of public management, enabling interaction between people, enhancing environmental education and the practical applicability of administrative eco-efficiency, fostering economic development and improving the quality of life.Keywords: accountability, environmental education, new public administration, smart cities
Procedia PDF Downloads 128158 Cardiovascular Modeling Software Tools in Medicine
Authors: J. Fernandez, R. Fernandez de Canete, J. Perea-Paizal, J. C. Ramos-Diaz
Abstract:
The high prevalence of cardiovascular diseases has provoked a raising interest in the development of mathematical models in order to evaluate the cardiovascular function both under physiological and pathological conditions. In this paper, a physical model of the cardiovascular system with intrinsic regulation is presented and implemented by using the object-oriented Modelica simulation software tools. For this task, a multi-compartmental system previously validated with physiological data has been built, based on the interconnection of cardiovascular elements such as resistances, capacitances and pumping among others, by following an electrohydraulic analogy. The results obtained under both physiological and pathological scenarios provide an easy interpretative key to analyze the hemodynamic behavior of the patient. The described approach represents a valuable tool in the teaching of physiology for graduate medical and nursing students among others.Keywords: cardiovascular system, MODELICA simulation software, physical modelling, teaching tool
Procedia PDF Downloads 300157 Bioproduction of Phytohormones by Liquid Fermentation Using a Mexican Strain of Botryodiplodia theobromae
Authors: Laredo Alcalá Elan Iñaky, Hernandez Castillo Daniel, Martinez Hernandez José Luis, Arredondo Valdes Roberto, Gonzalez Gallegos Esmeralda, Anguiano Cabello Julia Cecilia
Abstract:
Plant hormones are a group of molecules that control different processes ranging from the growth and development of the plant until their response to biotic and abiotic stresses. In this study, the capacity of production of various phytohormones was evaluated from a strain of Botryodiplodia theobromae by liquid fermentation system using the modified Mierch medium added with a hydrolyzate compound of mead all in a reactor without agitation at 28 °C for 15 days. Quantification of the metabolites was performed using high performance liquid chromatography techniques. The results showed that a microbial broth with at least five different types of plant hormones was obtained: gibberellic acid, zeatin, kinetin, indoleacetic acid and jasmonic acid, the last one was higher than the others metabolites produced. The production of such hormones using a single type of microorganism could be in the future a great alternative to reduce production costs and similarly reduce the use of synthetic chemicals.Keywords: biosystem, plant hormones, Botryodiplodia theobromae, fermentation
Procedia PDF Downloads 404156 Corporate Governance and Firms` Performance: Evidence from Quoted Firms on the Nigerian Stock Exchange
Authors: Ogunwole Cecilia Oluwakemi, Wahid Damilola Olanipekun, Omoyele Olufemi Samuel, Timothy Ayomitunde Aderemi
Abstract:
The issues relating to corporate governance in both locally and internationally managed firms cannot be overemphasized because the lack of efficient corporate governance could orchestrate serious problems in any organization. Against this backdrop, this study examines the nexus between corporate governance and performance of firms from 2012 to 2020, using the case study of the Nigerian stock exchange. Consequently, data was collected from forty (40) listed firms on the Nigerian Stock Exchange. The study employed a fixed effect technique of estimation to address the objective of the study. It was discovered from the study that the influence of corporate governance components such as gender diversity, board independence and managerial ownership led to a significant positive impact on the performance of the firms under the investigation. In view of the above finding, this study makes the following recommendations for the policymakers in Nigeria that anytime the goal of the policymakers is the improvement of performance of the listed firms in the Nigerian stock exchange, board independence and a balance in the inclusion of male and female among the board of directors should be encouraged in these firms.Keywords: corporate, governance, firms, performance, Nigeria, stock, exchange
Procedia PDF Downloads 176155 Ionic Liquid 1-Butyl-3-Methylimidazolium Bromide as Reaction Medium for the Synthesis of Flavanones under Solvent-Free Conditions
Authors: Cecilia Espindola, Juan Carlos Palacios
Abstract:
Flavonoids are a large group of natural compounds which are found in many fruits and vegetables. A subgroup of these called flavanones display a wide range of biological activities, and they also have an important physiological role in plants. The ionic liquid (ILs) are compounds consisting of an organic cation with an organic or inorganic anion. Due to its unique properties such as high electrical conductivity, wide temperature range of the liquid state, thermal and electrochemical stability, high ionic density and low volatility and flammability, are considered as ecological solvents in organic synthesis, catalysis, electrolytes in accumulators, and electrochemistry, non-volatile plasticizers, and chemical separation. It was synthesized ionic liquid IL 1-butyl-3-methylimidazolium bromide free-solvent and used as reaction medium for flavanones synthesis, under several reaction conditions of temperature, time and production. The obtained compounds were analyzed by melting point, elemental analysis, IR and UV-vis spectroscopy.Keywords: 1-butyl-3-methylimidazolium bromide, flavonoids, free-solvent, IR spectroscopy
Procedia PDF Downloads 120154 Assessment of DNA Sequence Encoding Techniques for Machine Learning Algorithms Using a Universal Bacterial Marker
Authors: Diego Santibañez Oyarce, Fernanda Bravo Cornejo, Camilo Cerda Sarabia, Belén Díaz Díaz, Esteban Gómez Terán, Hugo Osses Prado, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán
Abstract:
The advent of high-throughput sequencing technologies has revolutionized genomics, generating vast amounts of genetic data that challenge traditional bioinformatics methods. Machine learning addresses these challenges by leveraging computational power to identify patterns and extract information from large datasets. However, biological sequence data, being symbolic and non-numeric, must be converted into numerical formats for machine learning algorithms to process effectively. So far, some encoding methods, such as one-hot encoding or k-mers, have been explored. This work proposes additional approaches for encoding DNA sequences in order to compare them with existing techniques and determine if they can provide improvements or if current methods offer superior results. Data from the 16S rRNA gene, a universal marker, was used to analyze eight bacterial groups that are significant in the pulmonary environment and have clinical implications. The bacterial genes included in this analysis are Prevotella, Abiotrophia, Acidovorax, Streptococcus, Neisseria, Veillonella, Mycobacterium, and Megasphaera. These data were downloaded from the NCBI database in Genbank file format, followed by a syntactic analysis to selectively extract relevant information from each file. For data encoding, a sequence normalization process was carried out as the first step. From approximately 22,000 initial data points, a subset was generated for testing purposes. Specifically, 55 sequences from each bacterial group met the length criteria, resulting in an initial sample of approximately 440 sequences. The sequences were encoded using different methods, including one-hot encoding, k-mers, Fourier transform, and Wavelet transform. Various machine learning algorithms, such as support vector machines, random forests, and neural networks, were trained to evaluate these encoding methods. The performance of these models was assessed using multiple metrics, including the confusion matrix, ROC curve, and F1 Score, providing a comprehensive evaluation of their classification capabilities. The results show that accuracies between encoding methods vary by up to approximately 15%, with the Fourier transform obtaining the best results for the evaluated machine learning algorithms. These findings, supported by the detailed analysis using the confusion matrix, ROC curve, and F1 Score, provide valuable insights into the effectiveness of different encoding methods and machine learning algorithms for genomic data analysis, potentially improving the accuracy and efficiency of bacterial classification and related genomic studies.Keywords: DNA encoding, machine learning, Fourier transform, Fourier transformation
Procedia PDF Downloads 23153 Comparison of ANFIS Update Methods Using Genetic Algorithm, Particle Swarm Optimization, and Artificial Bee Colony
Authors: Michael R. Phangtriastu, Herriyandi Herriyandi, Diaz D. Santika
Abstract:
This paper presents a comparison of the implementation of metaheuristic algorithms to train the antecedent parameters and consequence parameters in the adaptive network-based fuzzy inference system (ANFIS). The algorithms compared are genetic algorithm (GA), particle swarm optimization (PSO), and artificial bee colony (ABC). The objective of this paper is to benchmark well-known metaheuristic algorithms. The algorithms are applied to several data set with different nature. The combinations of the algorithms' parameters are tested. In all algorithms, a different number of populations are tested. In PSO, combinations of velocity are tested. In ABC, a different number of limit abandonment are tested. Experiments find out that ABC is more reliable than other algorithms, ABC manages to get better mean square error (MSE) than other algorithms in all data set.Keywords: ANFIS, artificial bee colony, genetic algorithm, metaheuristic algorithm, particle swarm optimization
Procedia PDF Downloads 352152 Latinx Adults’ Emergent Bilinguals’ Perceptions of Culturally Diverse Teaching Strategies
Authors: Sharon Diaz Ruiz
Abstract:
The population of Latinx adult English language learners (ELLs) in the United States will increase in the next few years and become even more racially and linguistically diverse. Our classrooms reflect these demographic changes; therefore, there will always be the need to identify language teaching practices that would allow educators to meet this linguistic diversity. This qualitative study explores Latinx adult English language learners' perceptions of culturally responsive teaching strategies. Participants in this study will be enrolled in an English developmental course for the Fall of 2022. The data collection process will consist of overt observation during five presentations/activities, including culturally inclusive readings and student reflections. The teaching materials selected will align with the course module's goals and objectives. The result of this investigation will shed light on the gap in the literature documenting the application of culturally responsive pedagogy to Latino adult language learners.Keywords: emergent bilinguals, adult learners, Latinx learners, ELL
Procedia PDF Downloads 101151 An Open Loop Distribution Module for Precise and Uniform Drip Fertigation in Soilless Culture
Authors: Juan Ignacio Arango, Andres Diaz, Giacomo Barbieri
Abstract:
In soilless culture, the definition of efficient fertigation strategies is fundamental for the growth of crops. Flexible test-benches able to independently manage groups of crops are key for investigating efficient fertigation practices through experimentation. These test-benches must be able to provide nutrient solution (NS) in a precise, uniform and repeatable way in order to effectively implement and compare different fertigation strategies. This article describes a distribution module for investigating fertigation practices able to control the fertigation dose and frequency. The proposed solution is characterized in terms of precision, uniformity and repeatability since these parameters are fundamental in the implementation of effective experiments for the investigation of fertigation practices. After a calibration process, the implemented system reaches a precision of 1mL, a uniformity of 98.5% at a total cost of 735USD.Keywords: recision horticulture, test-bench, fertigation strategy, automation, flexibility
Procedia PDF Downloads 139150 Microfiltration of the Sugar Refinery Wastewater Using Ceramic Membrane with Kenics Static Mixer
Authors: Zita Šereš, Ljubica Dokić, Nikola Maravić, Dragana Šoronja Simović, Cecilia Hodur, Ivana Nikolić, Biljana Pajin
Abstract:
New environmental regulations and the increasing market preference for companies that respect the ecosystem had encouraged the industry to look after new treatments for its effluents. The sugar industry, one of the largest emitter of environmental pollutants, follows this tendency. Membrane technology is convenient for separation of suspended solids, colloids and high molecular weight materials that are present in a wastewater from the sugar industry. The idea is to microfilter the wastewater, where the permeate passes through the membrane and becomes available for recycle and re-use in the sugar manufacturing process. For microfiltration of this effluent a tubular ceramic membrane was used with a pore size of 200 nm at transmembrane pressure in range of 1 – 3 bars and in range of flow rate of 50 – 150 l/h. Kenics static mixer was used for permeate flux enhancement. Turbidity and suspended solids were removed and the permeate flux was continuously monitored during the microfiltration process. The flux achieved after 90 minutes of microfiltration was in a range of 50-70 L/m2h. The obtained turbidity decrease was in the range of 50-99% and the total amount of suspended solids was removed.Keywords: ceramic membrane, microfiltration, permeate flux, sugar industry, wastewater
Procedia PDF Downloads 523149 Types of Limit Application Problems in Engineering Students: Case Studies
Authors: Veronica Diaz Quezada
Abstract:
The society of the 21st century requires training of engineers capable of solving routine and non-routine problems in applications of the limit of real functions, as part of the course Calculus I. For this purpose, research was conducted with a methodological design that combines quantitative and qualitative procedures and that aims, to identify and to characterize the types of problems according to their nature and context, through the application of a mathematics test; to know— through a questionnaire— the opinion of difficulties in their solution, previous and missing knowledge of some students of three engineering careers of a state university in Chile. This research is completed with three case studies. The results favor the performance of students in solving problems of a fantasist and realistic context, but these do not guarantee mathematical skills which are necessary to solve non-routine problems of limit applications. In conclusion, through this research, it became clear that the students of the three engineerings do not have all the necessary skills to solve problems of application of the limit of a function of the real variable.Keywords: case studies, engineering program, limits, problem solving
Procedia PDF Downloads 129148 Tribological Characterization of Composites Based on Epoxy Resin Filled with Tailings of Scheelite
Authors: Clarissa D. M. O. Guimaraes, Mariza C. M. Fernandes, Francisco R. V. Diaz, Juliana R. Souza
Abstract:
The use of mineral fillers in the preparation of organic matrix composites can be an efficient alternative in minimizing the environmental damage generated in passive mineral beneficiation processes. In addition, it may represent a new material option for wind, construction, and aeronautical industries, for example. In this sense, epoxy resin composites with Tailings of Scheelite (TS) were developed. The composites were manufactured with 5%, 10% and 20% of TS in volume percentage, homogenized by mechanical mixing and molded in a silicon mold. In order to make the tribological evaluation, pin on disk tests were performed to analyze coefficient of friction and wear. The wear mechanisms were identified by SEM (scanning electron microscope) images. The coefficient of friction had a tendency to decrease with increasing amount of filler. The wear tends to increase with increasing amount of filler, although it exhibits a similar wear behavior. The results suggest characteristics that are potential used in many tribological applications.Keywords: composites, mineral filler, tailings of scheelite, tribology
Procedia PDF Downloads 167147 Implementation of the Science Curriculum of the Colleges of Education: Successes and Challenges
Authors: Cecilia Boakye, Joseph Ghartey Ampiah
Abstract:
In this study, we present a case study in which we explored how the 2007 science curriculum of the colleges of education in Ghana was implemented at W College of Education. Purposive sampling was used to select 13 participants, comprising 2 tutors and 6 teacher trainees from W College of Education and, 5 newly qualified Junior High School (JHS) science teachers who were products of W College. Interviews, observations and content analysis were used to collect data. Using the deductive and inductive analytic approaches, the findings showed that although upgraded laboratories have provided for teaching authentic science at W College of Education, they are rather used to accommodate large classes at the expense of practical activities. The teaching and learning methods used by the tutors do not mirror effectively the objectives of the 2007 science curriculum of the colleges of education. There are challenges such as: (a) lack/inadequate equipment and materials, (b) time constraint, and (c) an examination- oriented curriculum that influence the implementation of the curriculum. Some of the suggestions that were made are that: (a) equipment and materials should be supplied to the colleges to facilitate the proper implementation of the curriculum, and (b) class sizes should be reduced to provide enough room for practical activities.Keywords: class size, teaching, curriculum implementation, examination-oriented curriculum, teaching and time-constraint
Procedia PDF Downloads 273146 Comparison of Machine Learning-Based Models for Predicting Streptococcus pyogenes Virulence Factors and Antimicrobial Resistance
Authors: Fernanda Bravo Cornejo, Camilo Cerda Sarabia, Belén Díaz Díaz, Diego Santibañez Oyarce, Esteban Gómez Terán, Hugo Osses Prado, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán
Abstract:
Streptococcus pyogenes is a gram-positive bacteria involved in a wide range of diseases and is a major-human-specific bacterial pathogen. In Chile, this year the 'Ministerio de Salud' declared an alert due to the increase in strains throughout the year. This increase can be attributed to the multitude of factors including antimicrobial resistance (AMR) and Virulence Factors (VF). Understanding these VF and AMR is crucial for developing effective strategies and improving public health responses. Moreover, experimental identification and characterization of these pathogenic mechanisms are labor-intensive and time-consuming. Therefore, new computational methods are required to provide robust techniques for accelerating this identification. Advances in Machine Learning (ML) algorithms represent the opportunity to refine and accelerate the discovery of VF associated with Streptococcus pyogenes. In this work, we evaluate the accuracy of various machine learning models in predicting the virulence factors and antimicrobial resistance of Streptococcus pyogenes, with the objective of providing new methods for identifying the pathogenic mechanisms of this organism.Our comprehensive approach involved the download of 32,798 genbank files of S. pyogenes from NCBI dataset, coupled with the incorporation of data from Virulence Factor Database (VFDB) and Antibiotic Resistance Database (CARD) which contains sequences of AMR gene sequence and resistance profiles. These datasets provided labeled examples of both virulent and non-virulent genes, enabling a robust foundation for feature extraction and model training. We employed preprocessing, characterization and feature extraction techniques on primary nucleotide/amino acid sequences and selected the optimal more for model training. The feature set was constructed using sequence-based descriptors (e.g., k-mers and One-hot encoding), and functional annotations based on database prediction. The ML models compared are logistic regression, decision trees, support vector machines, neural networks among others. The results of this work show some differences in accuracy between the algorithms, these differences allow us to identify different aspects that represent unique opportunities for a more precise and efficient characterization and identification of VF and AMR. This comparative analysis underscores the value of integrating machine learning techniques in predicting S. pyogenes virulence and AMR, offering potential pathways for more effective diagnostic and therapeutic strategies. Future work will focus on incorporating additional omics data, such as transcriptomics, and exploring advanced deep learning models to further enhance predictive capabilities.Keywords: antibiotic resistance, streptococcus pyogenes, virulence factors., machine learning
Procedia PDF Downloads 31145 Water Sources in 3 Local Municipalities of O. R. Tambo District Municipality, South Africa: A Comparative Study
Authors: Betek Cecilia Kunseh, Musampa Christopher
Abstract:
Despite significant investment and important progress, access to safe potable water continues to be one of the most pressing challenges for rural communities in O R Tambo District Municipality. This is coupled with the low income of most residents and government's policy which obliges municipalities to supply basic water usually set at 6 kilolitres per month to each household free of charge. During the research, data was collected from three local municipalities of O. R. Tambo, i.e. King Sabata Dalindyebo, Mhlontlo and Ingquza Hill local municipalities. According to the result, significant differences exist between the sources of water in the different local municipalities from which data was collected. The chi square was use to calculated the differences between the sources of water and the calculated critical value of the District Municipality was 18.77 which is more than the stipulated critical value of 3.84. More people in Mhlontlo Local Municipality got water from the taps while a greater percentage of households in King Sataba Dalindyebo and Ingquza hill local municipalities got their water from the natural sources. 77% of the sample population complained that there have been no improvements in water provision because they still get water from natural sources and even the remaining 33% that were getting water from the taps still have to depend on natural sources because the taps are most of the time broken and it takes a long time to fix them.Keywords: availability, water, sources, supply
Procedia PDF Downloads 341144 Limits Problem Solving in Engineering Careers: Competences and Errors
Authors: Veronica Diaz Quezada
Abstract:
In this article, the performance and errors are featured and analysed in the limit problems solving of a real-valued function, in correspondence to competency-based education in engineering careers, in the south of Chile. The methodological component is contextualised in a qualitative research, with a descriptive and explorative design, with elaboration, content validation and application of quantitative instruments, consisting of two parallel forms of open answer tests, based on limit application problems. The mathematical competences and errors made by students from five engineering careers from a public University are identified and characterized. Results show better performance only to solve routine-context problem-solving competence, thus they are oriented towards a rational solution or they use a suitable problem-solving method, achieving the correct solution. Regarding errors, most of them are related to techniques and the incorrect use of theorems and definitions of real-valued function limits of real variable.Keywords: engineering education, errors, limits, mathematics competences, problem solving
Procedia PDF Downloads 151143 Use and Appreciation of a Type of Mathematics Textbook for Secondary Education
Authors: Verónica Díaz Quezada
Abstract:
Despite the wide variety of educational resources on the market and the advances produced in the technological field, the practice of teaching continues to be supported mainly by textbooks. This article reports on descriptive research with qualitative methodology carried out on secondary school mathematics teachers in a region of Chile, in order to describe the use and the indicators of appreciation that teachers have on the textbooks distributed by the official body to public educational establishments. Data were collected through an open response opinion questionnaire. According to the results, among the texts available for the annual performance of their teaching work, the expository and technological books predominate, to the detriment of comprehensive books. The exhibition structure favors master expositions and repetitive exercises, while, with the technological structure, a productive exercise is attempted, proposing numerous applications with the intention of giving meaning to the different mathematical rules and procedures. In relation to the indicators of appreciation that teachers have regarding the use of mathematics textbooks, the suitability and quality of the teaching resources are verified as the most satisfying characteristic.Keywords: mathematics, secondary school, teachers, textbooks
Procedia PDF Downloads 164142 Mother Tounge Based Multilingual Education Policy: Voices of Two Cities, 'The Voice of Laguna'
Authors: Cecilia Velasco, Q.
Abstract:
This study was undertaken to find out the perceived efficiency, appropriateness effectiveness, acceptability and relevance, if at all such exist, of the Mother Tongue Based Multilingual Education Policy under the K-12 Curriculum, as seen by the stakeholders who are directly affected by this policy. The researcher believed that it is right and fitting to get the views and opinions of the people directly involved and/or concerned about this education policy. The results of the study will hopefully guide lawmakers and/or policymakers to fine-tune educational policy or policies. The locale of the study was the DepEd schools in Laguna, (San Pablo City and other nearby cities). The subjects of the study were the teachers (first phase) from the public schools of Department of Education (San Pablo City), in particular and parents (second phase) from nearby cities who are the direct stakeholders of this Policy. To determine the perception of the teachers toward Mother Tongue Based Multilingual Education Policy; its acceptability, efficiency, appropriateness, effectiveness and relevance, factor analysis was used to refine the instrument (questionnaire). To find out the significant difference between the perceptions of the primary and intermediate group of teachers, including those who teach mother tongue and non-mother tongue subjects, t-test of difference between means was employed.Keywords: DepEd, K12 curriculum, MTBMLE, stakeholders
Procedia PDF Downloads 299141 Model and Neural Control of the Depth of Anesthesia during Surgery
Authors: Javier Fernandez, Mayte Medina, Rafael Fernandez de Canete, Nuria Alcain, Juan Carlos Ramos-Diaz
Abstract:
At present, the experimentation of anesthetic drugs on patients requires a regulation protocol, and the response of each patient to several doses of entry drug must be well known. Therefore, the development of pharmacological dose control systems is a promising field of research in anesthesiology. In this paper, it has been developed a non-linear compartmental the pharmacokinetic-pharmacodynamical model which describes the anesthesia depth effect in a sufficiently reliable way over a set of patients with the depth effect quantified by the Bi-Spectral Index. Afterwards, an Artificial Neural Network (ANN) predictive controller has been designed based on the depth of anesthesia model so as to keep the patient in the optimum condition while he undergoes surgical treatment. For the purpose of quantifying the efficiency of the neural predictive controller, a classical proportional-integral-derivative controller has also been developed to compare both strategies. Results show the superior performance of predictive neural controller during BiSpectral Index reference tracking.Keywords: anesthesia, bi-spectral index, neural network control, pharmacokinetic-pharmacodynamical model
Procedia PDF Downloads 337140 On the Influence of Sleep Habits for Predicting Preterm Births: A Machine Learning Approach
Authors: C. Fernandez-Plaza, I. Abad, E. Diaz, I. Diaz
Abstract:
Births occurring before the 37th week of gestation are considered preterm births. A threat of preterm is defined as the beginning of regular uterine contractions, dilation and cervical effacement between 23 and 36 gestation weeks. To author's best knowledge, the factors that determine the beginning of the birth are not completely defined yet. In particular, the incidence of sleep habits on preterm births is weekly studied. The aim of this study is to develop a model to predict the factors affecting premature delivery on pregnancy, based on the above potential risk factors, including those derived from sleep habits and light exposure at night (introduced as 12 variables obtained by a telephone survey using two questionnaires previously used by other authors). Thus, three groups of variables were included in the study (maternal, fetal and sleep habits). The study was approved by Research Ethics Committee of the Principado of Asturias (Spain). An observational, retrospective and descriptive study was performed with 481 births between January 1, 2015 and May 10, 2016 in the University Central Hospital of Asturias (Spain). A statistical analysis using SPSS was carried out to compare qualitative and quantitative variables between preterm and term delivery. Chi-square test qualitative variable and t-test for quantitative variables were applied. Statistically significant differences (p < 0.05) between preterm vs. term births were found for primiparity, multi-parity, kind of conception, place of residence or premature rupture of membranes and interruption during nights. In addition to the statistical analysis, machine learning methods to look for a prediction model were tested. In particular, tree based models were applied as the trade-off between performance and interpretability is especially suitable for this study. C5.0, recursive partitioning, random forest and tree bag models were analysed using caret R-package. Cross validation with 10-folds and parameter tuning to optimize the methods were applied. In addition, different noise reduction methods were applied to the initial data using NoiseFiltersR package. The best performance was obtained by C5.0 method with Accuracy 0.91, Sensitivity 0.93, Specificity 0.89 and Precision 0.91. Some well known preterm birth factors were identified: Cervix Dilation, maternal BMI, Premature rupture of membranes or nuchal translucency analysis in the first trimester. The model also identifies other new factors related to sleep habits such as light through window, bedtime on working days, usage of electronic devices before sleeping from Mondays to Fridays or change of sleeping habits reflected in the number of hours, in the depth of sleep or in the lighting of the room. IF dilation < = 2.95 AND usage of electronic devices before sleeping from Mondays to Friday = YES and change of sleeping habits = YES, then preterm is one of the predicting rules obtained by C5.0. In this work a model for predicting preterm births is developed. It is based on machine learning together with noise reduction techniques. The method maximizing the performance is the one selected. This model shows the influence of variables related to sleep habits in preterm prediction.Keywords: machine learning, noise reduction, preterm birth, sleep habit
Procedia PDF Downloads 148139 Practitioner System in Vocational Education: Perspectives of Academics and Industry Practitioners
Authors: Hsiao-Tseng Lin, Nguyen Ngoc Dat, Szu-Mei Hsiao, R. J. Hernández-Díaz
Abstract:
The practitioner system has become an important tool for universities working to shrink the gap between industry and vocational education. Beginning in 2015, Meiho University conducted a consecutive three-year program for teaching excellence, funded in part by Taiwan’s Ministry of Education, with a total project funding of over $2.5 million USD. One of the highlights of this program is the recruitment of 300 industry practitioners to participate in collaborative teaching, a dual-mentor system, and curriculum planning. More than 60% of the practitioners boast more than 10 years of practical industry experience, and 52% of them have earned master's degree or higher. Students rated their overall program satisfaction over 4.5(out of 5.0) on average. This study explores the perspectives of academics and industry practitioners using in-depth interviews and surveys, along with an examination of the challenges of the practitioner system. The paper enables the framing of practitioner system policies by vocational education institutions and industry to facilitate more effective and efficient transfer of knowledge between academics and practitioners, leading to enhanced university competitive advantage, which would ultimately benefit society.Keywords: collaborative teaching, industry practitioners, practitioner system, vocational education
Procedia PDF Downloads 212138 Economic Growth After an Earthquake: A Synthetic Control Approach
Authors: Diego Diaz H., Cristian Larroulet
Abstract:
Although a large earthquake has clear and immediate consequences such as deaths, destruction of infrastructure and displacement (at least temporary) of part of the population, scientific research about the impact of a geological disaster in economic activity is inconclusive, especially when looking beyond the very short term. Estimating the economic impact years after a disaster strike is non-trivial since there is an unavoidable difficulty in attributing the observed effect to the disaster and not to other economic shocks. Case studies are performed that determine the impact of earthquakes in Chile, Japan, and New Zealand at a regional level by applying the synthetic control method, using the natural disaster as treatment. This consisted in constructing a counterfactual from every region in the same country that is not affected (or is slightly affected) by the earthquake. The results show that the economies of Canterbury and Tohoku achieved greater levels of GDP per capita in the years after the disaster than they would have in the absence of the disaster. For the case of Chile, however, the region of Maule experiences a decline in GDP per capita because of the earthquake. All the results are robust according to the placebo tests. Also, the results suggest that national institutional quality improve the growth process after the disaster.Keywords: earthquake, economic growth, institutional quality, synthetic control
Procedia PDF Downloads 223137 The Game of Dominoes as Teaching-Learning Method of Basic Concepts of Differential Calculus
Authors: Luis Miguel Méndez Díaz
Abstract:
In this article, a mathematics teaching-learning strategy will be presented, specifically differential calculus in one variable, in a fun and competitive space in which the action on the part of the student is manifested and not only the repetition of information on the part of the teacher. Said action refers to motivating, problematizing, summarizing, and coordinating a game of dominoes whose thematic cards are designed around the basic and main contents of differential calculus. The strategies for teaching this area are diverse and precisely the game of dominoes is one of the most used strategies in the practice of mathematics because it stimulates logical reasoning and mental abilities. The objective on this investigation is to identify the way in which the game of dominoes affects the learning and understanding of fundamentals concepts of differential calculus in one variable through experimentation carried out on students of the first semester of the School of Engineering and Sciences of the Technological Institute of Monterrey Campus Querétaro. Finally, the results of this study will be presented and the use of this strategy in other topics around mathematics will be recommended to facilitate logical and meaningful learning in students.Keywords: collaborative learning, logical-mathematical intelligence, mathematical games, multiple intelligences
Procedia PDF Downloads 84136 Exploring Antimicrobial Resistance in the Lung Microbial Community Using Unsupervised Machine Learning
Authors: Camilo Cerda Sarabia, Fernanda Bravo Cornejo, Diego Santibanez Oyarce, Hugo Osses Prado, Esteban Gómez Terán, Belén Diaz Diaz, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán
Abstract:
Antimicrobial resistance (AMR) represents a significant and rapidly escalating global health threat. Projections estimate that by 2050, AMR infections could claim up to 10 million lives annually. Respiratory infections, in particular, pose a severe risk not only to individual patients but also to the broader public health system. Despite the alarming rise in resistant respiratory infections, AMR within the lung microbiome (microbial community) remains underexplored and poorly characterized. The lungs, as a complex and dynamic microbial environment, host diverse communities of microorganisms whose interactions and resistance mechanisms are not fully understood. Unlike studies that focus on individual genomes, analyzing the entire microbiome provides a comprehensive perspective on microbial interactions, resistance gene transfer, and community dynamics, which are crucial for understanding AMR. However, this holistic approach introduces significant computational challenges and exposes the limitations of traditional analytical methods such as the difficulty of identifying the AMR. Machine learning has emerged as a powerful tool to overcome these challenges, offering the ability to analyze complex genomic data and uncover novel insights into AMR that might be overlooked by conventional approaches. This study investigates microbial resistance within the lung microbiome using unsupervised machine learning approaches to uncover resistance patterns and potential clinical associations. it downloaded and selected lung microbiome data from HumanMetagenomeDB based on metadata characteristics such as relevant clinical information, patient demographics, environmental factors, and sample collection methods. The metadata was further complemented by details on antibiotic usage, disease status, and other relevant descriptions. The sequencing data underwent stringent quality control, followed by a functional profiling focus on identifying resistance genes through specialized databases like Antibiotic Resistance Database (CARD) which contains sequences of AMR gene sequence and resistance profiles. Subsequent analyses employed unsupervised machine learning techniques to unravel the structure and diversity of resistomes in the microbial community. Some of the methods employed were clustering methods such as K-Means and Hierarchical Clustering enabled the identification of sample groups based on their resistance gene profiles. The work was implemented in python, leveraging a range of libraries such as biopython for biological sequence manipulation, NumPy for numerical operations, Scikit-learn for machine learning, Matplotlib for data visualization and Pandas for data manipulation. The findings from this study provide insights into the distribution and dynamics of antimicrobial resistance within the lung microbiome. By leveraging unsupervised machine learning, we identified novel resistance patterns and potential drivers within the microbial community.Keywords: antibiotic resistance, microbial community, unsupervised machine learning., sequences of AMR gene
Procedia PDF Downloads 23135 Application of Lean Manufacturing Tools in Hot Asphalt Production
Authors: S. Bayona, J. Nunez, D. Paez, C. Diaz
Abstract:
The application of Lean manufacturing tools continues to be an effective solution for increasing productivity, reducing costs and eliminating waste in the manufacture of goods and services. This article analyzes the production process of a hot asphalt manufacturing company from an administrative and technical perspective. Three main phases were analyzed, the first phase was related to the determination of the risk priority number of the main operations in asphalt mix production process by an FMEA (Failure Mode Effects Analysis), in the second phase the Value Stream Mapping (VSM) of the production line was performed and in the third phase a SWOT (Strengths, Weaknesses Opportunities, Threats) matrix was constructed. Among the most valued failure modes were the lack training of workers in occupational safety and health issues, the lack of signaling and classification of granulated material, and the overweight of vehicles loaded. The analysis of the results in the three phases agree on the importance of training operational workers, improve communication with external actors in order to minimize delays in material orders and strengthen control suppliers.Keywords: asphalt, lean manufacturing, productivity, process
Procedia PDF Downloads 117134 The Effect of Inhalation of Ylang-ylang Aroma on the Levels of Anxiety of Parents with Hospitalized Toddlers Diagnosed with Pneumonia
Authors: Crisostomo Hart A., Cruz Anna Cecilia R., Cruz Bianca Isabelle A., Cruz John Edward Ligzurc M., Cruz Mikaela Denise P.
Abstract:
Aim/purpose: The researchers aimed to determine the effect of Ylang-ylang aroma in decreasing the anxiety levels of parents with hospitalized toddlers diagnosed with pneumonia. Method: Quantitative Quasi-experimental one-group pre-test post-test design was utilized in the study. The study includes a pretest, an intervention, and a posttest on the same experimental group. Participants are parents aged 20 – 35 years old with a hospitalized toddler who is diagnosed with pneumonia. Anxiety levels were measured before the intervention using the State Trait Anxiety Inventory by Spielberger. Those who scored 41-120 proceeded to receive the intervention. The intervention was a 3-day course of aromatherapy where the participants inhaled the Ylang-ylang flower at a distance of 10 – 15 cm away from the face for 10 minutes. The post-test using the same instrument measured the levels of anxiety after the 3-day aromatherapy. Paired T-test of SPSS 21.0 was used to analyze the pre-test and post-test scores. Results: Study yielded a p value of 0.047 which shows significant difference between the levels of anxiety before and after the intervention. Conclusions: Based on the data analysis, the researchers concluded that inhalation of Ylang-ylang aroma is effective in reducing the anxiety level of the parents of hospitalized toddlers diagnosed with Pneumonia.Keywords: Ylang-ylang, Pneumonia, Toddlers, Aromatherapy
Procedia PDF Downloads 414