Search results for: sustainable operations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6303

Search results for: sustainable operations

363 Synergistic Effect of Chondroinductive Growth Factors and Synovium-Derived Mesenchymal Stem Cells on Regeneration of Cartilage Defects in Rabbits

Authors: M. Karzhauov, А. Mukhambetova, M. Sarsenova, E. Raimagambetov, V. Ogay

Abstract:

Regeneration of injured articular cartilage remains one of the most difficult and unsolved problems in traumatology and orthopedics. Currently, for the treatment of cartilage defects surgical techniques for stimulation of the regeneration of cartilage in damaged joints such as multiple microperforation, mosaic chondroplasty, abrasion and microfractures is used. However, as shown by clinical practice, they can not provide a full and sustainable recovery of articular hyaline cartilage. In this regard, the current high hopes in the regeneration of cartilage defects reasonably are associated with the use of tissue engineering approaches to restore the structural and functional characteristics of damaged joints using stem cells, growth factors and biopolymers or scaffolds. The purpose of the present study was to investigate the effects of chondroinductive growth factors and synovium-derived mesenchymal stem cells (SD-MSCs) on the regeneration of cartilage defects in rabbits. SD-MSCs were isolated from the synovium membrane of Flemish giant rabbits, and expanded in complete culture medium α-MEM. Rabbit SD-MSCs were characterized by CFU-assay and by their ability to differentiate into osteoblasts, chondrocytes and adipocytes. The effects of growth factors (TGF-β1, BMP-2, BMP-4 and IGF-I) on MSC chondrogenesis were examined in micromass pellet cultures using histological and biochemical analysis. Articular cartilage defect (4mm in diameter) in the intercondylar groove of the patellofemoral joint was performed with a kit for the mosaic chondroplasty. The defect was made until subchondral bone plate. Delivery of SD-MSCs and growth factors was conducted in combination with hyaloronic acid (HA). SD-MSCs, growth factors and control groups were compared macroscopically and histologically at 10, 30, 60 and 90 days aftrer intra-articular injection. Our in vitro comparative study revealed that TGF-β1 and BMP-4 are key chondroinductive factors for both the growth and chondrogenesis of SD-MSCs. The highest effect on MSC chondrogenesis was observed with the synergistic interaction of TGF-β1 and BMP-4. In addition, biochemical analysis of the chondrogenic micromass pellets also revealed that the levels of glycosaminoglycans and DNA after combined treatment with TGF-β1 and BMP-4 was significantly higher in comparison to individual application of these factors. In vivo study showed that for complete regeneration of cartilage defects with intra-articular injection of SD-MSCs with HA takes time 90 days. However, single injection of SD-MSCs in combiantion with TGF-β1, BMP-4 and HA significantly promoted regeneration rate of the cartilage defects in rabbits. In this case, complete regeneration of cartilage defects was observed in 30 days after intra-articular injection. Thus, our in vitro and in vivo study demonstrated that combined application of rabbit SD-MSC with chondroinductive growth factors and HA results in strong synergistic effect on the chondrogenesis significantly enhancing regeneration of the damaged cartilage.

Keywords: Mesenchymal stem cells, synovium, chondroinductive factors, TGF-β1, BMP-2, BMP-4, IGF-I

Procedia PDF Downloads 306
362 Combat Plastic Entering in Kanpur City, Uttar Pradesh, India Marine Environment

Authors: Arvind Kumar

Abstract:

The city of Kanpur is located in the terrestrial plain area on the bank of the river Ganges and is the second largest city in the state of Uttar Pradesh. The city generates approximately 1400-1600 tons per day of MSW. Kanpur has been known as a major point and non-points-based pollution hotspot for the river Ganges. The city has a major industrial hub, probably the largest in the state, catering to the manufacturing and recycling of plastic and other dry waste streams. There are 4 to 5 major drains flowing across the city, which receive a significant quantity of waste leakage, which subsequently adds to the Ganges flow and is carried to the Bay of Bengal. A river-to-sea flow approach has been established to account for leaked waste into urban drains, leading to the build-up of marine litter. Throughout its journey, the river accumulates plastic – macro, meso, and micro, from various sources and transports it towards the sea. The Ganges network forms the second-largest plastic-polluting catchment in the world, with over 0.12 million tonnes of plastic discharged into marine ecosystems per year and is among 14 continental rivers into which over a quarter of global waste is discarded 3.150 Kilo tons of plastic waste is generated in Kanpur, out of which 10%-13% of plastic is leaked into the local drains and water flow systems. With the Support of Kanpur Municipal Corporation, 1TPD capacity MRF for drain waste management was established at Krishna Nagar, Kanpur & A German startup- Plastic Fisher, was identified for providing a solution to capture the drain waste and achieve its recycling in a sustainable manner with a circular economy approach. The team at Plastic Fisher conducted joint surveys and identified locations on 3 drains at Kanpur using GIS maps developed during the survey. It suggested putting floating 'Boom Barriers' across the drains with a low-cost material, which reduced their cost to only 2000 INR per barrier. The project was built upon the self-sustaining financial model. The project includes activities where a cost-efficient model is developed and adopted for a socially self-inclusive model. The project has recommended the use of low-cost floating boom barriers for capturing waste from drains. This involves a one-time time cost and has no operational cost. Manpower is engaged in fishing and capturing immobilized waste, whose salaries are paid by the Plastic Fisher. The captured material is sun-dried and transported to the designated place, where the shed and power connection, which act as MRF, are provided by the city Municipal corporation. Material aggregation, baling, and transportation costs to end-users are borne by Plastic Fisher as well.

Keywords: Kanpur, marine environment, drain waste management, plastic fisher

Procedia PDF Downloads 71
361 Big Data for Local Decision-Making: Indicators Identified at International Conference on Urban Health 2017

Authors: Dana R. Thomson, Catherine Linard, Sabine Vanhuysse, Jessica E. Steele, Michal Shimoni, Jose Siri, Waleska Caiaffa, Megumi Rosenberg, Eleonore Wolff, Tais Grippa, Stefanos Georganos, Helen Elsey

Abstract:

The Sustainable Development Goals (SDGs) and Urban Health Equity Assessment and Response Tool (Urban HEART) identify dozens of key indicators to help local decision-makers prioritize and track inequalities in health outcomes. However, presentations and discussions at the International Conference on Urban Health (ICUH) 2017 suggested that additional indicators are needed to make decisions and policies. A local decision-maker may realize that malaria or road accidents are a top priority. However, s/he needs additional health determinant indicators, for example about standing water or traffic, to address the priority and reduce inequalities. Health determinants reflect the physical and social environments that influence health outcomes often at community- and societal-levels and include such indicators as access to quality health facilities, access to safe parks, traffic density, location of slum areas, air pollution, social exclusion, and social networks. Indicator identification and disaggregation are necessarily constrained by available datasets – typically collected about households and individuals in surveys, censuses, and administrative records. Continued advancements in earth observation, data storage, computing and mobile technologies mean that new sources of health determinants indicators derived from 'big data' are becoming available at fine geographic scale. Big data includes high-resolution satellite imagery and aggregated, anonymized mobile phone data. While big data are themselves not representative of the population (e.g., satellite images depict the physical environment), they can provide information about population density, wealth, mobility, and social environments with tremendous detail and accuracy when combined with population-representative survey, census, administrative and health system data. The aim of this paper is to (1) flag to data scientists important indicators needed by health decision-makers at the city and sub-city scale - ideally free and publicly available, and (2) summarize for local decision-makers new datasets that can be generated from big data, with layperson descriptions of difficulties in generating them. We include SDGs and Urban HEART indicators, as well as indicators mentioned by decision-makers attending ICUH 2017.

Keywords: health determinant, health outcome, mobile phone, remote sensing, satellite imagery, SDG, urban HEART

Procedia PDF Downloads 211
360 Life-Cycle Assessment of Residential Buildings: Addressing the Influence of Commuting

Authors: J. Bastos, P. Marques, S. Batterman, F. Freire

Abstract:

Due to demands of a growing urban population, it is crucial to manage urban development and its associated environmental impacts. While most of the environmental analyses have addressed buildings and transportation separately, both the design and location of a building affect environmental performance and focusing on one or the other can shift impacts and overlook improvement opportunities for more sustainable urban development. Recently, several life-cycle (LC) studies of residential buildings have integrated user transportation, focusing exclusively on primary energy demand and/or greenhouse gas emissions. Additionally, most papers considered only private transportation (mainly car). Although it is likely to have the largest share both in terms of use and associated impacts, exploring the variability associated with mode choice is relevant for comprehensive assessments and, eventually, for supporting decision-makers. This paper presents a life-cycle assessment (LCA) of a residential building in Lisbon (Portugal), addressing building construction, use and user transportation (commuting with private and public transportation). Five environmental indicators or categories are considered: (i) non-renewable primary energy (NRE), (ii) greenhouse gas intensity (GHG), (iii) eutrophication (EUT), (iv) acidification (ACID), and (v) ozone layer depletion (OLD). In a first stage, the analysis addresses the overall life-cycle considering the statistical model mix for commuting in the residence location. Then, a comparative analysis compares different available transportation modes to address the influence mode choice variability has on the results. The results highlight the large contribution of transportation to the overall LC results in all categories. NRE and GHG show strong correlation, as the three LC phases contribute with similar shares to both of them: building construction accounts for 6-9%, building use for 44-45%, and user transportation for 48% of the overall results. However, for other impact categories there is a large variation in the relative contribution of each phase. Transport is the most significant phase in OLD (60%); however, in EUT and ACID building use has the largest contribution to the overall LC (55% and 64%, respectively). In these categories, transportation accounts for 31-38%. A comparative analysis was also performed for four alternative transport modes for the household commuting: car, bus, motorcycle, and company/school collective transport. The car has the largest results in all impact categories. When compared to the overall LC with commuting by car, mode choice accounts for a variability of about 35% in NRE, GHG and OLD (the categories where transportation accounted for the largest share of the LC), 24% in EUT and 16% in ACID. NRE and GHG show a strong correlation because all modes have internal combustion engines. The second largest results for NRE, GHG and OLD are associated with commuting by motorcycle; however, for ACID and EUT this mode has better performance than bus and company/school transport. No single transportation mode performed best in all impact categories. Integrated assessments of buildings are needed to avoid shifts of impacts between life-cycle phases and environmental categories, and ultimately to support decision-makers.

Keywords: environmental impacts, LCA, Lisbon, transport

Procedia PDF Downloads 365
359 Reinventing Smart Tourism via Use of Smart Gamified and Gaming Applications in Greece

Authors: Sofia Maria Poulimenou, Ioannis Deliyannis, Elisavet Filippidou, Stamatella Laboura

Abstract:

Smart technologies are being actively used to improve the experience of travel and promote or demote a destination’s reputation via a wide variety of social media applications and platforms. This paper conceptualises the design and deployment of smart management apps to promote culture, sustainability and accessibility within two destinations in Greece that represent the extremes of visiting scale. One is the densely visited Corfu, which is a UNESCO’s heritage site. The problems caused by the lack of organisation of the visiting experience and infrastructures affect all parties interacting within the site: visitors, citizens, public and private sector. Second is Kilkis, a low tourism destination with high seasonality and mostly inbound tourism. Here the issue faced is that traditional approaches to inform and motivate locals and visitors to explore and taste of the culture have not flourished. The problem is apprehended via the design and development of two systems named “Hologrammatic Corfu” for Corfu old town and “BRENDA” for the area of Kilkis. Although each system is designed independently, featuring different solutions to the problems, both approaches have been designed by the same team and a novel gaming and gamification methodology. The “Hologramatic Corfu” application has been designed, for the exploration of the site covering user requirments before, during and after the trip, with the use of transmedia content such as photos, 360-degree videos, augmented reality and hologrammatic videos. Also, a statistical analysis of travellers’ visits to specific points of interest is actively utilized enabling visitors to dynamically re-rooted during their visit, safeguarding sustainability and accessibility and inclusivity along the entire tourism cycle. “BRENDA” is designed specifically to promote gastronomic and historical tourism. This serious game implements and combines gaming and gamification elements in order to connect local businesses with cultural points of interest. As the environment of the project has a strong touristic orientation, “BRENDA” supports food-related gamified processes and historical games involving active participation of both local communities (content providers) and visitors (players) which are more likely to be successfully performed in the informal environment of travelling and promote sustainable tourism experiences. Finally, the paper presents the ability to re-use existing gaming components within new areas of interest via minimal adaptation and the use of transmedia aspects that enables destinations to be rebranded into smart destinations.

Keywords: smart tourism, gamification, user experience, transmedia content

Procedia PDF Downloads 176
358 Optimizing the Pair Carbon Xerogels-Electrolyte for High Performance Supercapacitors

Authors: Boriana Karamanova, Svetlana Veleva, Luybomir Soserov, Ana Arenillas, Francesco Lufrano, Antonia Stoyanova

Abstract:

Supercapacitors have received a lot of research attention and are promising energy storage devices due to their high power and long cycle life. In order to developed an advanced device with significant capacity for storing charge and cheap carbon materials, efforts must focus not only on improving synthesis by controlling the morphology and pore size but also on improving electrode-electrolyte compatibility of the resulting systems. The present study examines the relationship between the surface chemistry of two activated carbon xerogels, the electrolyte type, and the electrochemical properties of supercapacitors. Activated carbon xerogels were prepared by varying the initial pH of the resorcinol-formaldehyde aqueous solution. The materials produced are physicochemical characterized by DTA/TGA, porous characterization, and SEM analysis. The carbon xerogel based electrodes were prepared by spreading over glass plate a slurry containing the carbon gel, graphite, and poly vinylidene difluoride (PVDF) binder. The layer formed was dried consecutively at different temperatures and then detached by water. After, the layer was dried again to improve its mechanical stability. The developed electrode materials and the Aquivion® E87-05S membrane (Solvay Specialty Polymers), socked in Na2SO4 as a polymer electrolyte, were used to assembly the solid-state supercapacitor. Symmetric supercapacitor cells composed by same electrodes and 1 M KOH electrolytes are also assembled and tested for comparison. The supercapacitor performances are verified by different electrochemical methods - cyclic voltammetry, galvanostatic charge/discharge measurements, electrochemical impedance spectroscopy, and long-term durability tests in neutral and alkaline electrolytes. Specific capacitances, energy, and power density, energy efficiencies, and durability were compared into studied supercapacitors. Ex-situ physicochemical analyses on the synthesized materials have also been performed, which provide information about chemical and structural changes in the electrode morphology during charge / discharge durability tests. They are discussed on the basis of electrode-electrolyte interaction. The obtained correlations could be of significance in order to design sustainable solid-state supercapacitors with high power and energy density. Acknowledgement: This research is funded by the Ministry of Education and Science of Bulgaria under the National Program "European Scientific Networks" (Agreement D01-286 / 07.10.2020, D01-78/30.03.2021). Authors gratefully acknowledge.

Keywords: carbon xerogel, electrochemical tests, neutral and alkaline electrolytes, supercapacitors

Procedia PDF Downloads 137
357 Impact of Climatic Hazards on the Jamuna River Fisheries and Coping and Adaptation Strategies

Authors: Farah Islam, Md. Monirul Islam, Mosammat Salma Akter, Goutam Kumar Kundu

Abstract:

The continuous variability of climate and the risk associated with it have a significant impact on the fisheries leading to a global concern for about half a billion fishery-based livelihoods. Though in the context of Bangladesh mounting evidence on the impacts of climate change on fishery-based livelihoods or their socioeconomic conditions are present, the country’s inland fisheries sector remains in a negligible corner as compared to the coastal areas which are spotted on the highlight due to its higher vulnerability to climatic hazards. The available research on inland fisheries, particularly river fisheries, has focussed mainly on fish production, pollution, fishing gear, fish biodiversity and livelihoods of the fishers. This study assesses the impacts of climate variability and changes on the Jamuna (a transboundary river called Brahmaputra in India) River fishing communities and their coping and adaptation strategies. This study has used primary data collected from Kalitola Ghat and Debdanga fishing communities of the Jamuna River during May, August and December 2015 using semi-structured interviews, oral history interviews, key informant interviews, focus group discussions and impact matrix as well as secondary data. This study has found that both communities are exposed to storms, floods and land erosions which impact on fishery-based livelihood assets, strategies, and outcomes. The impact matrix shows that human and physical capitals are more affected by climate hazards which in turn affect financial capital. Both communities have been responding to these exposures through multiple coping and adaptation strategies. The coping strategies include making dam with soil, putting jute sac on the yard, taking shelter on boat or embankment, making raised platform or ‘Kheua’ and involving with temporary jobs. While, adaptation strategies include permanent migration, change of livelihood activities and strategies, changing fishing practices and making robust houses. The study shows that migration is the most common adaptation strategy for the fishers which resulted in mostly positive outcomes for the migrants. However, this migration has impacted negatively on the livelihoods of existing fishers in the communities. In sum, the Jamuna river fishing communities have been impacted by several climatic hazards and they have traditionally coped with or adapted to the impacts which are not sufficient to maintain sustainable livelihoods and fisheries. In coming decades, this situation may become worse as predicted by latest scientific research and an enhanced level of response would be needed.

Keywords: climatic hazards, impacts and adaptation, fisherfolk, the Jamuna River

Procedia PDF Downloads 322
356 Commissioning, Test and Characterization of Low-Tar Biomass Gasifier for Rural Applications and Small-Scale Plant

Authors: M. Mashiur Rahman, Ulrik Birk Henriksen, Jesper Ahrenfeldt, Maria Puig Arnavat

Abstract:

Using biomass gasification to make producer gas is one of the promising sustainable energy options available for small scale plant and rural applications for power and electricity. Tar content in producer gas is the main problem if it is used directly as a fuel. A low-tar biomass (LTB) gasifier of approximately 30 kW capacity has been developed to solve this. Moving bed gasifier with internal recirculation of pyrolysis gas has been the basic principle of the LTB gasifier. The gasifier focuses on the concept of mixing the pyrolysis gases with gasifying air and burning the mixture in separate combustion chamber. Five tests were carried out with the use of wood pellets and wood chips separately, with moisture content of 9-34%. The LTB gasifier offers excellent opportunities for handling extremely low-tar in the producer gas. The gasifiers producer gas had an extremely low tar content of 21.2 mg/Nm³ (avg.) and an average lower heating value (LHV) of 4.69 MJ/Nm³. Tar content found in different tests in the ranges of 10.6-29.8 mg/Nm³. This low tar content makes the producer gas suitable for direct use in internal combustion engine. Using mass and energy balances, the average gasifier capacity and cold gas efficiency (CGE) observed 23.1 kW and 82.7% for wood chips, and 33.1 kW and 60.5% for wood pellets, respectively. Average heat loss in term of higher heating value (HHV) observed 3.2% of thermal input for wood chips and 1% for wood pellets, where heat loss was found 1% of thermal input in term of enthalpy. Thus, the LTB gasifier performs better compared to typical gasifiers in term of heat loss. Equivalence ratio (ER) in the range of 0.29 to 0.41 gives better performance in terms of heating value and CGE. The specific gas production yields at the above ER range were in the range of 2.1-3.2 Nm³/kg. Heating value and CGE changes proportionally with the producer gas yield. The average gas compositions (H₂-19%, CO-19%, CO₂-10%, CH₄-0.7% and N₂-51%) obtained for wood chips are higher than the typical producer gas composition. Again, the temperature profile of the LTB gasifier observed relatively low temperature compared to typical moving bed gasifier. The average partial oxidation zone temperature of 970°C observed for wood chips. The use of separate combustor in the partial oxidation zone substantially lowers the bed temperature to 750°C. During the test, the engine was started and operated completely with the producer gas. The engine operated well on the produced gas, and no deposits were observed in the engine afterwards. Part of the producer gas flow was used for engine operation, and corresponding electrical power was found to be 1.5 kW continuously, and maximum power of 2.5 kW was also observed, while maximum generator capacity is 3 kW. A thermodynamic equilibrium model is good agreement with the experimental results and correctly predicts the equilibrium bed temperature, gas composition, LHV of the producer gas and ER with the experimental data, when the heat loss of 4% of the energy input is considered.

Keywords: biomass gasification, low-tar biomass gasifier, tar elimination, engine, deposits, condensate

Procedia PDF Downloads 115
355 A Policy Review on the Transitional Period from MDGs to SDGs: Experience from the Local Economy of Tigrai Regional State of Ethiopia

Authors: Tewele Gerlase Haile

Abstract:

Sustainable development is development that meets the needs of the present without compromising the ability of future generations to meet their own needs. The global development landscape underwent a transformative shift in 2015 as the international community pivoted from the MDGs to the more ambitious and comprehensive SDGs. The NDGs were a set of eight international development goals established by the United Nations in 2000, with the aim of improving the lives of people around the world by 2015. SDGs are a continuation of the MDGs. Unlike on the other development goals, progress on eradication of extreme hunger and poverty (MDG 1) has been slow at a continental level. The implementation of the MDGs was uneven: some countries have already achieved many of them, while the others have not started any of them yet. With its Poverty Reduction Strategic Papers (PRSPs), Ethiopia has been given special attention to the first MDG since 1993. The Ethiopian government was actively engaged in anti-poverty political campaign leaving other agendas as secondary issues. Poverty in Ethiopia progressively reduced over the years; it was 44.2% in 2000, 38.7% in 2007, 29.6 % in 2011, and it is projected to further reduce to 16.7% by the end of 2020. The long-term impact of war on the sustainability and effectiveness of SDG-related initiatives in post-conflict regions, particularly in how local governance and community resilience are affected. This could involve exploring how war interrupts progress, which specific SDGs are most vulnerable, and what strategies might mitigate these impacts. Reviewing a transitional period enables policy makers to align global or national development goals into local development goals with an uninterrupted policy continuity. The existing literature on development economics often neglects the importance of reviewing the transitional period of consecutive global development goals in a local or regional perspective. Reviewing a transitional period enables policy makers to align global or national development goals into local development goals with an uninterrupted policy continuity. Using a Policy Coherence for Development (PCD) approach as analytical tool, this paper is intended to retrospectively review what happened to the local economy of Tigrai Regional State during the transitional period from MDGs (2000-2015) to SDGs (2015-2030). Taking a retrospective facts and observations into account, policy discontinuity is witnessed in Tigrai following the dissolution of the EPRDF that followed with a terrible war that claimed about a million human lives and worth of over a hundred Billion US dollars economic costs. The unhealthy political reform caused not only a terrible war but also breaks the promising SDGs. Unlike other regional states, Tigrai left unprivileged to translate the ambitious SDGs into its local development policies.

Keywords: local development, political reform, war, MDGs, SDGs, Ethiopia, tigrai

Procedia PDF Downloads 21
354 The Highly Dispersed WO3-x Photocatalyst over the Confinement Effect of Mesoporous SBA-15 Molecular Sieves for Photocatalytic Nitrogen Reduction

Authors: Xiaoling Ren, Guidong Yang

Abstract:

As one of the largest industrial synthetic chemicals in the world, ammonia has the advantages of high energy density, easy liquefaction, and easy transportation, which is widely used in agriculture, chemical industry, energy storage, and other fields. The industrial Haber-Bosch method process for ammonia synthesis is generally conducted under severe conditions. It is essential to develop a green, sustainable strategy for ammonia production to meet the growing demand. In this direction, photocatalytic nitrogen reduction has huge advantages over the traditional, well-established Haber-Bosch process, such as the utilization of natural sun light as the energy source and significantly lower pressure and temperature to affect the reaction process. However, the high activation energy of nitrogen and the low efficiency of photo-generated electron-hole separation in the photocatalyst result in low ammonia production yield. Many researchers focus on improving the catalyst. In addition to modifying the catalyst, improving the dispersion of the catalyst and making full use of active sites are also means to improve the overall catalytic activity. Few studies have been carried out on this, which is the aim of this work. In this work, by making full use of the nitrogen activation ability of WO3-x with defective sites, small size WO3-x photocatalyst with high dispersibility was constructed, while the growth of WO3-x was restricted by using a high specific surface area mesoporous SBA-15 molecular sieve with the regular pore structure as a template. The morphology of pure SBA-15 and WO3-x/SBA-15 was characterized byscanning electron microscopy (SEM). Compared with pure SBA-15, some small particles can be found in the WO3-x/SBA-15 material, which means that WO3-x grows into small particles under the limitation of SBA-15, which is conducive to the exposure of catalytically active sites. To elucidate the chemical nature of the material, the X-ray diffraction (XRD) analysis was conducted. The observed diffraction pattern inWO3-xis in good agreement with that of the JCPDS file no.71-2450. Compared with WO3-x, no new peaks appeared in WO3-x/SBA-15.It can be concluded that WO3-x/SBA-15 was synthesized successfully. In order to provide more active sites, the mass content of WO3-x was optimized. Then the photocatalytic nitrogen reduction performances of above samples were performed with methanol as a hole scavenger. The results show that the overall ammonia production performance of WO3-x/SBA-15 is improved than pure bulk WO3-x. The above results prove that making full use of active sites is also a means to improve overall catalytic activity.This work provides material basis for the design of high-efficiency photocatalytic nitrogen reduction catalysts.

Keywords: ammonia, photocatalytic, nitrogen reduction, WO3-x, high dispersibility

Procedia PDF Downloads 160
353 Bio-Medical Equipment Technicians: Crucial Workforce to Improve Quality of Health Services in Rural Remote Hospitals in Nepal

Authors: C. M. Sapkota, B. P. Sapkota

Abstract:

Background: Continuous developments in science and technology are increasing the availability of thousands of medical devices – all of which should be of good quality and used appropriately to address global health challenges. It is obvious that bio medical devices are becoming ever more indispensable in health service delivery and among the key workforce responsible for their design, development, regulation, evaluation and training in their use: biomedical technician (BMET) is the crucial. As a pivotal member of health workforce, biomedical technicians are an essential component of the quality health service delivery mechanism supporting the attainment of the Sustainable Development Goals. Methods: The study was based on cross sectional descriptive design. Indicators measuring the quality of health services were assessed in Mechi Zonal Hospital (MZH) and Sagarmatha Zonal Hospital (SZH). Indicators were calculated based on the data about hospital utilization and performance of 2018 available in Medical record section of both hospitals. MZH had employed the BMET during 2018 but SZH had no BMET in 2018.Focus Group Discussion with health workers in both hospitals was conducted to validate the hospital records. Client exit interview was conducted to assess the level of client satisfaction in both the hospitals. Results: In MZH there was round the clock availability and utilization of Radio diagnostics equipment, Laboratory equipment. Operation Theater was functional throughout the year. Bed Occupancy rate in MZH was 97% but in SZH it was only 63%.In SZH, OT was functional only 54% of the days in 2018. CT scan machine was just installed but not functional. Computerized X-Ray in SZH was functional only in 72% of the days. Level of client satisfaction was 87% in MZH but was just 43% in SZH. MZH performed all (256) the Caesarean Sections but SZH performed only 36% of 210 Caesarean Sections in 2018. In annual performance ranking of Government Hospitals, MZH was placed in 1st rank while as SZH was placed in 19th rank out of 32 referral hospitals nationwide in 2018. Conclusion: Biomedical technicians are the crucial member of the human resource for health team with the pivotal role. Trained and qualified BMET professionals are required within health-care systems in order to design, evaluate, regulate, acquire, maintain, manage and train on safe medical technologies. Applying knowledge of engineering and technology to health-care systems to ensure availability, affordability, accessibility, acceptability and utilization of the safer, higher quality, effective, appropriate and socially acceptable bio medical technology to populations for preventive, promotive, curative, rehabilitative and palliative care across all levels of the health service delivery.

Keywords: biomedical equipment technicians, BMET, human resources for health, HRH, quality health service, rural hospitals

Procedia PDF Downloads 127
352 Collaborative Environmental Management: A Case Study Research of Stakeholders' Collaboration in the Nigerian Oil-Producing Region

Authors: Favour Makuochukwu Orji, Yingkui Zhao

Abstract:

A myriad of environmental issues face the Nigerian industrial region, resulting from; oil and gas production, mining, manufacturing and domestic wastes. Amidst these, much effort has been directed by stakeholders in the Nigerian oil producing regions, because of the impacts of the region on the wider Nigerian economy. Research to date has suggested that collaborative environmental management could be an effective approach in managing environmental issues; but little attention has been given to the roles and practices of stakeholders in effecting a collaborative environmental management framework for the Nigerian oil-producing region. This paper produces a framework to expand and deepen knowledge relating to stakeholders aspects of collaborative roles in managing environmental issues in the Nigeria oil-producing region. The knowledge is derived from analysis of stakeholders’ practices – studied through multiple case studies using document analysis. Selected documents of key stakeholders – Nigerian government agencies, multi-national oil companies and host communities, were analyzed. Open and selective coding was employed manually during document analysis of data collected from the offices and websites of the stakeholders. The findings showed that the stakeholders have a range of roles, practices, interests, drivers and barriers regarding their collaborative roles in managing environmental issues. While they have interests for efficient resource use, compliance to standards, sharing of responsibilities, generating of new solutions, and shared objectives; there is evidence of major barriers which includes resource allocation, disjointed policy and regulation, ineffective monitoring, diverse socio- economic interests, lack of stakeholders’ commitment and limited knowledge sharing. However, host communities hold deep concerns over the collaborative roles of stakeholders for economic interests, particularly, where government agencies and multi-national oil companies are involved. With these barriers and concerns, a genuine stakeholders’ collaboration is found to be limited, and as a result, optimal environmental management practices and policies have not been successfully implemented in the Nigeria oil-producing region. A framework is produced that describes practices that characterize collaborative environmental management might be employed to satisfy the stakeholders’ interests. The framework recommends critical factors, based on the findings, which may guide a collaborative environmental management in the oil producing regions. The recommendations are designed to re-define the practices of stakeholders in managing environmental issues in the oil producing regions, not as something wholly new, but as an approach essential for implementing a sustainable environmental policy. This research outcome may clarify areas for future research as well as to contribute to industry guidance in the area of collaborative environmental management.

Keywords: collaborative environmental management framework, case studies, document analysis, multinational oil companies, Nigerian oil producing regions, Nigerian government agencies, stakeholders analysis

Procedia PDF Downloads 175
351 Young Adult Males’ Attitudes, Perceptions and Behaviours in Regards to Male Condoms in Cambodia: A Qualitative Study

Authors: Rebecca Johnson, Elizabeth Hoban

Abstract:

Condom use among young men in Cambodia has declined between 2005 and 2014 which has public health implications such as increased risks of sexually transmitted infections, including HIV, and unplanned pregnancies. Conversations about sexual and reproductive health issues, including condom use, are not socially sanctioned in Cambodian society leaving young adults with limited knowledge of, and poor access to sexual and reproductive health services. Additionally, men play a dominant role in decision making regarding condom use within sexual partnerships. This study sought to fill a gap in knowledge by exploring young adult males’ attitudes, perceptions and behaviours regarding condom use. In February and March 2018, twenty young adult males, aged 18 to 24 years, were recruited from urban, peri urban and rural areas in Cambodia. The young adult males participated in a face-to-face semi structured interview that used an interview guide and photo elicitation method. The interview explored participants’ knowledge of sexual and reproductive health issues and efficacy, sexual behaviours, and use of condoms. Inductive thematic analysis was conducted and the following major themes emerged: understanding of reproduction, understanding of sexually transmitted infections, knowledge about condoms, condom use, access to condoms, and sexual behaviour. Participants’ knowledge of condoms and specific reasons for their use varied; most participants understood that condoms provide protection from sexually transmitted infections and prevent pregnancy. Stigma associated with condom access was consistently referred to as a problem and the main reason cited by young men for not using condoms during sexual intercourse. The perceived importance of condom use altered with partner type and relationship status, dependent upon the need for protection from sexually transmitted infections or pregnancy. Condoms were used for infection control in the context of multiple relationships, or as a contraceptive method for unmarried and some married couples. The majority of young men engaged in premarital sexual intercourse, of those men the many used condoms. The inconsistent use of condoms by young men in Cambodia is of public health concern because of the increased risk of sexually transmitted infections (including HIV), and unplanned pregnancy. Public health action is required in order to minimize long term health issues for individuals and the community. Health education is required to increase knowledge of condom use, sexually transmitted infections and HIV, and reduce the stigma associated with this topic. Sustainable health promotion programs are needed to increase ease of access to condoms for young people. Public health policy in Cambodia needs to be reviewed to improve sexual and reproductive health outcomes for young adults.

Keywords: Cambodia, condom use, sexual and reproductive health, young adult males

Procedia PDF Downloads 130
350 Simulating an Interprofessional Hospital Day Shift: A Student Interprofessional (IP) Collaborative Learning Activity

Authors: Fiona Jensen, Barb Goodwin, Nancy Kleiman, Rhonda Usunier

Abstract:

Background: Clinical simulation is now a common component in many health profession curricula in preparation for clinical practice. In the Rady Faculty of Health Sciences (RFHS) college leads in simulation and interprofessional (IP) education, planned an eight hour simulated hospital day shift, where seventy students from six health professions across two campuses, learned with each other in a safe, realistic environment. Learning about interprofessional collaboration, an expected competency for many health professions upon graduation, was a primary focus of the simulation event. Method: Faculty representatives from the Colleges of Nursing, Medicine, Pharmacy and Rehabilitation Sciences (Physical Therapy, Occupation Therapy, Respiratory Therapy) and Pharmacy worked together to plan the IP event in a simulation facility in the College of Nursing. Each college provided a faculty mentor to guide the same profession students. Students were placed in interprofessional teams consisting of a nurse, physician, pharmacist, and then sharing respiratory, occupational, and physical therapists across the team depending on the needs of the patients. Eight patient scenarios were role played by health profession students, who had been provided with their patient’s story shortly before the event. Each team was guided by a facilitator. Results and Outcomes: On the morning of the event, all students gathered in a large group to meet mentors and facilitators and have a brief overview of the six competencies for effective collaboration and the session objectives. The students assuming their same profession roles were provided with their patient’s chart at the beginning of the shift, met with their team, and then completed professional specific assessments. Shortly into the shift, IP team rounds began, facilitated by the team facilitator. During the shift, each patient role-played a spontaneous health incident, which required collaboration between the IP team members for assessment and management. The afternoon concluded with team rounds, a collaborative management plan, and a facilitated de-brief. Conclusions: During the de-brief sessions, students responded to set questions related to the session learning objectives and expressed many positive learning moments. We believe that we have a sustainable simulation IP collaborative learning opportunity, which can be embedded into curricula, and has the capacity to grow to include more health profession faculties and students. Opportunities are being explored in the RFHS at the administrative level, to offer this event more frequently in the academic year to reach more students. In addition, a formally structured event evaluation tool would provide important feedback and inform the qualitative feedback to event organizers and the colleges about the significance of the simulation event to student learning.

Keywords: simulation, collaboration, teams, interprofessional

Procedia PDF Downloads 131
349 Political Skills in Social Management and Responsibility of Media Studies

Authors: Musa Miah

Abstract:

Society and social activities are directly governed by political sociology. Political sociology has an impact on the whole of human society, the interrelationships of people in society, social responsibilities and duties, the nature of society, society and culture of different countries, conducting social activities, social change and social development. Through this, the correct knowledge and decision are made by analyzing the complexities of society in different ways. In modern civilized society, people need to get accurate knowledge about how they live, their behavior, customs and principles. The need for political sociology is undeniable, even if new plans are to be adopted for the development of society. The importance of practicing political sociology is immense if any country, nation, or society is to move forward on the path of sustainable development. Research has shown that political sociology is an essential aspect of the social impact of development, sociological analysis of poverty or underdevelopment, development of human values in individual life. The importance of political sociology for knowing the overall aspect of society is undeniable. Because, to know about social problems, to identify social problems, to find the cause of any social problem, one needs to know political sociology. Apart from knowing about the class structure of the society, people of different classes and professions live in the society. It is possible to gain knowledge about. He is also involved in various societies, communities and groups in the country and abroad. Therefore, research has shown that in order to successfully solve any task of the society, it is necessary to know the society in full. Media Studies: Media studies are directly related to socialization. Media strategy has had a positive impact on the management and direction of society. At present, Media Studies in Bangladesh is working towards providing opportunities for up-to-date and quality higher education. Introduced Department of Journalism, Communication and Media Studies in different universities of Bangladesh. The department has gained immense popularity since its inception. Here the top degree holders, as well as eminent editors, senior journalists, writers and researchers, are giving their opinions. Now there is ample scope for research in newspapers, magazines, radio, television and online media as well as outside of work as an advertising-documentary filmmaker or in domestic and foreign NGOs or other corporate organizations. According to the study, media studies have had a positive impact on the media in Bangladesh, especially television channels, the expansion and development of online media and the creation of clear ideas about communication, journalism and the media. Workshops, seminars and discussions are being held on contemporary national and international issues in addition to theoretical concepts. Journalism, communication and mass media are quite exceptional and challenging compared to the traditional subjects considering the present times. In this regard, there is a unique opportunity to build a modern society with taste and personality without mere employment.

Keywords: Bangladesh, Dhaka, social activities, political sociology

Procedia PDF Downloads 152
348 The Strategic Gas Aggregator: A Key Legal Intervention in an Evolving Nigerian Natural Gas Sector

Authors: Olanrewaju Aladeitan, Obiageli Phina Anaghara-Uzor

Abstract:

Despite the abundance of natural gas deposits in Nigeria and the immense potential, this presents both for the domestic and export oriented revenue, there exists an imbalance in the preference for export as against the development and optimal utilization of natural gas for the domestic industry. Considerable amounts of gas are still being wasted by flaring in the country to this day. Although the government has set in place initiatives to harness gas at the flare and thereby reduce volumes flared, the gas producers would rather direct the gas produced to the export market whereas gas apportioned to the domestic market is often marred by the low domestic gas price which is often discouraging to the gas producers. The exported fraction of gas production no doubt yields healthy revenues for the government and an encouraging return on investment for the gas producers and for this reason export sales remain enticing and preferable to the domestic sale of gas. This export pull impacts negatively if left unchecked, on the domestic market which is in no position to match the price at the international markets. The issue of gas price remains critical to the optimal development of the domestic gas industry, in that it comprises the basis for investment decisions of the producers on the allocation of their scarce resources and to what project to channel their output in order to maximize profit. In order then to rebalance the domestic industry and streamline the market for gas, the Gas Aggregation Company of Nigeria, also known as the Strategic Aggregator was proposed under the Nigerian Gas Master Plan of 2008 and then established pursuant to the National Gas Supply and Pricing Regulations of 2008 to implement the domestic gas supply obligation which focuses on ramping-up gas volumes for domestic utilization by mandatorily requiring each gas producer to dedicate a portion of its gas production for domestic utilization before having recourse to the export market. The 2008 Regulations further stipulate penalties in the event of non-compliance. This study, in the main, assesses the adequacy of the legal framework for the Nigerian Gas Industry, given that the operational laws are structured more for oil than its gas counterpart; examine the legal basis for the Strategic Aggregator in the light of the Domestic Gas Supply and Pricing Policy 2008 and the National Domestic Gas Supply and Pricing Regulations 2008 and makes a case for a review of the pivotal role of the Aggregator in the Nigerian Gas market. In undertaking this assessment, the doctrinal research methodology was adopted. Findings from research conducted reveal the reawakening of the Federal Government to the immense potential of its gas industry as a critical sector of its economy and the need for a sustainable domestic natural gas market. A case for the review of the ownership structure of the Aggregator to comprise a balanced mix of the Federal Government, gas producers and other key stakeholders in order to ensure the effective implementation of the domestic supply obligations becomes all the more imperative.

Keywords: domestic supply obligations, natural gas, Nigerian gas sector, strategic gas aggregator

Procedia PDF Downloads 230
347 Performance Assessment Of An Existing Multi-effect Desalination System Driven By Solar Energy

Authors: B. Shahzamanian, S. Varga, D. C. Alarcón-Padilla

Abstract:

Desalination is considered the primary alternative to increase water supply for domestic, agricultural and industrial use. Sustainable desalination is only possible in places where renewable energy resources are available. Solar energy is the most relevant type of renewable energy to driving desalination systems since most of the areas suffering from water scarcity are characterized by a high amount of available solar radiation during the year. Multi-Effect Desalination (MED) technology integrated with solar thermal concentrators is a suitable combination for heat-driven desalination. It can also be coupled with thermal vapour compressors or absorption heat pumps to boost overall system performance. The most interesting advantage of MED is the suitability to be used with a transient source of energy like solar. An experimental study was carried out to assess the performance of the most important life-size multi-effect desalination plant driven by solar energy located in the Plataforma Solar de Almería (PSA). The MED plant is used as a reference in many studies regarding multi-effect distillation. The system consists of a 14-effect MED plant coupled with a double-effect absorption heat pump. The required thermal energy to run the desalination system is supplied by means of hot water generated from 60 static flat-plate solar collectors with a total aperture area of 606 m2. In order to compensate for the solar energy variation, a thermal storage system with two interconnected tanks and an overall volume of 40 m3 is coupled to the MED unit. The multi-effect distillation unit is built in a forward feed configuration, and the last effect is connected to a double-effect LiBr-H2O absorption heat pump. The heat pump requires steam at 180 ºC (10 bar a) that is supplied by a small-aperture parabolic trough solar field with a total aperture area of 230 m2. When needed, a gas boiler is used as an auxiliary heat source for operating the heat pump and the MED plant when solar energy is not available. A set of experiments was carried out for evaluating the impact of the heating water temperature (Th), top brine temperature (TBT) and temperature difference between effects (ΔT) on the performance ratio of the MED plant. The considered range for variation of Th, TBT and ΔT was 60-70°C, 54-63°C and 1.1-1.6°C, respectively. The performance ratio (PR), defined as kg of distillate produced for every 2326 kJ of thermal energy supplied to the MED system, was almost independent of the applied variables with a variation of less than 5% for all the cases. The maximum recorded PR was 12.4. The results indicated that the system demonstrated robustness for the whole range of operating conditions considered. Author gratitude is expressed to the PSA for providing access to its installations, the support of its scientific and technical staff, and the financial support of the SFERA-III project (Grant Agreement No 823802). Special thanks to the access provider staff members who ensured the access support.

Keywords: multi-effect distillation, performance ratio, robustness, solar energy

Procedia PDF Downloads 189
346 Viability Analysis of a Centralized Hydrogen Generation Plant for Use in Oil Refining Industry

Authors: C. Fúnez Guerra, B. Nieto Calderón, M. Jaén Caparrós, L. Reyes-Bozo, A. Godoy-Faúndez, E. Vyhmeister

Abstract:

The global energy system is experiencing a change of scenery. Unstable energy markets, an increasing focus on climate change and its sustainable development is forcing businesses to pursue new solutions in order to ensure future economic growth. This has led to the interest in using hydrogen as an energy carrier in transportation and industrial applications. As an energy carrier, hydrogen is accessible and holds a high gravimetric energy density. Abundant in hydrocarbons, hydrogen can play an important role in the shift towards low-emission fossil value chains. By combining hydrogen production by natural gas reforming with carbon capture and storage, the overall CO2 emissions are significantly reduced. In addition, the flexibility of hydrogen as an energy storage makes it applicable as a stabilizer in the renewable energy mix. The recent development in hydrogen fuel cells is also raising the expectations for a hydrogen powered transportation sector. Hydrogen value chains exist to a large extent in the industry today. The global hydrogen consumption was approximately 50 million tonnes (7.2 EJ) in 2013, where refineries, ammonia, methanol production and metal processing were main consumers. Natural gas reforming produced 48% of this hydrogen, but without carbon capture and storage (CCS). The total emissions from the production reached 500 million tonnes of CO2, hence alternative production methods with lower emissions will be necessary in future value chains. Hydrogen from electrolysis is used for a wide range of industrial chemical reactions for many years. Possibly, the earliest use was for the production of ammonia-based fertilisers by Norsk Hydro, with a test reactor set up in Notodden, Norway, in 1927. This application also claims one of the world’s largest electrolyser installations, at Sable Chemicals in Zimbabwe. Its array of 28 electrolysers consumes 80 MW per hour, producing around 21,000 Nm3/h of hydrogen. These electrolysers can compete if cheap sources of electricity are available and natural gas for steam reforming is relatively expensive. Because electrolysis of water produces oxygen as a by-product, a system of Autothermal Reforming (ATR) utilizing this oxygen has been analyzed. Replacing the air separation unit with electrolysers produces the required amount of oxygen to the ATR as well as additional hydrogen. The aim of this paper is to evaluate the technical and economic potential of large-scale production of hydrogen for oil refining industry. Sensitivity analysis of parameters such as investment costs, plant operating hours, electricity price and sale price of hydrogen and oxygen are performed.

Keywords: autothermal reforming, electrolyser, hydrogen, natural gas, steam methane reforming

Procedia PDF Downloads 211
345 The Environmental Impact of Sustainability Dispersion of Chlorine Releases in Coastal Zone of Alexandra: Spatial-Ecological Modeling

Authors: Mohammed El Raey, Moustafa Osman Mohammed

Abstract:

The spatial-ecological modeling is relating sustainable dispersions with social development. Sustainability with spatial-ecological model gives attention to urban environments in the design review management to comply with Earth’s System. Naturally exchange patterns of ecosystems have consistent and periodic cycles to preserve energy flows and materials in Earth’s System. The probabilistic risk assessment (PRA) technique is utilized to assess the safety of industrial complex. The other analytical approach is the Failure-Safe Mode and Effect Analysis (FMEA) for critical components. The plant safety parameters are identified for engineering topology as employed in assessment safety of industrial ecology. In particular, the most severe accidental release of hazardous gaseous is postulated, analyzed and assessment in industrial region. The IAEA- safety assessment procedure is used to account the duration and rate of discharge of liquid chlorine. The ecological model of plume dispersion width and concentration of chlorine gas in the downwind direction is determined using Gaussian Plume Model in urban and ruler areas and presented with SURFER®. The prediction of accident consequences is traced in risk contour concentration lines. The local greenhouse effect is predicted with relevant conclusions. The spatial-ecological model is also predicted the distribution schemes from the perspective of pollutants that considered multiple factors of multi-criteria analysis. The data extends input–output analysis to evaluate the spillover effect, and conducted Monte Carlo simulations and sensitivity analysis. Their unique structure is balanced within “equilibrium patterns”, such as the biosphere and collective a composite index of many distributed feedback flows. These dynamic structures are related to have their physical and chemical properties and enable a gradual and prolonged incremental pattern. While this spatial model structure argues from ecology, resource savings, static load design, financial and other pragmatic reasons, the outcomes are not decisive in artistic/ architectural perspective. The hypothesis is an attempt to unify analytic and analogical spatial structure for development urban environments using optimization software and applied as an example of integrated industrial structure where the process is based on engineering topology as optimization approach of systems ecology.

Keywords: spatial-ecological modeling, spatial structure orientation impact, composite structure, industrial ecology

Procedia PDF Downloads 82
344 Land Transfer for New Township and Its Impact from Dwellers' Point of View: A Case Study of New Town Kolkata

Authors: Subhra Chattopadhyay

Abstract:

New Towns are usually built up at city-periphery with an eye to accommodate overspill population and functions of the city. ‘New towns are self-sufficient planned towns having a full range of urban economic and social activities, so it can provide employments for all of its inhabitants as well as a balanced self-content social community could be maintained’. In 3rd world countries New towns often emerge from scratch i.e on the area having no urban background and therefore, it needs a massive land conversion from rural to urban. This paper aims to study the implication of such land title transfer into rural sustainability with a case study at Jatragachi, New Town Kolkata. Broad objectives of this study are to understand 1. new changes in this area like i)changes in land use, ii) demographic changes, iii) occupational changes of the local people and 2.their view about new town planning. Major observations are stated below. The studied area was completely rural till recent years and is now at the heart of New Town Kolkata. Though this area is now under the jurisdiction of New Town Kolkata Development Authority (NKDA), it is still administrated by rural self-government.It creates administrative confusion and misuse of public capital. It is observed in this study that cultivation was the mainstay of livelihood for the majority of residents till recent past. There was a dramatic rise in irrigated area in the decade of 90’s pointing out agricultural prosperity.The area achieved the highest productivity of rice in the District. Percentage of marginal workers dropped significantly.In addition to it, ascending women’s literacy rate as found in this rural Mouza obviously indicates a constant social progress .Through land conversion, this flourishing agricultural land has been transformed into urban area with highly sophisticated uses. Such development may satisfy educated urban elite but the dwellers of the area suffer a lot. They bear the cost of new town planning through loss of their assured food and income as well as their place identity. The number of marginal workers increases abruptly. The growth of female literacy drops down. The area loses its functional linkages with its surroundings and fails to prove its actual growth potentiality. The physical linkages( like past roads and irrigation infrastructure) which had developed through time to support the economy become defunct. The ecological services which were provided by the agricultural field are denied. The historicity of this original site is demolished. Losses of the inhabitants of the area who have been evicted are also immense and cannot be materially compensated. Therefore, the ethos of such new town planning in stake of rural sustainability is under question. Need for an integrated approach for rural and urban development planning is felt in this study.

Keywords: new town, sustainable development, growth potentiality, land transfer

Procedia PDF Downloads 313
343 Connecting the Dots: Bridging Academia and National Community Partnerships When Delivering Healthy Relationships Programming

Authors: Nicole Vlasman, Karamjeet Dhillon

Abstract:

Over the past four years, the Healthy Relationships Program has been delivered in community organizations and schools across Canada. More than 240 groups have been facilitated in collaboration with 33 organizations. As a result, 2157 youth have been engaged in the programming. The purpose and scope of the Healthy Relationships Program are to offer sustainable, evidence-based skills through small group implementation to prevent violence and promote positive, healthy relationships in youth. The program development has included extensive networking at regional and national levels. The Healthy Relationships Program is currently being implemented, adapted, and researched within the Resilience and Inclusion through Strengthening and Enhancing Relationships (RISE-R) project. Alongside the project’s research objectives, the RISE-R team has worked to virtually share the ongoing findings of the project through a slow ontology approach. Slow ontology is a practice integrated into project systems and structures whereby slowing the pace and volume of outputs offers creative opportunities. Creative production reveals different layers of success and complements the project, the building blocks for sustainability. As a result of integrating a slow ontology approach, the RISE-R team has developed a Geographic Information System (GIS) that documents local landscapes through a Story Map feature, and more specifically, video installations. Video installations capture the cartography of space and place within the context of singular diverse community spaces (case studies). By documenting spaces via human connections, the project captures narratives, which further enhance the voices and faces of the community within the larger project scope. This GIS project aims to create a visual and interactive flow of information that complements the project's mixed-method research approach. Conclusively, creative project development in the form of a geographic information system can provide learning and engagement opportunities at many levels (i.e., within community organizations and educational spaces or with the general public). In each of these disconnected spaces, fragmented stories are connected through a visual display of project outputs. A slow ontology practice within the context of the RISE-R project documents activities on the fringes and within internal structures; primarily through documenting project successes as further contributions to the Centre for School Mental Health framework (philosophy, recruitment techniques, allocation of resources and time, and a shared commitment to evidence-based products).

Keywords: community programming, geographic information system, project development, project management, qualitative, slow ontology

Procedia PDF Downloads 156
342 Bio-Oil Compounds Sorption Enhanced Steam Reforming

Authors: Esther Acha, Jose Cambra, De Chen

Abstract:

Hydrogen is considered an important energy vector for the 21st century. Nowadays there are some difficulties for hydrogen economy implantation, and one of them is the high purity required for hydrogen. This energy vector is still being mainly produced from fuels, from wich hydrogen is produced as a component of a mixture containing other gases, such as CO, CO2 and H2O. A forthcoming sustainable pathway for hydrogen is steam-reforming of bio-oils derived from biomass, e.g. via fast pyrolysis. Bio-oils are a mixture of acids, alcohols, aldehydes, esters, ketones, sugars phenols, guaiacols, syringols, furans, multi-functional compounds and also up to a 30 wt% of water. The sorption enhanced steam reforming (SESR) process is attracting a great deal of attention due to the fact that it combines both hydrogen production and CO2 separation. In the SESR process, carbon dioxide is captured by an in situ sorbent, which shifts the reversible reforming and water gas shift reactions to the product side, beyond their conventional thermodynamic limits, giving rise to a higher hydrogen production and lower cost. The hydrogen containing mixture has been obtained from the SESR of bio-oil type compounds. Different types of catalysts have been tested. All of them contain Ni at around a 30 wt %. Two samples have been prepared with the wet impregnation technique over conventional (gamma alumina) and non-conventional (olivine) supports. And a third catalysts has been prepared over a hydrotalcite-like material (HT). The employed sorbent is a commercial dolomite. The activity tests were performed in a bench-scale plant (PID Eng&Tech), using a stainless steel fixed bed reactor. The catalysts were reduced in situ in the reactor, before the activity tests. The effluent stream was cooled down, thus condensed liquid was collected and weighed, and the gas phase was analysed online by a microGC. The hydrogen yield, and process behavior was analysed without the sorbent (the traditional SR where a second purification step will be needed but that operates in steady state) and the SESR (where the purification step could be avoided but that operates in batch state). The influence of the support type and preparation method will be observed in the produced hydrogen yield. Additionally, the stability of the catalysts is critical, due to the fact that in SESR process sorption-desorption steps are required. The produced hydrogen yield and hydrogen purity has to be high and also stable, even after several sorption-desorption cycles. The prepared catalysts were characterized employing different techniques to determine the physicochemical properties of the fresh-reduced and used (after the activity tests) materials. The characterization results, together with the activity results show the influence of the catalysts preparation method, calcination temperature, or can even explain the observed yield and conversion.

Keywords: CO2 sorbent, enhanced steam reforming, hydrogen

Procedia PDF Downloads 580
341 Biosensor: An Approach towards Sustainable Environment

Authors: Purnima Dhall, Rita Kumar

Abstract:

Introduction: River Yamuna, in the national capital territory (NCT), and also the primary source of drinking water for the city. Delhi discharges about 3,684 MLD of sewage through its 18 drains in to the Yamuna. Water quality monitoring is an important aspect of water management concerning to the pollution control. Public concern and legislation are now a day’s demanding better environmental control. Conventional method for estimating BOD5 has various drawbacks as they are expensive, time-consuming, and require the use of highly trained personnel. Stringent forthcoming regulations on the wastewater have necessitated the urge to develop analytical system, which contribute to greater process efficiency. Biosensors offer the possibility of real time analysis. Methodology: In the present study, a novel rapid method for the determination of biochemical oxygen demand (BOD) has been developed. Using the developed method, the BOD of a sample can be determined within 2 hours as compared to 3-5 days with the standard BOD3-5day assay. Moreover, the test is based on specified consortia instead of undefined seeding material therefore it minimizes the variability among the results. The device is coupled to software which automatically calculates the dilution required, so, the prior dilution of the sample is not required before BOD estimation. The developed BOD-Biosensor makes use of immobilized microorganisms to sense the biochemical oxygen demand of industrial wastewaters having low–moderate–high biodegradability. The method is quick, robust, online and less time consuming. Findings: The results of extensive testing of the developed biosensor on drains demonstrate that the BOD values obtained by the device correlated with conventional BOD values the observed R2 value was 0.995. The reproducibility of the measurements with the BOD biosensor was within a percentage deviation of ±10%. Advantages of developed BOD biosensor • Determines the water pollution quickly in 2 hours of time; • Determines the water pollution of all types of waste water; • Has prolonged shelf life of more than 400 days; • Enhanced repeatability and reproducibility values; • Elimination of COD estimation. Distinctiveness of Technology: • Bio-component: can determine BOD load of all types of waste water; • Immobilization: increased shelf life > 400 days, extended stability and viability; • Software: Reduces manual errors, reduction in estimation time. Conclusion: BiosensorBOD can be used to measure the BOD value of the real wastewater samples. The BOD biosensor showed good reproducibility in the results. This technology is useful in deciding treatment strategies well ahead and so facilitating discharge of properly treated water to common water bodies. The developed technology has been transferred to M/s Forbes Marshall Pvt Ltd, Pune.

Keywords: biosensor, biochemical oxygen demand, immobilized, monitoring, Yamuna

Procedia PDF Downloads 279
340 Structural and Morphological Characterization of the Biomass of Aquatics Macrophyte (Egeria densa) Submitted to Thermal Pretreatment

Authors: Joyce Cruz Ferraz Dutra, Marcele Fonseca Passos, Rubens Maciel Filho, Douglas Fernandes Barbin, Gustavo Mockaitis

Abstract:

The search for alternatives to control hunger in the world, generated a major environmental problem. Intensive systems of fish production can cause an imbalance in the aquatic environment, triggering the phenomenon of eutrophication. Currently, there are many forms of growth control aquatic plants, such as mechanical withdrawal, however some difficulties arise for their final destination. The Egeria densa is a species of submerged aquatic macrophyte-rich in cellulose and low concentrations of lignin. By applying the concept of second generation energy, which uses lignocellulose for energy production, the reuse of these aquatic macrophytes (Egeria densa) in the biofuels production can turn an interesting alternative. In order to make lignocellulose sugars available for effective fermentation, it is important to use pre-treatments in order to separate the components and modify the structure of the cellulose and thus facilitate the attack of the microorganisms responsible for the fermentation. Therefore, the objective of this research work was to evaluate the structural and morphological transformations occurring in the biomass of aquatic macrophytes (E.densa) submitted to a thermal pretreatment. The samples were collected in an intensive fish growing farm, in the low São Francisco dam, in the northeastern region of Brazil. After collection, the samples were dried in a 65 0C ventilation oven and milled in a 5mm micron knife mill. A duplicate assay was carried, comparing the in natural biomass with the pretreated biomass with heat (MT). The sample (MT) was submitted to an autoclave with a temperature of 1210C and a pressure of 1.1 atm, for 30 minutes. After this procedure, the biomass was characterized in terms of degree of crystallinity and morphology, using X-ray diffraction (XRD) techniques and scanning electron microscopy (SEM), respectively. The results showed that there was a decrease of 11% in the crystallinity index (% CI) of the pretreated biomass, leading to the structural modification in the cellulose and greater presence of amorphous structures. Increases in porosity and surface roughness of the samples were also observed. These results suggest that biomass may become more accessible to the hydrolytic enzymes of fermenting microorganisms. Therefore, the morphological transformations caused by the thermal pretreatment may be favorable for a subsequent fermentation and, consequently, a higher yield of biofuels. Thus, the use of thermally pretreated aquatic macrophytes (E.densa) can be an environmentally, financially and socially sustainable alternative. In addition, it represents a measure of control for the aquatic environment, which can generate income (biogas production) and maintenance of fish farming activities in local communities.

Keywords: aquatics macrophyte, biofuels, crystallinity, morphology, pretreatment thermal

Procedia PDF Downloads 333
339 MXene Mediated Layered 2D-3D-2D g-C3N4@WO3@Ti3C2 Multijunctional Heterostructure with Enhanced Photoelectrochemical and Photocatalytic Properties

Authors: Lekgowa Collen Makola, Cecil Naphtaly Moro Ouma, Sharon Moeno, Langelihle Dlamini

Abstract:

In recent years, advancement in the field of nanotechnology has evolved new strategies to address energy and environmental issues. Amongst the developing technologies, visible-light-driven photocatalysis is regarded as a sustainable approach for energy production and environmental detoxifications, where transition metal oxides (TMOs) and metal-free carbon-based semiconductors such as graphitic carbon nitride (CN) evidenced notable potential in this matter. Herein, g-C₃N₄@WO₃@Ti₃C₂Tx three-component multijunction photocatalyst was fabricated via facile ultrasonic-assisted self-assembly, followed by calcination to facilitate extensive integrations of the materials. A series of different Ti₃C₂ wt% loading in the g-C₃N4@WO₃@Ti₃C₂Tx were prepared and represented as 1-CWT, 3-CWT, 5-CWT, and 7-CWT corresponding to 1, 3, 5, and 7wt%, respectively. Systematic characterization using spectroscopic and microscopic techniques were employed to validate the successful preparation of the photocatalysts. Enhanced optoelectronic and photoelectrochemical properties were observed for the WO₃@Ti₃C2@g-C₃N4 heterostructure with respect to the individual materials. Photoluminescence spectra and Nyquist plots show restrained recombination rates and improved photocarrier conductivities, respectively, and this was credited to the synergistic coupling effect and the presence of highly conductive Ti₃C2 MXene. The strong interfacial contact surfaces upon the formation of the composite were confirmed using XPS. Multiple charge transfer mechanisms were proposed for the WO3@Ti3C₂@g-C3N4, which couples Z-scheme and Schottky-junction mediated with Ti3C2 MXene. Bode phase plots show improved charge carrier life-times upon the formation of the multijunctional photocatalyst. Moreover, transient photocurrent density of 7-CWT is 40 and seven (7) times higher compared to that of g-C₃N4 and WO3, correspondingly. Unlike in the traditional Z-Scheme, the formed ternary heterostructure possesses interfaces through the metallic 2D Ti₃C₂ MXene, which provided charge transfer channels for efficient photocarrier transfers with carrier concentrations (ND) of 17.49×1021 cm-3 and 4.86% photo-to-chemical conversion efficiency. The as-prepared ternary g-C₃N₄@WO₃@Ti₃C₂Tx exhibited excellent photoelectrochemical properties with reserved redox band potential potencies to facilitate efficient photo-oxidation and -reduction reactions. The fabricated multijunction photocatalyst exhibits potentials to be used in an extensive range of photocatalytic process vis., production of valuable hydrocarbons from CO₂, production of H₂, and degradation of a plethora of pollutants from wastewater.

Keywords: photocatalysis, Z-scheme, multijunction heterostructure, Ti₃C₂ MXene, g-C₃N₄

Procedia PDF Downloads 126
338 Assumption of Cognitive Goals in Science Learning

Authors: Mihail Calalb

Abstract:

The aim of this research is to identify ways for achieving sustainable conceptual understanding within science lessons. For this purpose, a set of teaching and learning strategies, parts of the theory of visible teaching and learning (VTL), is studied. As a result, a new didactic approach named "learning by being" is proposed and its correlation with educational paradigms existing nowadays in science teaching domain is analysed. In the context of VTL the author describes the main strategies of "learning by being" such as guided self-scaffolding, structuring of information, and recurrent use of previous knowledge or help seeking. Due to the synergy effect of these learning strategies applied simultaneously in class, the impact factor of learning by being on cognitive achievement of students is up to 93 % (the benchmark level is equal to 40% when an experienced teacher applies permanently the same conventional strategy during two academic years). The key idea in "learning by being" is the assumption by the student of cognitive goals. From this perspective, the article discusses the role of student’s personal learning effort within several teaching strategies employed in VTL. The research results emphasize that three mandatory student – related moments are present in each constructivist teaching approach: a) students’ personal learning effort, b) student – teacher mutual feedback and c) metacognition. Thus, a successful educational strategy will target to achieve an involvement degree of students into the class process as high as possible in order to make them not only know the learning objectives but also to assume them. In this way, we come to the ownership of cognitive goals or students’ deep intrinsic motivation. A series of approaches are inherent to the students’ ownership of cognitive goals: independent research (with an impact factor on cognitive achievement equal to 83% according to the results of VTL); knowledge of success criteria (impact factor – 113%); ability to reveal similarities and patterns (impact factor – 132%). Although it is generally accepted that the school is a public service, nonetheless it does not belong to entertainment industry and in most of cases the education declared as student – centered actually hides the central role of the teacher. Even if there is a proliferation of constructivist concepts, mainly at the level of science education research, we have to underline that conventional or frontal teaching, would never disappear. Research results show that no modern method can replace an experienced teacher with strong pedagogical content knowledge. Such a teacher will inspire and motivate his/her students to love and learn physics. The teacher is precisely the condensation point for an efficient didactic strategy – be it constructivist or conventional. In this way, we could speak about "hybridized teaching" where both the student and the teacher have their share of responsibility. In conclusion, the core of "learning by being" approach is guided learning effort that corresponds to the notion of teacher–student harmonic oscillator, when both things – guidance from teacher and student’s effort – are equally important.

Keywords: conceptual understanding, learning by being, ownership of cognitive goals, science learning

Procedia PDF Downloads 170
337 Advancing Food System Resilience by Pseudocereals Utilization

Authors: Yevheniia Varyvoda, Douglas Taren

Abstract:

At the aggregate level, climate variability, the rising number of active violent conflicts, globalization and industrialization of agriculture, the loss in diversity of crop species, the increase in demand for agricultural production, and the adoption of healthy and sustainable dietary patterns are exacerbating factors of food system destabilization. The importance of pseudocereals to fuel and sustain resilient food systems is recognized by leading organizations working to end hunger, particularly for their critical capability to diversify livelihood portfolios and provide plant-sourced healthy nutrition in the face of systemic shocks and stresses. Amaranth, buckwheat, and quinoa are the most promising and used pseudocereals for ensuring food system resilience in the reality of climate change due to their high nutritional profile, good digestibility, palatability, medicinal value, abiotic stress tolerance, pest and disease resistance, rapid growth rate, adaptability to marginal and degraded lands, high genetic variability, low input requirements, and income generation capacity. The study provides the rationale and examples of advancing local and regional food systems' resilience by scaling up the utilization of amaranth, buckwheat, and quinoa along all components of food systems to architect indirect nutrition interventions and climate-smart approaches. Thus, this study aims to explore the drivers for ancient pseudocereal utilization, the potential resilience benefits that can be derived from using them, and the challenges and opportunities for pseudocereal utilization within the food system components. The PSALSAR framework regarding the method for conducting systematic review and meta-analysis for environmental science research was used to answer these research questions. Nevertheless, the utilization of pseudocereals has been slow for a number of reasons, namely the increased production of commercial and major staples such as maize, rice, wheat, soybean, and potato, the displacement due to pressure from imported crops, lack of knowledge about value-adding practices in food supply chain, limited technical knowledge and awareness about nutritional and health benefits, absence of marketing channels and limited access to extension services and information about resilient crops. The success of climate-resilient pathways based on pseudocereal utilization underlines the importance of co-designed activities that use modern technologies, high-value traditional knowledge of underutilized crops, and a strong acknowledgment of cultural norms to increase community-level economic and food system resilience.

Keywords: resilience, pseudocereals, food system, climate change

Procedia PDF Downloads 82
336 Measuring Biobased Content of Building Materials Using Carbon-14 Testing

Authors: Haley Gershon

Abstract:

The transition from using fossil fuel-based building material to formulating eco-friendly and biobased building materials plays a key role in sustainable building. The growing demand on a global level for biobased materials in the building and construction industries heightens the importance of carbon-14 testing, an analytical method used to determine the percentage of biobased content that comprises a material’s ingredients. This presentation will focus on the use of carbon-14 analysis within the building materials sector. Carbon-14, also known as radiocarbon, is a weakly radioactive isotope present in all living organisms. Any fossil material older than 50,000 years will not contain any carbon-14 content. The radiocarbon method is thus used to determine the amount of carbon-14 content present in a given sample. Carbon-14 testing is performed according to ASTM D6866, a standard test method developed specifically for biobased content determination of material in solid, liquid, or gaseous form, which requires radiocarbon dating. Samples are combusted and converted into a solid graphite form and then pressed onto a metal disc and mounted onto a wheel of an accelerator mass spectrometer (AMS) machine for the analysis. The AMS instrument is used in order to count the amount of carbon-14 present. By submitting samples for carbon-14 analysis, manufacturers of building materials can confirm the biobased content of ingredients used. Biobased testing through carbon-14 analysis reports results as percent biobased content, indicating the percentage of ingredients coming from biomass sourced carbon versus fossil carbon. The analysis is performed according to standardized methods such as ASTM D6866, ISO 16620, and EN 16640. Products 100% sourced from plants, animals, or microbiological material are therefore 100% biobased, while products sourced only from fossil fuel material are 0% biobased. Any result in between 0% and 100% biobased indicates that there is a mixture of both biomass-derived and fossil fuel-derived sources. Furthermore, biobased testing for building materials allows manufacturers to submit eligible material for certification and eco-label programs such as the United States Department of Agriculture (USDA) BioPreferred Program. This program includes a voluntary labeling initiative for biobased products, in which companies may apply to receive and display the USDA Certified Biobased Product label, stating third-party verification and displaying a product’s percentage of biobased content. The USDA program includes a specific category for Building Materials. In order to qualify for the biobased certification under this product category, examples of product criteria that must be met include minimum 62% biobased content for wall coverings, minimum 25% biobased content for lumber, and a minimum 91% biobased content for floor coverings (non-carpet). As a result, consumers can easily identify plant-based products in the marketplace.

Keywords: carbon-14 testing, biobased, biobased content, radiocarbon dating, accelerator mass spectrometry, AMS, materials

Procedia PDF Downloads 158
335 Hybrid Solutions in Physicochemical Processes for the Removal of Turbidity in Andean Reservoirs

Authors: María Cárdenas Gaudry, Gonzalo Ramces Fano Miranda

Abstract:

Sediment removal is very important in the purification of water, not only for reasons of visual perception but also because of its association with odor and taste problems. The Cuchoquesera reservoir, which is in the Andean region of Ayacucho (Peru) at an altitude of 3,740 meters above sea level, visually presents suspended particles and organic impurities indicating that it contains water of dubious quality to deduce that it is suitable for direct consumption of human beings. In order to quantitatively know the degree of impurities, water quality monitoring was carried out from February to August 2018, in which four sampling stations were established in the reservoir. The selected measured parameters were electrical conductivity, total dissolved solids, pH, color, turbidity, and sludge volume. The indicators of the studied parameters exceed the permissible limits except for electrical conductivity (190 μS/cm) and total dissolved solids (255 mg/L). In this investigation, the best combination and the optimal doses of reagents were determined that allowed the removal of sediments from the waters of the Cuchoquesera reservoir, through the physicochemical process of coagulation-flocculation. In order to improve this process during the rainy season, six combinations of reagents were evaluated, made up of three coagulants (ferric chloride, ferrous sulfate, and aluminum sulfate) and two natural flocculants: prickly pear powder (Opuntia ficus-indica) and tara gum (Caesalpinia spinoza). For each combination of reagents, jar tests were developed following the central composite experimental design (CCED), where the design factors were the doses of coagulant and flocculant and the initial turbidity. The results of the jar tests were adjusted to mathematical models, obtaining that to treat the water from the Cuchoquesera reservoir, with a turbidity of 150 UTN and a color of 137 U Pt-Co, 27.9 mg/L of the coagulant aluminum sulfate with 3 mg/L of the natural tara gum flocculant to produce a purified water quality of 1.7 UTN of turbidity and 3.2 U Pt-Co of apparent color. The estimated cost of the dose of coagulant and flocculant found was 0.22 USD/m³. This is how “grey-green” technologies can be used as a combination in nature-based solutions in water treatment, in this case, to achieve potability, making it more sustainable, especially economically, if green technology is available at the site of application of the nature-based hybrid solution. This research is a demonstration of the compatibility of natural coagulants/flocculants with other treatment technologies in the integrated/hybrid treatment process, such as the possibility of hybridizing natural coagulants with other types of coagulants.

Keywords: prickly pear powder, tara gum, nature-based solutions, aluminum sulfate, jar test, turbidity, coagulation, flocculation

Procedia PDF Downloads 109
334 Examining the Relationship Between Green Procurement Practices and Firm’s Performance in Ghana

Authors: Clement Yeboah

Abstract:

Prior research concludes that environmental commitment positively drives organisational performance. Nonetheless, the nexus and conditions under which environmental commitment capabilities contribute to a firm’s performance are less understood. The purpose of this quantitative relational study was to examine the relationship between environmental commitment and 500 firms’ performances in Ghana. The researchers further seek to draw insights from the resource-based view to conceptualize environmental commitment and green procurement practices as resource capabilities to enhance firm performance. The researchers used insights from the contingent resource-based view to examine green leadership orientation conditions under which environmental commitment capability contributes to firm performance through green procurement practices. The study’s conceptual framework was tested on primary data from some firms in the Ghanaian market. PROCESS Macro was used to test the study’s hypotheses. Beyond that, green procurement practices mediated the association between environmental commitment capabilities and the firm’s performance. The study further seeks to find out whether green leadership orientation positively moderates the indirect relationship between environmental commitment capabilities and firm performance through green procurement practices. While conventional wisdom suggests that improved environmental commitment capabilities help improve a firm’s performance, this study tested this presumed relationship between environmental commitment capabilities and firm performance and provides theoretical arguments and empirical evidence to justify how green procurement practices uniquely and in synergy with green leadership orientation transform this relationship. The study results indicated a positive correlation between environmental commitment and firm performance. This result suggests that firms that prioritize environmental sustainability and demonstrate a strong commitment to environmentally responsible practices tend to experience better overall performance. This includes financial gains, operational efficiency, enhanced reputation, and improved relationships with stakeholders. The study's findings inform policy formulation in Ghana related to environmental regulations, incentives, and support mechanisms. Policymakers can use the insights to design policies that encourage and reward firms for their environmental commitments, thereby fostering a more sustainable and environmentally responsible business environment. The findings from such research can influence the design and development of educational programs in Ghana, specifically in fields related to sustainability, environmental management, and corporate social responsibility (CSR). Institutions may consider integrating environmental and sustainability topics into their business and management courses to create awareness and promote responsible practices among future business professionals. Also the study results can also promote the adoption of environmental accounting practices in Ghana. By recognizing and measuring the environmental impacts and costs associated with business activities, firms can better understand the financial implications of their environmental commitments and develop strategies for improved performance.

Keywords: firm’s performance, green procurement practice, environmental commitment, environmental management, sustainability

Procedia PDF Downloads 88