Search results for: water accessibility
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9339

Search results for: water accessibility

3399 Temperature Effect on Corrosion and Erosion in Transfer Line Exchange by CFD

Authors: S. Hehni Meidani Behzad, Mokhtari Karchegani Amir, Mabodi Samad

Abstract:

There are some TLE (Transfer Line Exchanger) that their lifetime reduced to 4 years instead of 30 years and after 4 years, we saw corroded area on one part of those T.L.E. that named Oval header and this happened in condition that other parts of those TLE were safe and perfect. By using of thickness measurement devices, we find that thickness reduces unusually on that part and after research and doing computer analysis with fluent software, it was recognized that on that part, we have high temperature and when this out of range temperature adds to bad quality of water, corrosion increased with high rate on that part and after more research it became obviously that it case by more excess air in furnace that located before this T.L.E. that this more air case to consuming more fuel to reach same furnace temperature so it concluded that inner coil fluid temperature increased and after received to T.L.E, this case happened and deflector condition, creep in coil and material analysis confirmed that condition.

Keywords: Transfer Line Exchanger (TLE), CFD, corrosion, erosion, tube, oval header

Procedia PDF Downloads 427
3398 Transport of Inertial Finite-Size Floating Plastic Pollution by Ocean Surface Waves

Authors: Ross Calvert, Colin Whittaker, Alison Raby, Alistair G. L. Borthwick, Ton S. van den Bremer

Abstract:

Large concentrations of plastic have polluted the seas in the last half century, with harmful effects on marine wildlife and potentially to human health. Plastic pollution will have lasting effects because it is expected to take hundreds or thousands of years for plastic to decay in the ocean. The question arises how waves transport plastic in the ocean. The predominant motion induced by waves creates ellipsoid orbits. However, these orbits do not close, resulting in a drift. This is defined as Stokes drift. If a particle is infinitesimally small and the same density as water, it will behave exactly as the water does, i.e., as a purely Lagrangian tracer. However, as the particle grows in size or changes density, it will behave differently. The particle will then have its own inertia, the fluid will exert drag on the particle, because there is relative velocity, and it will rise or sink depending on the density and whether it is on the free surface. Previously, plastic pollution has all been considered to be purely Lagrangian. However, the steepness of waves in the ocean is small, normally about α = k₀a = 0.1 (where k₀ is the wavenumber and a is the wave amplitude), this means that the mean drift flows are of the order of ten times smaller than the oscillatory velocities (Stokes drift is proportional to steepness squared, whilst the oscillatory velocities are proportional to the steepness). Thus, the particle motion must have the forces of the full motion, oscillatory and mean flow, as well as a dynamic buoyancy term to account for the free surface, to determine whether inertia is important. To track the motion of a floating inertial particle under wave action requires the fluid velocities, which form the forcing, and the full equations of motion of a particle to be solved. Starting with the equation of motion of a sphere in unsteady flow with viscous drag. Terms can added then be added to the equation of motion to better model floating plastic: a dynamic buoyancy to model a particle floating on the free surface, quadratic drag for larger particles and a slope sliding term. Using perturbation methods to order the equation of motion into sequentially solvable parts allows a parametric equation for the transport of inertial finite-sized floating particles to be derived. This parametric equation can then be validated using numerical simulations of the equation of motion and flume experiments. This paper presents a parametric equation for the transport of inertial floating finite-size particles by ocean waves. The equation shows an increase in Stokes drift for larger, less dense particles. The equation has been validated using numerical solutions of the equation of motion and laboratory flume experiments. The difference in the particle transport equation and a purely Lagrangian tracer is illustrated using worlds maps of the induced transport. This parametric transport equation would allow ocean-scale numerical models to include inertial effects of floating plastic when predicting or tracing the transport of pollutants.

Keywords: perturbation methods, plastic pollution transport, Stokes drift, wave flume experiments, wave-induced mean flow

Procedia PDF Downloads 121
3397 Flood Risk Assessment, Mapping Finding the Vulnerability to Flood Level of the Study Area and Prioritizing the Study Area of Khinch District Using and Multi-Criteria Decision-Making Model

Authors: Muhammad Karim Ahmadzai

Abstract:

Floods are natural phenomena and are an integral part of the water cycle. The majority of them are the result of climatic conditions, but are also affected by the geology and geomorphology of the area, topography and hydrology, the water permeability of the soil and the vegetation cover, as well as by all kinds of human activities and structures. However, from the moment that human lives are at risk and significant economic impact is recorded, this natural phenomenon becomes a natural disaster. Flood management is now a key issue at regional and local levels around the world, affecting human lives and activities. The majority of floods are unlikely to be fully predicted, but it is feasible to reduce their risks through appropriate management plans and constructions. The aim of this Case Study is to identify, and map areas of flood risk in the Khinch District of Panjshir Province, Afghanistan specifically in the area of Peshghore, causing numerous damages. The main purpose of this study is to evaluate the contribution of remote sensing technology and Geographic Information Systems (GIS) in assessing the susceptibility of this region to flood events. Panjsher is facing Seasonal floods and human interventions on streams caused floods. The beds of which have been trampled to build houses and hotels or have been converted into roads, are causing flooding after every heavy rainfall. The streams crossing settlements and areas with high touristic development have been intensively modified by humans, as the pressure for real estate development land is growing. In particular, several areas in Khinch are facing a high risk of extensive flood occurrence. This study concentrates on the construction of a flood susceptibility map, of the study area, by combining vulnerability elements, using the Analytical Hierarchy Process/ AHP. The Analytic Hierarchy Process, normally called AHP, is a powerful yet simple method for making decisions. It is commonly used for project prioritization and selection. AHP lets you capture your strategic goals as a set of weighted criteria that you then use to score projects. This method is used to provide weights for each criterion which Contributes to the Flood Event. After processing of a digital elevation model (DEM), important secondary data were extracted, such as the slope map, the flow direction and the flow accumulation. Together with additional thematic information (Landuse and Landcover, topographic wetness index, precipitation, Normalized Difference Vegetation Index, Elevation, River Density, Distance from River, Distance to Road, Slope), these led to the final Flood Risk Map. Finally, according to this map, the Priority Protection Areas and Villages and the structural and nonstructural measures were demonstrated to Minimize the Impacts of Floods on residential and Agricultural areas.

Keywords: flood hazard, flood risk map, flood mitigation measures, AHP analysis

Procedia PDF Downloads 119
3396 Micro-Hydrokinetic for Remote Rural Electrification

Authors: S. P. Koko, K. Kusakana, H. J. Vermaak

Abstract:

Standalone micro-hydrokinetic river (MHR) system is one of the promising technologies to be used for remote rural electrification. It simply requires the flow of water instead of elevation or head, leading to expensive civil works. This paper demonstrates an economic benefit offered by a standalone MHR system when compared to the commonly used standalone systems such as solar, wind and diesel generator (DG) at the selected study site in Kwazulu Natal. Wind speed and solar radiation data of the selected rural site have been taken from national aeronautics and space administration (NASA) surface meteorology database. The hybrid optimization model for electric renewable (HOMER) software was used to determine the most feasible solution when using MHR, solar, wind or DG system to supply 5 rural houses. MHR system proved to be the best cost-effective option to consider at the study site due to its low cost of energy (COE) and low net present cost (NPC).

Keywords: economic analysis, micro-hydrokinetic, rural-electrification, cost of energy (COE), net present cost (NPC)

Procedia PDF Downloads 432
3395 Machine Learning Model Applied for SCM Processes to Efficiently Determine Its Impacts on the Environment

Authors: Elena Puica

Abstract:

This paper aims to investigate the impact of Supply Chain Management (SCM) on the environment by applying a Machine Learning model while pointing out the efficiency of the technology used. The Machine Learning model was used to derive the efficiency and optimization of technology used in SCM and the environmental impact of SCM processes. The model applied is a predictive classification model and was trained firstly to determine which stage of the SCM has more outputs and secondly to demonstrate the efficiency of using advanced technology in SCM instead of recuring to traditional SCM. The outputs are the emissions generated in the environment, the consumption from different steps in the life cycle, the resulting pollutants/wastes emitted, and all the releases to air, land, and water. This manuscript presents an innovative approach to applying advanced technology in SCM and simultaneously studies the efficiency of technology and the SCM's impact on the environment. Identifying the conceptual relationships between SCM practices and their impact on the environment is a new contribution to the research. The authors can take a forward step in developing recent studies in SCM and its effects on the environment by applying technology.

Keywords: machine-learning model in SCM, SCM processes, SCM and the environmental impact, technology in SCM

Procedia PDF Downloads 116
3394 Bacillus licheniformis sp. nov. PS-6, an Arsenic Tolerance Bacterium with Biotransforming Potential Isolated from Sediments of Pichavaram Mangroves of South India

Authors: Padmanabhan D, Kavitha S

Abstract:

The purpose of the study is to investigate arsenic resistance ability of indigenous microflora and its ability to utilize arsenic species form containing water source. PS-6 potential arsenic tolerance bacterium was screened from thirty isolates from Pichavaram Mangroves of India having tolerance to grow up to 1000 mg/l of As (V) and 800 mg/l of As (III) and arsenic utilization ability of 98 % of As (V) and 97% of As (III) with initial concentration of 3-5 mg/l within 48 hrs. Optimum pH and temperature was found to be ~7-7.4 and 37°C. Active growth of PS-6 in minimal salt media (MSB) helps in cost effective biomass production. Dry weight analysis of PS-6 has shown significant difference in biomass when exposed to As (III) and As (V). Protein level study of PS-6 after exposing to As (V) and As (III) shown modification in total protein concentration and variation in SDS-PAGE pattern. PS-6 was identified as Bacillus licheniformis based on partially sequenced of 16S rRNA using NCBI Blast. Further investigation will help in using this potential bacterium as a well-grounded source for urgency.

Keywords: arsenite, arsenate, Bacillus licheniformis, utilization

Procedia PDF Downloads 405
3393 The Impact of Artificial Intelligence on Qualty Conrol and Quality

Authors: Mary Moner Botros Fanawel

Abstract:

Many companies use the statistical tool named as statistical quality control, and which can have a high cost for the companies interested on these statistical tools. The evaluation of the quality of products and services is an important topic, but the reduction of the cost of the implantation of the statistical quality control also has important benefits for the companies. For this reason, it is important to implement a economic design for the various steps included into the statistical quality control. In this paper, we describe some relevant aspects related to the economic design of a quality control chart for the proportion of defective items. They are very important because the suggested issues can reduce the cost of implementing a quality control chart for the proportion of defective items. Note that the main purpose of this chart is to evaluate and control the proportion of defective items of a production process.

Keywords: model predictive control, hierarchical control structure, genetic algorithm, water quality with DBPs objectives proportion, type I error, economic plan, distribution function bootstrap control limit, p-value method, out-of-control signals, p-value, quality characteristics

Procedia PDF Downloads 62
3392 Sustainable Building Law - The Legal Issues Abound

Authors: Richard J. Sobelsohn

Abstract:

Green Building and Sustainable Development help fight climate change, and protects the ozone, animal habitats, air quality, and ground water. The myriad of reasons to go Green has multiplied to the point that a developer that is building a ground-up or renovating/retrofitting a property has a plethora of choices to get to the green goal post. Sustainability not affects the bottom line but satisfies corporate mandates (ESG), consumer demand, market requirements, and the many laws dictating green building practices. The good news is that there are many paths a property owner can take to become green. The bad news is that there are many paths a property owner can take to become green, and they need to choose which direction to take. Certification of a building used to be the highest achievement in the Green building world. Now there are so many variables and laws with which a property owner must comply, and the legal analysis has mushroomed. Operation and Maintenance have also become one of the most important functions for a prudent Green Building owner. So adding to the “development/retrofit” parties involved in the sustainable building legal world, we now need to include all those people who keep the building green, and there are a lot of them!

Keywords: green building, sustainable development, legal issues, greenwashing, green cleaning, compliance, ESQ

Procedia PDF Downloads 124
3391 Effects of Temperature and Enzyme Concentration on Quality of Pineapple and Pawpaw Blended Juice

Authors: Ndidi F. Amulu, Calistus N. Ude, Patrick E. Amulu, Nneka N. Uchegbu

Abstract:

The effects of temperature and enzyme concentration on the quality of mixed pineapple and pawpaw blended fruits juice were studied. Extracts of the two fruit juices were separately treated at 70  for 15 min each so as to inactivate micro-organisms. They were analyzed and blended in different proportions of 70% pawpaw and 30% pineapple, 60% pawpaw and 40% pineapple, 50% pineapple and 50% pawpaw, 40% pawpaw and 60% pineapple. The characterization of the fresh pawpaw and pineapple juice before blending showed that the juices have good quality. The high water content of the product may have affected the viscosity, vitamin C content and total soluble solid of the blended juice to be low. The effects of the process parameters on the quality showed that better quality of the blended juice can be obtained within the optimum temperature range of (50-70 °C) and enzyme concentration range (0.12-0.18 w/v). The ratio of mix 60% pineapple juice: 40% pawpaw juice has better quality. This showed that pawpaw and pineapple juices can blend effectively to produce a quality juice.

Keywords: clarification, pawpaw, pineapple, viscosity, vitamin C

Procedia PDF Downloads 303
3390 Investigation of Processing Conditions on Rheological Features of Emulsion Gels and Oleogels Stabilized by Biopolymers

Authors: M. Sarraf, J. E. Moros, M. C. Sánchez

Abstract:

Oleogels are self-standing systems that are able to trap edible liquid oil into a tridimensional network and also help to use less fat by forming crystallization oleogelators. There are different ways to generate oleogelation and oil structuring, including direct dispersion, structured biphasic systems, oil sorption, and indirect method (emulsion-template). The selection of processing conditions as well as the composition of the oleogels is essential to obtain a stable oleogel with characteristics suitable for its purpose. In this sense, one of the ingredients widely used in food products to produce oleogels and emulsions is polysaccharides. Basil seed gum (BSG), with the scientific name Ocimum basilicum, is a new native polysaccharide with high viscosity and pseudoplastic behavior because of its high molecular weight in the food industry. Also, proteins can stabilize oil in water due to the presence of amino and carboxyl moieties that result in surface activity. Whey proteins are widely used in the food industry due to available, cheap ingredients, nutritional and functional characteristics such as emulsifier and a gelling agent, thickening, and water-binding capacity. In general, the interaction of protein and polysaccharides has a significant effect on the food structures and their stability, like the texture of dairy products, by controlling the interactions in macromolecular systems. Using edible oleogels as oil structuring helps for targeted delivery of a component trapped in a structural network. Therefore, the development of efficient oleogel is essential in the food industry. A complete understanding of the important points, such as the ratio oil phase, processing conditions, and concentrations of biopolymers that affect the formation and stability of the emulsion, can result in crucial information in the production of a suitable oleogel. In this research, the effects of oil concentration and pressure used in the manufacture of the emulsion prior to obtaining the oleogel have been evaluated through the analysis of droplet size and rheological properties of obtained emulsions and oleogels. The results show that the emulsion prepared in the high-pressure homogenizer (HPH) at higher pressure values has smaller droplet sizes and a higher uniformity in the size distribution curve. On the other hand, in relation to the rheological characteristics of the emulsions and oleogels obtained, the predominantly elastic character of the systems must be noted, as they present values of the storage modulus higher than those of losses, also showing an important plateau zone, typical of structured systems. In the same way, if steady-state viscous flow tests have been analyzed on both emulsions and oleogels, the result is that, once again, the pressure used in the homogenizer is an important factor for obtaining emulsions with adequate droplet size and the subsequent oleogel. Thus, various routes for trapping oil inside a biopolymer matrix with adjustable mechanical properties could be applied for the creation of the three-dimensional network in order to the oil absorption and creating oleogel.

Keywords: basil seed gum, particle size, viscoelastic properties, whey protein

Procedia PDF Downloads 66
3389 Aging and Mechanical Behavior of Be-treated 7075 Aluminum Alloys

Authors: Mahmoud M. Tash, S. Alkahtani

Abstract:

The present study was undertaken to investigate the effect of pre-aging and aging parameters (time and temperature) on the mechanical properties of Al-Mg-Zn (7075) alloys. Ultimate tensile strength, 0.5% offset yield strength and % elongation measurements were carried out on specimens prepared from cast and heat treated 7075 alloys. Aging treatments were carried out for the as solution treated (SHT) specimens (after quenching in warm water). The specimens were aged at different conditions; Natural aging was carried out at room temperature for different periods of time. Double aging was performed for SHT conditions (pre-aged at different time and temperature followed by high temperature aging). Ultimate tensile strength, yield strength and % elongation as a function of different pre-aging and aging parameters are analysed to acquire an understanding of the effects of these variables and their interactions on the mechanical properties of Be-treated 7075 alloys.

Keywords: duplex aging treatment, mechanical properties, Al-Mg-Zn (7075) alloys, manufacturing

Procedia PDF Downloads 240
3388 Atmospheric Pressure Microwave Plasma System and Its Applications

Authors: Waqas A. Toor, Anis U. Baig, Nuaman Shafqat, Raafia Irfan, Muhammad Ashraf

Abstract:

A 2.45GHz microwave plasma system and its few applications have been developed. Argon and helium plasma is produced by metallic nozzle and also in a quartz tube at atmospheric pressure, using WR-340 waveguide and its tapered version. The waveguide applicator is also simulated in HFSS and field patterns are analyzed for maximum power absorption in the load. The system is tuned to operate at less than 10% reflected power. Various experimental techniques are used to initiate and sustain the plasma at atmospheric pressure. Plasma of atmospheric air is also produced without using any other shielding gas. The plasma flame is also characterized by its spectrum. Spectral analyses of plasma flame can be used for online analysis of combustion gases produced in industry. The applications of the system include glass and quartz processing, vitrification, emission spectroscopy, plasma coating. Low pressure plasma applications of the system include intense UV light for water purification and ozone generation.

Keywords: HFSS high frequency structure simulator, Microwave plasma, UV ultraviolet, WR rectangular waveguide

Procedia PDF Downloads 271
3387 Development of a Process to Manufacture High Quality Refined Salt from Crude Solar Salt

Authors: Rathnayaka D. D. T. , Vidanage P. W. , Wasalathilake K. C. , Wickramasingha H. W. , Wijayarathne U. P. L. , Perera S. A. S.

Abstract:

This paper describes the research carried out to develop a process to increase the NaCl percentage of crude salt which is obtained from the conventional solar evaporation process. In this study refined salt was produced from crude solar salt by a chemico-physical method which consists of coagulation, precipitation and filtration. Initially crude salt crystals were crushed and dissolved in water. Optimum amounts of calcium hydroxide, sodium carbonate and Poly Aluminium Chloride (PAC) were added to the solution respectively. Refined NaCl solution was separated out by a filtration process. The solution was tested for Total Suspended Solids, SO42-, Mg2+, Ca2+. With optimum dosage of reagents, the results showed that a level of 99.60% NaCl could be achieved. Further this paper discusses the economic viability of the proposed process. A 83% profit margin can be achieved by this process and it is an increase of 112.3% compared to the traditional process.

Keywords: chemico-physical, economic, optimum, refined, solar salt

Procedia PDF Downloads 253
3386 Passive Neutralization of Acid Mine Drainage Using Locally Produced Limestone

Authors: Reneiloe Seodigeng, Malwandla Hanabe, Haleden Chiririwa, Hilary Rutto, Tumisang Seodigeng

Abstract:

Neutralisation of acid-mine drainage (AMD) using limestone is cost effective, and good results can be obtained. However, this process has its limitations; it cannot be used for highly acidic water which consists of Fe(III). When Fe(III) reacts with CaCO3, it results in armoring. Armoring slows the reaction, and additional alkalinity can no longer be generated. Limestone is easily accessible, so this problem can be easily dealt with. Experiments were carried out to evaluate the effect of PVC pipe length on ferric and ferrous ions. It was found that the shorter the pipe length the more these dissolved metals precipitate. The effect of the pipe length on the hydrogen ions was also studied, and it was found that these two have an inverse relationship. Experimental data were further compared with the model prediction data to see if they behave in a similar fashion. The model was able to predict the behaviour of 1.5m and 2 m pipes in ferric and ferrous ion precipitation.

Keywords: acid mine drainage, neutralisation, limestone, mathematical modelling

Procedia PDF Downloads 364
3385 Hydrodynamics of Shear Layers at River Confluences by Formation of Secondary Circulation

Authors: Ali Aghazadegan, Ali Shokri, Julia Mullarney

Abstract:

River confluences are areas where there is a lot of mixing, which is often caused by the formation of shear layers and helical motions. The hydrodynamics of secondary circulation at river confluences with low flow discharge ratios and a 90° junction angle are investigated in this study. The analysis is based on Delft 3D modelling, which includes a three-dimensional time-averaged velocity field, turbulence, and water surface levels that have been validated using laboratory data. Confluence structure was characterized by shear layer, secondary circulation, and mixing at the junction and post confluence channel. This study analysis formation of the shear layer by generation of secondary circulations in variation discharge ratios. The values of streamwise, cross-wise, and vertical components are used to estimate the secondary circulation observed within and downstream of the tributary mouth. These variables are estimated for three horizontal planes at Z = [0.14; 0.07; 0.02] and for eight cross-sections at X = [-0.1; 0.00; 0.10; 0.2; 0.30; 0.4; 0.5; 0.6] within a range of 0.05 Y 0.30.

Keywords: river confluence, shear layer, secondary circulation, hydrodynamics

Procedia PDF Downloads 96
3384 Hydrology and Hydraulics Analysis of Aremenie Earthen Dam, Ethiopia

Authors: Azazhu Wassie

Abstract:

This study tried to analyze the impact of the hydrologic and hydraulic parameters (catchment area, rainfall intensity, and runoff coefficient) on the referenced study area. The study was conducted in June 2023. The Aremenie River Dam has 30 years of record, which is reasonably sufficient data. It is a matter of common experience that, due to the failure of an instrument or the absence of a gauged river, the rainfall record at quite a number of stations is incomplete. From the analysis, the 50-year return period design flood is 62.685 m³/s at 1.2 hr peak time. This implies that for this watershed, the peak flood rate per km² area of the watershed is about this value, which ensures that high rainfall in the area can generate a higher rate of runoff per km² of the generating catchment. The Aremenie Rivers carry a large amount of sediment along with water. These sediments are deposited in the reservoir upstream of the dam because of the reduction in velocity. Sediment reduces the available capacity of the reservoir with continuous sedimentation; the useful life of the reservoir goes on decreasing.

Keywords: dam design, peak flood, rainfall, reservoir capacity, runoff

Procedia PDF Downloads 33
3383 Heat and Flow Analysis of Solar Air Heaters with Artificial Roughness on the Absorber

Authors: Amel Boulemtafes-Boukadoum, Ahmed Benzaoui

Abstract:

Solar air heaters (SAH) are widely used in heating and drying applications using solar energy. Their efficiency needs to be improved to be competitive towards solar water heater. In this work, our goal is to study heat transfer enhancement in SAHs by the use of artificial roughness on the absorber. For this purpose, computational fluid dynamics (CFD) simulations were carried out to analyze the flow and heat transfer in the air duct of a solar air heater provided with transverse ribs. The air flows in forced convection and the absorber is heated with uniform flux. The effect of major parameters (Reynolds number, solar radiation, air inlet temperature, geometry of roughness) is examined and discussed. To highlight the effect of artificial roughness, we plotted the distribution of the important parameters: Nusselt number, friction factor, global thermohydraulic performance parameter etc. The results obtained are concordant to those found in the literature and shows clearly the heat transfer enhancement due to artifical roughness.

Keywords: solar air heater, artificial roughness, heat transfer enhancement, CFD

Procedia PDF Downloads 570
3382 Effect of Sprouting Period of Proximate Composition, Functional Properties and Mineral Content on Malted Sorghum Flour

Authors: Adebola Ajayi, Olakunle M. Makanjuola

Abstract:

Effect of sprouting period on proximate, functional and mineral properties of malted sorghum flour was evaluated. The study was carried out to determine the proximate, functional and mineral properties of sprouting period on malted sorghum flour produced. The malted sorghum flour was obtained by sorting, weighing, washing, steeping, draining, germination, drying, dry milling, sieving. Malted sorghum flour was evaluated for proximate composition, functional properties and mineral contents. Moisture, protein, fat content, crude fiber, ash contents and carbohydrate of 24 and 48 hours, were in the range of 10.50-11.0, 11.17-11.17, 1.50-4.00, 2.50-1.50, 1.50-1.54 and 73.15-70.79% respectively. Bulk density ranged between 0.64 and 0.59g/ml, water and oil absorption capacities ranged between 139.3 and 150.0 and 217.3 and 222.7g/g respectively. Calcium, Magnesium, Zinc, Iron and Manganese were also range of 12.5, 59.3-60.0, 3.22-3.25, 3.80-3.90 and 3.22-3.25 mg/100g respectively. The results indicate that the germination of red sorghum resulted in the enhancement of the nutritional quality and its functional properties.

Keywords: sprouting, sorghum, malted sorghum flour, cabinet dryer

Procedia PDF Downloads 208
3381 Use of Predictive Food Microbiology to Determine the Shelf-Life of Foods

Authors: Fatih Tarlak

Abstract:

Predictive microbiology can be considered as an important field in food microbiology in which it uses predictive models to describe the microbial growth in different food products. Predictive models estimate the growth of microorganisms quickly, efficiently, and in a cost-effective way as compared to traditional methods of enumeration, which are long-lasting, expensive, and time-consuming. The mathematical models used in predictive microbiology are mainly categorised as primary and secondary models. The primary models are the mathematical equations that define the growth data as a function of time under a constant environmental condition. The secondary models describe the effects of environmental factors, such as temperature, pH, and water activity (aw) on the parameters of the primary models, including the maximum specific growth rate and lag phase duration, which are the most critical growth kinetic parameters. The combination of primary and secondary models provides valuable information to set limits for the quantitative detection of the microbial spoilage and assess product shelf-life.

Keywords: shelf-life, growth model, predictive microbiology, simulation

Procedia PDF Downloads 211
3380 Effect of Toxic Metals Exposure on Rat Behavior and Brain Morphology: Arsenic, Manganese

Authors: Tamar Bikashvili, Tamar Lordkipanidze, Ilia Lazrishvili

Abstract:

Heavy metals remain one of serious environmental problems due to their toxic effects. The effect of arsenic and manganese compounds on rat behavior and neuromorphology was studied. Wistar rats were assigned to four groups: rats in control group were given regular water, while rats in other groups drank water with final manganese concentration of 10 mg/L (group A), 20 mg/L (group B) and final arsenic concentration 68 mg/L (group C), respectively, for a month. To study exploratory and anxiety behavior and also to evaluate aggressive performance in “home cage” rats were tested in “Open Field” and to estimate learning and memory status multi-branched maze was used. Statistically significant increase of motor and oriental-searching activity in experimental groups was revealed by an open field test, which was expressed in increase of number of lines crossed, rearing and hole reflexes. Obtained results indicated the suppression of fear in rats exposed to manganese. Specifically, this was estimated by the frequency of getting to the central part of the open field. Experiments revealed that 30-day exposure to 10 mg/ml manganese did not stimulate aggressive behavior in rats, while exposure to the higher dose (20 mg/ml), 37% of initially non-aggressive animals manifested aggressive behavior. Furthermore, 25% of rats were extremely aggressive. Obtained data support the hypothesis that excess manganese in the body is one of the immediate causes of enhancement of interspecific predatory aggressive and violent behavior in rats. It was also discovered that manganese intoxication produces non-reversible severe learning disability and insignificant, reversible memory disturbances. Studies of rodents exposed to arsenic also revealed changes in the learning process. As it is known, the distribution of metal ions differs in various brain regions. The principle manganese accumulation was observed in the hippocampus and in the neocortex, while arsenic was predominantly accumulated in nucleus accumbens, striatum, and cortex. These brain regions play an important role in the regulation of emotional state and motor activity. Histopathological analyzes of brain sections illustrated two morphologically distinct altered phenotypes of neurons: (1) shrunk cells with indications of apoptosis - nucleus and cytoplasm were very difficult to be distinguished, the integrity of neuronal cytoplasm was not disturbed; and (2) swollen cells - with indications of necrosis. Pyknotic nucleus, plasma membrane disruption and cytoplasmic vacuoles were observed in swollen neurons and they were surrounded by activated gliocytes. It’s worth to mention that in the cortex the majority of damaged neurons were apoptotic while in subcortical nuclei –neurons were mainly necrotic. Ultrastructural analyses demonstrated that all cell types in the cortex and the nucleus caudatus represent destructed mitochondria, widened neurons’ vacuolar system profiles, increased number of lysosomes and degeneration of axonal endings.

Keywords: arsenic, manganese, behavior, learning, neuron

Procedia PDF Downloads 359
3379 Study on the Carboxymethylation of Glucomannan from Porang

Authors: Fadilah Fadilah, Sperisa Distantina, Santi T. Wijayanti, Rahmawati Andayani

Abstract:

Chemical modification process on glucomannan from porang via carboxymethylation have been conducted. The process was done in two stages, the alkalization, and the carboxymethylation. The alkalization was done by adding NaOH solution into the medium which was contained glucomannan and then stirred it in ambient temperature for thirty minutes. The carboxymethylation process was done by adding sodium mono chloroacetate solution into the alkalization product. The carboxymethylation process was conducted for a certain time, and the product was then analyzed for determining the degree of substitution. In this research, the influence of medium to the degree of substitution was studied. Three different medium were used, namely water, 70% ethanol, and 90% ethanol. The results show that 70% ethanol was a better medium than two others because give a higher degree of substitution. Using 70% ethanol as a medium, the experiments for studying the influence of temperature on the carboxymethylation stages were conducted. The results show that the degree of substitution at 65°C is higher than at 45°C.

Keywords: carboxymethylation, degree of substitution, ethanol medium, glucomannan

Procedia PDF Downloads 223
3378 Phase Diagrams and Liquid-Liquid Extraction in Aqueous Biphasic Systems Formed by Polyethylene Glycol and Potassium Sodium Tartrate at 303.15 K

Authors: Amanda Cristina de Oliveira, Elias de Souza Monteiro Filho, Roberta Ceriani

Abstract:

Liquid-liquid extraction in aqueous two-phase systems (ATPSs) constitutes a powerful tool for purifying bio-materials, such as cells, organelles, proteins, among others. In this work, the extraction of the bovine serum albumin (BSA) has been studied in systems formed by polyethylene glycol (PEG) (1500, 4000, and 6000 g.mol⁻¹) + potassium sodium tartrate + water at 303.15°K. Phase diagrams were obtained by turbidimetry and Merchuk’s method (1998). The experimental tie-lines were described using the Othmer-Tobias and Bancroft correlations. ATPSs were correlated with the nonrandom two-liquid (NRTL) model. The results were considered excellent according to global root-mean-square deviations found which were between 0,72 and 1,13%. The concentrations of the proteins in each phase were determined by spectrophotometry at 280 nm, finding partition efficiencies greater than 71%.

Keywords: aqueous two phases systems, bovine serum albumin , liquid-liquid extraction, polyethylene glycol

Procedia PDF Downloads 158
3377 A Case Study on the Estimation of Design Discharge for Flood Management in Lower Damodar Region, India

Authors: Susmita Ghosh

Abstract:

Catchment area of Damodar River, India experiences seasonal rains due to the south-west monsoon every year and depending upon the intensity of the storms, floods occur. During the monsoon season, the rainfall in the area is mainly due to active monsoon conditions. The upstream reach of Damodar river system has five dams store the water for utilization for various purposes viz, irrigation, hydro-power generation, municipal supplies and last but not the least flood moderation. But, in the downstream reach of Damodar River, known as Lower Damodar region, is severely and frequently suffering from flood due to heavy monsoon rainfall and also release from upstream reservoirs. Therefore, an effective flood management study is required to know in depth the nature and extent of flood, water logging, and erosion related problems, affected area, and damages in the Lower Damodar region, by conducting mathematical model study. The design flood or discharge is needed to decide to assign the respective model for getting several scenarios from the simulation runs. The ultimate aim is to achieve a sustainable flood management scheme from the several alternatives. there are various methods for estimating flood discharges to be carried through the rivers and their tributaries for quick drainage from inundated areas due to drainage congestion and excess rainfall. In the present study, the flood frequency analysis is performed to decide the design flood discharge of the study area. This, on the other hand, has limitations in respect of availability of long peak flood data record for determining long type of probability density function correctly. If sufficient past records are available, the maximum flood on a river with a given frequency can safely be determined. The floods of different frequency for the Damodar has been calculated by five candidate distributions i.e., generalized extreme value, extreme value-I, Pearson type III, Log Pearson and normal. Annual peak discharge series are available at Durgapur barrage for the period of 1979 to 2013 (35 years). The available series are subjected to frequency analysis. The primary objective of the flood frequency analysis is to relate the magnitude of extreme events to their frequencies of occurrence through the use of probability distributions. The design flood for return periods of 10, 15 and 25 years return period at Durgapur barrage are estimated by flood frequency method. It is necessary to develop flood hydrographs for the above floods to facilitate the mathematical model studies to find the depth and extent of inundation etc. Null hypothesis that the distributions fit the data at 95% confidence is checked with goodness of fit test, i.e., Chi Square Test. It is revealed from the goodness of fit test that the all five distributions do show a good fit on the sample population and is therefore accepted. However, it is seen that there is considerable variation in the estimation of frequency flood. It is therefore considered prudent to average out the results of these five distributions for required frequencies. The inundated area from past data is well matched using this flood.

Keywords: design discharge, flood frequency, goodness of fit, sustainable flood management

Procedia PDF Downloads 201
3376 Icephobic and Hydrophobic Behaviour of Laser Patterned Transparent Coatings

Authors: Bartłomiej Przybyszewski, Rafał Kozera, Anna Boczkowska, Maciej Traczyk, Paulina Kozera, Malwina Liszewska, Daria Pakuła

Abstract:

The goal of the work was to reduce or completely eliminate the accumulation of dirt, snow and ice build-up on transparent coatings by achieving self-cleaning and icephobic properties. The research involved the use of laser surface texturing technology for chemically modified coatings of the epoxy materials group and their hybrids used to protect glass surfaces. For this purpose, two methods of surface structuring and the preceding volumetric modification of the chemical composition with proprietary organosilicon compounds and/or mineral additives were used. An attractive approach to the topic was the development of efficient and, most importantly, durable coatings with self-cleaning and ice-phobic properties that reduced or avoided dirt build-up and adhesion of water, snow and ice. With a view to the future industrial application of the developed technologies, all methods meet the requirements in terms of their practical use on a large scale.

Keywords: icephobic coatings, hydrophobic coatings, transparent coatings, laser patterning

Procedia PDF Downloads 105
3375 Assessment of Trace Metal Concentration of Soils Contaminated with Carbide in Abraka, Delta State, Nigeria

Authors: O.M. Agbogidi, I.M. Onochie

Abstract:

An investigation was carried out on trace metal concentration of soils contaminated with carbide in Abraka, Delta State, Nigeria in 2014 with a view to providing baseline formation on their status relative to the control plants and to the tolerable limits recommended by World standard bodies including WHO and FAO. The metals were analyzed using the Atomic Absorption Spectrophotometer which showed an elevated level when compared with the control plots. High level of metals including Fe, Pb, Zn, Cu, Cd, Ni, Cr and arsenic were recorded and these values were significantly different (P<0.05) from values obtained from the control plots. These results are indicative of the fact that carbide polluted soil had higher level of trace metals and because these metals are non-biodegradable elements in the ecosystem, a rise to their lethal levels in food chains is envisaged due to the interdependency of plants and animals stemming from soil-water organisms interrelationship.

Keywords: bio-concentration, carbide contaminated soils, heavy metals, trace metals

Procedia PDF Downloads 275
3374 Development and application of Humidity-Responsive Controlled Release Active Packaging Based on Electrospinning Nanofibers and In Situ Growth Polymeric Film in Food preservation

Authors: Jin Yue

Abstract:

Fresh produces especially fruits, vegetables, meats and aquatic products have limited shelf life and are highly susceptible to deterioration. Essential oils (EOs) extracted from plants have excellent antioxidant and broad-spectrum antibacterial activities, and they can play as natural food preservatives. But EOs are volatile, water insoluble, pungent, and easily decomposing under light and heat. Many approaches have been developed to improve the solubility and stability of EOs such as polymeric film, coating, nanoparticles, nano-emulsions and nanofibers. Construction of active packaging film which can incorporate EOs with high loading efficiency and controlled release of EOs has received great attention. It is still difficult to achieve accurate release of antibacterial compounds at specific target locations in active packaging. In this research, a relative humidity-responsive packaging material was designed, employing the electrospinning technique to fabricate a nanofibrous film loaded with a 4-terpineol/β-cyclodextrin inclusion complexes (4-TA/β-CD ICs). Functioning as an innovative food packaging material, the film demonstrated commendable attributes including pleasing appearance, thermal stability, mechanical properties, and effective barrier properties. The incorporation of inclusion complexes greatly enhanced the antioxidant and antibacterial activity of the film, particularly against Shewanella putrefaciens, with an inhibitory efficiency of up to 65%. Crucially, the film realized controlled release of 4-TA under 98% high relative humidity conditions by inducing the plasticization of polymers caused by water molecules, swelling of polymer chains, and destruction of hydrogen bonds within the cyclodextrin inclusion complex. This film with a long-term antimicrobial effect successfully extended the shelf life of Litopenaeus vannamei shrimp to 7 days at 4 °C. To further improve the loading efficiency and long-acting release of EOs, we synthesized the γ-cyclodextrin-metal organic frameworks (γ-CD-MOFs), and then efficiently anchored γ-CD-MOFs on chitosan-cellulose (CS-CEL) composite film by in situ growth method for controlled releasing of carvacrol (CAR). We found that the growth efficiency of γ-CD-MOFs was the highest when the concentration of CEL dispersion was 5%. The anchoring of γ-CD-MOFs on CS-CEL film significantly improved the surface area of CS-CEL film from 1.0294 m2/g to 43.3458 m2/g. The molecular docking and 1H NMR spectra indicated that γ-CD-MOF has better complexing and stabilizing ability for CAR molecules than γ-CD. In addition, the release of CAR reached 99.71±0.22% on the 10th day, while under 22% RH, the release pattern of CAR was a plateau with 14.71 ± 4.46%. The inhibition rate of this film against E. coli, S. aureus and B. cinerea was more than 99%, and extended the shelf life of strawberries to 7 days. By incorporating the merits of natural biopolymers and MOFs, this active packaging offers great potential as a substitute for traditional packaging materials.

Keywords: active packaging, antibacterial activity, controlled release, essential oils, food quality control

Procedia PDF Downloads 64
3373 Ultrasound Mechanical Index as a Parameter Affecting of the Ability of Proliferation of Cells

Authors: Z. Hormozi Moghaddam, M. Mokhtari-Dizaji, M. Movahedin, M. E. Ravari

Abstract:

Mechanical index (MI) is used for quantifying acoustic cavitation and the relationship between acoustic pressure and the frequency. In this study, modeling of the MI was applied to provide treatment protocol and to understand the effective physical processes on reproducibility of stem cells. The acoustic pressure and MI equations are modeled and solved to estimate optimal MI for 28, 40, 150 kHz and 1 MHz frequencies. Radial and axial acoustic pressure distribution was extracted. To validate the results of the modeling, the acoustic pressure in the water and near field depth was measured by a piston hydrophone. Results of modeling and experiments show that the model is consistent well to experimental results with 0.91 and 0.90 correlation of coefficient (p<0.05) for 1 MHz and 40 kHz. Low intensity ultrasound with 0.40 MI is more effective on the proliferation rate of the spermatogonial stem cells during the seven days of culture, in contrast, high MI has a harmful effect on the spermatogonial stem cells. This model provides proper treatment planning in vitro and in vivo by estimating the cavitation phenomenon.

Keywords: ultrasound, mechanical index, modeling, stem cell

Procedia PDF Downloads 334
3372 Remote Sensing Application on Snow Products and Analyzing Disaster-Forming Environments Xinjiang, China

Authors: Gulijianati Abake, Ryutaro Tateishi

Abstract:

Snow is one kind of special underlying surface, has high reflectivity, low thermal conductivity, and snow broth hydrological effect. Every year, frequent snow disaster in Xinjiang causing considerable economic loss and serious damage to towns and farms, such as livestock casualties, traffic jams and other disaster, therefore monitoring SWE (snow volume) in Xinjiang has a great significance. The problems of how this disaster distributes and what disaster-forming environments are important to its occurrence are the most pressing problems in disaster risk assessment and salvage material arrangement. The present study aims 1) to monitor accurate SWE using MODIS, AMSRE, and CMC data, 2) to establish the regularity of snow disaster outbreaks and the important disaster-forming environmental factors. And a spatial autocorrelation analysis method and a canonical correlation analysis method are used to answer these two questions separately, 3) to prepare the way to salvage material arrangements for snow disasters.

Keywords: snow water equivalent (snow volume), AMSR-E, CMC snow depth, snow disaster

Procedia PDF Downloads 370
3371 Mathematical Modeling of Activated Sludge Process: Identification and Optimization of Key Design Parameters

Authors: Ujwal Kishor Zore, Shankar Balajirao Kausley, Aniruddha Bhalchandra Pandit

Abstract:

There are some important design parameters of activated sludge process (ASP) for wastewater treatment and they must be optimally defined to have the optimized plant working. To know them, developing a mathematical model is a way out as it is nearly commensurate the real world works. In this study, a mathematical model was developed for ASP, solved under activated sludge model no 1 (ASM 1) conditions and MATLAB tool was used to solve the mathematical equations. For its real-life validation, the developed model was tested for the inputs from the municipal wastewater treatment plant and the results were quite promising. Additionally, the most cardinal assumptions required to design the treatment plant are discussed in this paper. With the need for computerization and digitalization surging in every aspect of engineering, this mathematical model developed might prove to be a boon to many biological wastewater treatment plants as now they can in no time know the design parameters which are required for a particular type of wastewater treatment.

Keywords: waste water treatment, activated sludge process, mathematical modeling, optimization

Procedia PDF Downloads 144
3370 Wastes of Oil Drilling: Treatment Techniques and Their Effectiveness

Authors: Abbas Hadj Abbas, Hacini Massaoud, Aiad Lahcen

Abstract:

In Hassi-Messoud’s oil industry, the systems which are water based (WBM) are generally used for drilling in the first phase. For the rest of the well, the oil mud systems are employed (OBM). In the field of oil exploration, panoply of chemical products is employed in the drilling fluids formulation. These components of different natures and whose toxicity and biodegradability are of ill-defined parameters are; however, thrown into nature. In addition to the hydrocarbon (HC, such as diesel) which is a major constituent of oil based mud, we also can notice spills as well as a variety of other products and additives on the drilling sites. These wastes are usually stored in places called (crud wastes). These may cause major problems to the ecosystem. To treat these wastes, we have considered two methods which are: solidification/ stabilization (chemical) and thermal. So that we can evaluate the techniques of treatment, a series of analyses are performed on dozens of specimens of wastes before treatment. After that, and on the basis of our analyses of wastes, we opted for diagnostic treatments of pollution before and after solidification and stabilization. Finally, we have done some analyses before and after the thermal treatment to check the efficiency of the methods followed in the study.

Keywords: wastes treatment, the oil pollution, the norms, wastes drilling

Procedia PDF Downloads 294