Search results for: soft tissue engineering applications
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10534

Search results for: soft tissue engineering applications

4774 Assessment of the Potential of Fuel-derived Rice Husk Ash as Pozzolanic Material

Authors: Jesha Faye T. Librea, Leslie Joy L. Diaz

Abstract:

Fuel-derived rice husk ash (fRHA) is a waste material from industries employing rice husk as a biomass fuel which, on the downside, causes disposal and environmental problems. To mitigate this, the fRHA was evaluated for use in other applications such as a pozzolanic material for the construction industry. In this study, the assessment of the potential of fRHA as pozzolanic supplementary cementitious material was conducted by determining the chemical and physical properties of fRHA according to ASTM C618, evaluating the fineness of the material according to ASTM C430, and determining its pozzolanic activity using Luxan Method. The material was found to have a high amorphous silica content of around 95.82 % with traces of alkaline and carbon impurities. The retained carbon residue is 7.18 %, which is within the limit of the specifications for natural pozzolans indicated in ASTM C618. The fineness of the fRHA is at 88.88 % retained at a 45-micron sieve, which, however, exceeded the limit of 34 %. This large particle size distribution was found to affect the pozzolanic activity of the fRHA. This was shown in the Luxan test, where the fRHA was identified as non-pozzolan due to its low pozzolanic activity index of 0.262. Thus, further processing must be done to the fRHA to pass the required ASTM fineness, have a higher pozzolanic activity index, and fully qualify as a pozzolanic material.

Keywords: rice husk ash, pozzolanic, fuel-derived ash, supplementary cementitious material

Procedia PDF Downloads 42
4773 Design and Analysis of Enhanced Heat Transfer Kit for Plate Type Heat Exchanger

Authors: Muhammad Shahrukh Saeed, Syed Ahmad Nameer, Shafiq Ur Rehman, Aisha Jillani

Abstract:

Heat exchangers play a critical role in industrial applications of thermal systems. Its physical size and performance are vital parameters; therefore enhancement of heat transfer through different techniques remained a major research area for both academia and industry. This research reports the main purpose of heat exchanger with better kit design which plays a vital role during the process of heat transfer. Plate type heat exchanger mainly requires a design in which the plates can be easily be installed and removed without having any problem with the plates. For the flow of the fluid within the heat exchanger, it requires a flow should be fully developed. As natural laws allows the driving energy of the system to flow until equilibrium is achieved. As with a plate type heat exchanger heat the heat penetrates the surface which separates the hot medium with the cold one very easily. As some of the precautions should be considered while taking the heat exchanger accountable like heat should transfer from hot medium to cold, there should always be difference in temperature present and heat loss from hot body should be equal to the heat gained by the cold body regardless of the losses present to the surroundings. Aluminum plates of same grade are used in all experiments to ensure similarity. Size of all plates was 254 mm X 100 mm and thickness was taken as 5 mm.

Keywords: heat transfer coefficient, aluminium, entry length, design

Procedia PDF Downloads 316
4772 Colour Quick Response Code with High Damage Resistance Capability

Authors: Minh Nguyen

Abstract:

Today, QR or Quick Response Codes are prevalent, and mobile/smart devices can efficiently read and understand them. Therefore, we can see their appearance in many areas, such as storing web pages/websites, business phone numbers, redirecting to an app download, business location, social media. The popularity of the QR Code is mainly because of its many advantages, such as it can hold a good amount of information, is small, easy to scan and read by a general RGB camera, and it can still work with some damages on its surface. However, there are still some issues. For instance, some areas needed to be kept untouched for its successful decode (e.g., the “Finder Patterns,” the “Quiet Zone,” etc.), the capability of built-in auto-correction is not robust enough, and it is not flexible enough for many application such as Augment Reality (AR). We proposed a new Colour Quick Response Code that has several advantages over the original ones: (1) there is no untouchable area, (2) it allows up to 40% of the entire code area to be damaged, (3) it is more beneficial for Augmented Reality applications, and (4) it is back-compatible and readable by available QR Code scanners such as Pyzbar. From our experience, our Colour Quick Response Code is significantly more flexible on damage compared to the original QR Code. Our code is believed to be suitable in situations where standard 2D Barcodes fail to work, such as curved and shiny surfaces, for instance, medical blood test sample tubes and syringes.

Keywords: QR code, computer vision, image processing, 2D barcode

Procedia PDF Downloads 101
4771 Design and Realization of Double-Delay Line Canceller (DDLC) Using Fpga

Authors: A. E. El-Henawey, A. A. El-Kouny, M. M. Abd –El-Halim

Abstract:

Moving target indication (MTI) which is an anti-clutter technique that limits the display of clutter echoes. It uses the radar received information primarily to display moving targets only. The purpose of MTI is to discriminate moving targets from a background of clutter or slowly-moving chaff particles as shown in this paper. Processing system in these radars is so massive and complex; since it is supposed to perform a great amount of processing in very short time, in most radar applications the response of a single canceler is not acceptable since it does not have a wide notch in the stop-band. A double-delay canceler is an MTI delay-line canceler employing the two-delay-line configuration to improve the performance by widening the clutter-rejection notches, as compared with single-delay cancelers. This canceler is also called a double canceler, dual-delay canceler, or three-pulse canceler. In this paper, a double delay line canceler is chosen for study due to its simplicity in both concept and implementation. Discussing the implementation of a simple digital moving target indicator (DMTI) using FPGA which has distinct advantages compared to other application specific integrated circuit (ASIC) for the purposes of this work. The FPGA provides flexibility and stability which are important factors in the radar application.

Keywords: FPGA, MTI, double delay line canceler, Doppler Shift

Procedia PDF Downloads 614
4770 Applications Using Geographic Information System for Planning and Development of Energy Efficient and Sustainable Living for Smart-Cities

Authors: Javed Mohammed

Abstract:

As urbanization process has been and will be happening in an unprecedented scale worldwide, strong requirements from academic research and practical fields for smart management and intelligent planning of cities are pressing to handle increasing demands of infrastructure and potential risks of inhabitants agglomeration in disaster management. Geo-spatial data and Geographic Information System (GIS) are essential components for building smart cities in a basic way that maps the physical world into virtual environment as a referencing framework. On higher level, GIS has been becoming very important in smart cities on different sectors. In the digital city era, digital maps and geospatial databases have long been integrated in workflows in land management, urban planning and transportation in government. People have anticipated GIS to be more powerful not only as an archival and data management tool but also as spatial models for supporting decision-making in intelligent cities. The purpose of this project is to offer observations and analysis based on a detailed discussion of Geographic Information Systems( GIS) driven Framework towards the development of Smart and Sustainable Cities through high penetration of Renewable Energy Technologies.

Keywords: digital maps, geo-spatial, geographic information system, smart cities, renewable energy, urban planning

Procedia PDF Downloads 515
4769 Simulation and Experimental Research on Pocketing Operation for Toolpath Optimization in CNC Milling

Authors: Rakesh Prajapati, Purvik Patel, Avadhoot Rajurkar

Abstract:

Nowadays, manufacturing industries augment their production lines with modern machining centers backed by CAM software. Several attempts are being made to cut down the programming time for machining complex geometries. Special programs/software have been developed to generate the digital numerical data and to prepare NC programs by using suitable post-processors for different machines. By selecting the tools and manufacturing process then applying tool paths and NC program are generated. More and more complex mechanical parts that earlier were being cast and assembled/manufactured by other processes are now being machined. Majority of these parts require lots of pocketing operations and find their applications in die and mold, turbo machinery, aircraft, nuclear, defense etc. Pocketing operations involve removal of large quantity of material from the metal surface. The modeling of warm cast and clamping a piece of food processing parts which the used of Pro-E and MasterCAM® software. Pocketing operation has been specifically chosen for toolpath optimization. Then after apply Pocketing toolpath, Multi Tool Selection and Reduce Air Time give the results of software simulation time and experimental machining time.

Keywords: toolpath, part program, optimization, pocket

Procedia PDF Downloads 278
4768 Swelling Hydrogels on the Base Nitron Fiber Wastes for Water Keeping in Sandy Soils

Authors: Alim Asamatdinov

Abstract:

Superabsorbent polymer hydrogels can swell to absorb huge volumes of water or aqueous solutions. This property has led to many practical applications of these new materials, particularly in agriculture for improving the water retention of soils and the water supply of plants. This article reviews the methods of polymeric hydrogels, measurements and treatments of their properties, as well as their effects on soil and on plant growth. The thermodynamic approach used to describe the swelling behaviour of polymer networks proves to be quite helpful in modelling the hydrogel efficiency of water-absorbing additives. The paper presents the results of a study of the physical and chemical properties of hydrogels based on of the production of "Nitron" (Polyacrylonitrile) wastes fibre and salts of the 3-rd transition metals and formalin. The developed hydrogels HG-Al, HG-Cr and HG-formalin have been tested for water holding the capacity of sand. Such a conclusion was also confirmed by data from the method of determining the wilting point by vegetative thumbnails. In the entering process using a dose of 0.1% of the swelling polymeric hydrogel in sand with a culture of barley the difference between the wilting point in comparison with the control was negligible. This indicates that the moisture which was contained in the hydrogel is involved in moisture availability for plant growth, to the same extent as that in the capillaries.

Keywords: hydrogel, chemical, polymer, sandy, colloid

Procedia PDF Downloads 126
4767 Excitation Density and Energy Dependent Relaxation Dynamics of Charge Carriers in Large Area 2D TMDCs

Authors: Ashish Soni, Suman Kalyan Pal

Abstract:

Transition metal dichalcogenides (TMDCs) are an emerging paradigm for the generation of advanced materials which are capable of utilizing in future device applications. In recent years TMDCs have attracted researchers for their unique band structure in monolayers. Large-area monolayers could become the most appropriate candidate for flexible and thin optoelectronic devices. For this purpose, it is crucial to understand the generation and transport of charge carriers in low dimensions. A deep understanding of photo-generated hot charges and trapped charges is essential to improve the performance of optoelectronic devices. Carrier trapping by the defect states that are introduced during the growth process of the monolayer could influence the dynamical behaviour of charge carriers. Herein, we investigated some aspects of the ultrafast evolution of the initially generated hot carriers and trapped charges in large-area monolayer WS₂ by measuring transient absorption at energies above and below the band gap energy. Our excitation density and energy-dependent measurements reveal the trapping of the initially generated charge carrier. Our results could be beneficial for the development of TMDC-based optoelectronic devices.

Keywords: transient absorption, optoelectronics, 2D materials, TMDCs, exciton

Procedia PDF Downloads 56
4766 Design and Implementation of a Lab Bench for Synthetic Aperture Radar Imaging System

Authors: Karthiyayini Nagarajan, P. V. RamaKrishna

Abstract:

Radar Imaging techniques provides extensive applications in the field of remote sensing, majorly Synthetic Aperture Radar(SAR) that provide high resolution target images. This paper work puts forward the effective and realizable signal generation and processing for SAR images. The major units in the system include camera, signal generation unit, signal processing unit and display screen. The real radio channel is replaced by its mathematical model based on optical image to calculate a reflected signal model in real time. Signal generation realizes the algorithm and forms the radar reflection model. Signal processing unit provides range and azimuth resolution through matched filtering and spectrum analysis procedure to form radar image on the display screen. The restored image has the same quality as that of the optical image. This SAR imaging system has been designed and implemented using MATLAB and Quartus II tools on Stratix III device as a System(lab bench) that works in real time to study/investigate on radar imaging rudiments and signal processing scheme for educational and research purposes.

Keywords: synthetic aperture radar, radio reflection model, lab bench

Procedia PDF Downloads 454
4765 Dielectric Properties of PANI/h-BN Composites

Authors: Seyfullah Madakbas, Emrah Cakmakci

Abstract:

Polyaniline (PANI), the most studied member of the conductive polymers, has a wide range of uses from several electronic devices to various conductive high-technology applications. Boron nitride (BN) is a boron and nitrogen containing compound with superior chemical and thermal resistance and thermal conductivity. Even though several composites of PANI was prepared in literature, the preparation of h-BN/PANI composites is rare. In this work PANI was polymerized in the presence of different amounts of h-BN (1, 3 and 5% with respect to PANI) by using 0.1 M solution of NH4S2O8 in HCl as the oxidizing agent and conductive composites were prepared. Composites were structurally characterized with FTIR spectroscopy and X-Ray Diffraction (XRD). Thermal properties of conductive composites were determined by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Dielectric measurements were performed in the frequency range of 106–108 Hz at room temperature. The corresponding bands for the benzenoid and quinoid rings at around 1593 and 1496 cm-1 in the FTIR spectra of the composites proved the formation of polyaniline. Together with the FTIR spectra, XRD analysis also revealed the existence of the interactions between PANI and h-BN. Glass transition temperatures (Tg) of the composites increased with the increasing amount of PANI (from 87 to 101). TGA revealed that the char yield of the composites increased as the amount of h-BN was increased in the composites. Finally the dielectric permittivity of 3 wt.%h-BN-containing composite was measured and found as approximately 17. This work was supported by Marmara University, Commission of Scientific Research Project.

Keywords: dielectric permittivity, h-BN, PANI, thermal analysis

Procedia PDF Downloads 262
4764 Role of Biotechnology to Reduce Climate - Induced Impact

Authors: Sandani Muthukumarana, Malith Shehan Keraminiyage, Pavithra Rathnasiri

Abstract:

Climate change is one of the most pressing issues facing our generation. However, it also presents an opportunity to grow the economy using biotechnology. Biotechnology offers a variety of solutions that can help mitigate the effects of global warming. Despite this, there is a lack of research on the potential and challenges associated with the further use of biotechnology to combat the impacts of climate change. To address this gap, it is essential to investigate the current context surrounding the use of biotechnology for climate change mitigation, including potential applications, current practices, and existing challenges. By reviewing the existing literature on these perspectives, this paper aims to provide a comprehensive understanding of the potential for biotechnology to mitigate the hazards of climate change. The use of biotechnology to mitigate the effects of climate change will be made easier as a result, and this will lay the groundwork for further study and actual initiatives in this field. Biotechnology can play a crucial role in mitigating the impacts of climate change. It offers a range of solutions, such as genetically modified crops, bioremediation, and bioenergy, that can help reduce greenhouse gas emissions, enhance carbon sequestration, and increase climate resilience. By utilizing biotechnology, we can reduce the negative impacts of climate change and create a more sustainable future. According to this knowledge, researchers can harness the potential of biotechnology to fight climate change and build a more sustainable future for future generations.

Keywords: biotechnology, impact, solutions, climate changes

Procedia PDF Downloads 75
4763 Production of Energetic Nanomaterials by Spray Flash Evaporation

Authors: Martin Klaumünzer, Jakob Hübner, Denis Spitzer

Abstract:

Within this paper, latest results on processing of energetic nanomaterials by means of the Spray Flash Evaporation technique are presented. This technology constitutes a highly effective and continuous way to prepare fascinating materials on the nano- and micro-scale. Within the process, a solution is set under high pressure and sprayed into an evacuated atomization chamber. Subsequent ultrafast evaporation of the solvent leads to an aerosol stream, which is separated by cyclones or filters. No drying gas is required, so the present technique should not be confused with spray dying. Resulting nanothermites, insensitive explosives or propellants and compositions are foreseen to replace toxic (according to REACH) and very sensitive matter in military and civil applications. Diverse examples are given in detail: nano-RDX (n-Cyclotrimethylentrinitramin) and nano-aluminum based systems, mixtures (n-RDX/n-TNT - trinitrotoluene) or even cocrystalline matter like n-CL-20/HMX (Hexanitrohexaazaisowurtzitane/ Cyclotetra-methylentetranitramin). These nanomaterials show reduced sensitivity by trend without losing effectiveness and performance. An analytical study for material characterization was performed by using Atomic Force Microscopy, X-Ray Diffraction, and combined techniques as well as spectroscopic methods. As a matter of course, sensitivity tests regarding electrostatic discharge, impact, and friction are provided.

Keywords: continuous synthesis, energetic material, nanoscale, nanoexplosive, nanothermite

Procedia PDF Downloads 247
4762 Crow Search Algorithm-Based Task Offloading Strategies for Fog Computing Architectures

Authors: Aniket Ganvir, Ritarani Sahu, Suchismita Chinara

Abstract:

The rapid digitization of various aspects of life is leading to the creation of smart IoT ecosystems, where interconnected devices generate significant amounts of valuable data. However, these IoT devices face constraints such as limited computational resources and bandwidth. Cloud computing emerges as a solution by offering ample resources for offloading tasks efficiently despite introducing latency issues, especially for time-sensitive applications like fog computing. Fog computing (FC) addresses latency concerns by bringing computation and storage closer to the network edge, minimizing data travel distance, and enhancing efficiency. Offloading tasks to fog nodes or the cloud can conserve energy and extend IoT device lifespan. The offloading process is intricate, with tasks categorized as full or partial, and its optimization presents an NP-hard problem. Traditional greedy search methods struggle to address the complexity of task offloading efficiently. To overcome this, the efficient crow search algorithm (ECSA) has been proposed as a meta-heuristic optimization algorithm. ECSA aims to effectively optimize computation offloading, providing solutions to this challenging problem.

Keywords: IoT, fog computing, task offloading, efficient crow search algorithm

Procedia PDF Downloads 33
4761 Evaluation of Collagen Synthesis in Macrophages/Fibroblasts Co-Culture Using Polylactic Acid Particles as Stimulants

Authors: Feng Ju Chuang, Yu Wen Wang, Tai Jung Hsieh, Shyh Ming Kuo

Abstract:

Polylactic acid is a synthetic polymer with good biocompatibility and degradability, is widely used in clinical applications. In this study, we utilized Polylactic acid particles as stimulants for macrophages and the collagen synthesis of co-cultured fibroblasts was evaluated. The results indicated that Polylactic acid particles were nontoxic to cells from 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. No obvious inflammation effect was observed (under the PLLA concentration of 1 mg/mL) after 24-h co-culture of Raw264.7 and NIH3T3 cells (from TNF-α assay). The addition of PLLA particles to the Raw264.7 and NIH3T3 co-cultures increased the synthesis of collagen, the highest collagen synthesis from the fibroblast was the 0.2 mg/mL (approximately 60% increased as compared with without addition Polylactic acid particles). Moreover, a co-axial atomization delivery device was used to percutaneously introduce Polylactic acid particles into the dermis layer and stimulating macrophages to secrete growth factors promoting fibroblasts to produce collagen. The preliminary results demonstrated the synthesis of collagen was increased mildly after the introduction of Polylactic acid particles for 28-d post implantation. The Polylactic acid particles could be successfully introduced into the dermis layer from H&E staining examination, however, the optimum concentration of Polylactic acid particles and the time-period for collagen synthesis still need to be evaluated.

Keywords: collagen synthesis, macrophage, NIH3T3 cells, polylactic acid particles

Procedia PDF Downloads 92
4760 Removal of Tar Contents in Syngas by Using Different Fuel from Downdraft Biomass Gasification System

Authors: Muhammad Awais, Wei Li, Anjum Munir

Abstract:

Biomass gasification is a process of converting solid biomass ingredients into a combustible gas which can be used in electricity generation. Regardless of their applications in many fields, biomass gasification technology is still facing many cleaning issues of syngas. Tar production in biomass gasification process is one of the biggest challenges for this technology. The aimed of this study is to evaluate the tar contents in syngas produced from wood chips, corn cobs, coconut shells and mixture of corn cobs and wood chips as biomass fuel and tar removal efficiency of different cleaning units integrated with gassifier. Performance of different cleaning units, i.e., cyclone separator, wet scrubber, biomass filter, and auxiliary filter was tested under two biomass fuels. Results of this study indicate that wood chips produced less tar of 1736 mg/Nm³ as compared to corn cobs which produced tor 2489 mg/Nm³. It is also observed that coconut shells produced a high amount of tar. It was observed that when wood chips were used as a fuel, syngas tar contents were reduced from 6600 to 112 mg/Nm³ while in case of corn cob, they were reduced from 7500 mg/Nm³ to 220 mg/Nm³. Overall tar removal efficiencies of cyclone separator, wet scrubber, biomass filter, and auxiliary filter was 72%, 63%, 74%, 35% respectively.

Keywords: biomass, gasification, tar, cleaning system, biomass filter

Procedia PDF Downloads 157
4759 Aircraft Automatic Collision Avoidance Using Spiral Geometric Approach

Authors: M. Orefice, V. Di Vito

Abstract:

This paper provides a description of a Collision Avoidance algorithm that has been developed starting from the mathematical modeling of the flight of insects, in terms of spirals and conchospirals geometric paths. It is able to calculate a proper avoidance manoeuver aimed to prevent the infringement of a predefined distance threshold between ownship and the considered intruder, while minimizing the ownship trajectory deviation from the original path and in compliance with the aircraft performance limitations and dynamic constraints. The algorithm is designed in order to be suitable for real-time applications, so that it can be considered for the implementation in the most recent airborne automatic collision avoidance systems using the traffic data received through an ADS-B IN device. The presented approach is able to take into account the rules-of-the-air, due to the possibility to select, through specifically designed decision making logic based on the consideration of the encounter geometry, the direction of the calculated collision avoidance manoeuver that allows complying with the rules-of-the-air, as for instance the fundamental right of way rule. In the paper, the proposed collision avoidance algorithm is presented and its preliminary design and software implementation is described. The applicability of this method has been proved through preliminary simulation tests performed in a 2D environment considering single intruder encounter geometries, as reported and discussed in the paper.

Keywords: ADS-B Based Application, Collision Avoidance, RPAS, Spiral Geometry.

Procedia PDF Downloads 230
4758 Chipless RFID Capacity Enhancement Using the E-pulse Technique

Authors: Haythem H. Abdullah, Hesham Elkady

Abstract:

With the fast increase in radio frequency identification (RFID) applications such as medical recording, library management, etc., the limitation of active tags stems from its need to external batteries as well as passive or active chips. The chipless RFID tag reduces the cost to a large extent but at the expense of utilizing the spectrum. The reduction of the cost of chipless RFID is due to the absence of the chip itself. The identification is done by utilizing the spectrum in such a way that the frequency response of the tags consists of some resonance frequencies that represent the bits. The system capacity is decided by the number of resonators within the pre-specified band. It is important to find a solution to enhance the spectrum utilization when using chipless RFID. Target identification is a process that results in a decision that a specific target is present or not. Several target identification schemes are present, but one of the most successful techniques in radar target identification in the oscillatory region is the extinction pulse technique (E-Pulse). The E-Pulse technique is used to identify targets via its characteristics (natural) modes. By introducing an innovative solution for chipless RFID reader and tag designs, the spectrum utilization goes to the optimum case. In this paper, a novel capacity enhancement scheme based on the E-pulse technique is introduced to improve the performance of the chipless RFID system.

Keywords: chipless RFID, E-pulse, natural modes, resonators

Procedia PDF Downloads 55
4757 Stray Light Reduction Methodology by a Sinusoidal Light Modulation and Three-Parameter Sine Curve Fitting Algorithm for a Reflectance Spectrometer

Authors: Hung Chih Hsieh, Cheng Hao Chang, Yun Hsiang Chang, Yu Lin Chang

Abstract:

In the applications of the spectrometer, the stray light that comes from the environment affects the measurement results a lot. Hence, environment and instrument quality control for the stray reduction is critical for the spectral reflectance measurement. In this paper, a simple and practical method has been developed to correct a spectrometer's response for measurement errors arising from the environment's and instrument's stray light. A sinusoidal modulated light intensity signal was incident on a tested sample, and then the reflected light was collected by the spectrometer. Since a sinusoidal signal modulated the incident light, the reflected light also had a modulated frequency which was the same as the incident signal. Using the three-parameter sine curve fitting algorithm, we can extract the primary reflectance signal from the total measured signal, which contained the primary reflectance signal and the stray light from the environment. The spectra similarity between the extracted spectra by this proposed method with extreme environment stray light is 99.98% similar to the spectra without the environment's stray light. This result shows that we can measure the reflectance spectra without the affection of the environment's stray light.

Keywords: spectrometer, stray light, three-parameter sine curve fitting, spectra extraction

Procedia PDF Downloads 225
4756 Synthesis, Characterization and Applications of Some Selected Dye-Functionalized P and N-Type Nanoparticles in Dye Sensitized Solar Cells

Authors: Arifa Batool, Ghulam Hussain Bhatti, Syed Mujtaba Shah

Abstract:

Inorganic n-type (TiO2, CdO) and p-type (NiO, CuO) metal oxide nanoparticles were synthesized by a facile wet chemical method at room temperature. The morphological, compositional, structural and optical properties were investigated by scanning electron microscopy, energy dispersive X-ray spectroscopy, FT-IR, XRD analysis, UV/Visible and fluorescence spectroscopy. All semiconducting nanoparticles were photosensitized with Ru (II) based Z907 dye in ethanol solvent by grafting. Grafting of dye on the surface of nanoparticles was confirmed by UV/Visible and FT-IR spectroscopy. The synthesized photo-active nanohybrid was thoroughly blended with P3HT, a solid electrolyte and I-V measurements under solar stimulated radiations 1000 W/m2 (AM 1.5) were recorded. Maximum incident photon to current conversion efficiency (IPCE) of 0.9% was achieved with dye functionalized Z907-TiO2 hybrid, IPCE of 0.72% was achieved with bulk-heterojunction of TiO2-Z907-CuO and IPCE of 0.68% was attained with nanocomposite of TiO2-CdO. TiO2 based Solar cells have maximum Jscvalue i.e.4.63 mA/cm2. Dye-functionalized TiO2-based photovoltaic devices were found more efficient than the reference device but the morphology of the device was a major check in progress.

Keywords: solar cell, bulk heterojunction, nanocomposites, photosensitization, dye sensitized solar cell

Procedia PDF Downloads 269
4755 Using OMICs Approaches to Investigate Venomic Insights into the Spider Web Silk

Authors: Franciele G. Esteves, Jose R. A. dos Santos-Pinto, Caroline L. de Souza, Mario S. Palma

Abstract:

Orb-weaving spiders use a very strong, stickiness, and elastic web to catch the prey. These web properties would be enough for the entrapment of prey; however, these spiders may be hiding venomous secrets on the web, which are being revealed now. Here we provide strong proteome, peptidome, and transcriptomic evidence for the presence of toxic components on the web silk from Nephila clavipes. Our scientific outcomes revealed, both in the web silk and in the silk-producing glands, a wide diversity of toxins/neurotoxins, defensins, and proteolytic enzymes. These toxins/neurotoxins are similar to toxins isolated from animal venoms, such as Sphigomyelinase D, Latrotoxins, Zodatoxins, Ctenitoxin Pn and Pk, Agatoxins and Theraphotoxin. Moreover, the insect-toxicity results with the web silk crude extract demonstrated that these toxic components can be lethal and/or cause paralytic effects to the prey. Therefore, through OMICs approaches, the results presented until now may contribute to a better understanding of the chemical and ecological interaction of these compounds in insect-prey capture by spider web N. clavipes, demonstrating that the web is not only a simple mechanical tool but has a chemical-active involvement in prey capture. Moreover, the results can also contribute to future studies of possible development of a selective insecticide or even in possible pharmacological applications.

Keywords: web silk toxins, silk-produncing glands, de novo transcriptome assembly, LCMS-based proteomics

Procedia PDF Downloads 122
4754 Determination of Economic and Ecological Potential of Bio Hydrogen Generated through Dark Photosynthesis Process

Authors: Johannes Full, Martin Reisinger, Alexander Sauer, Robert Miehe

Abstract:

The use of biogenic residues for the biotechnological production of chemical energy carriers for electricity and heat generation as well as for mobile applications is an important lever for the shift away from fossil fuels towards a carbon dioxide neutral post-fossil future. A multitude of promising biotechnological processes needs, therefore, to be compared against each other. For this purpose, a multi-objective target system and a corresponding methodology for the evaluation of the underlying key figures are presented in this paper, which can serve as a basis for decisionmaking for companies and promotional policy measures. The methodology considers in this paper the economic and ecological potential of bio-hydrogen production using the example of hydrogen production from fruit and milk production waste with the purple bacterium R. rubrum (so-called dark photosynthesis process) for the first time. The substrate used in this cost-effective and scalable process is fructose from waste material and waste deposits. Based on an estimation of the biomass potential of such fructose residues, the new methodology is used to compare different scenarios for the production and usage of bio-hydrogen through the considered process. In conclusion, this paper presents, at the example of the promising dark photosynthesis process, a methodology to evaluate the ecological and economic potential of biotechnological production of bio-hydrogen from residues and waste.

Keywords: biofuel, hydrogen, R. rubrum, bioenergy

Procedia PDF Downloads 181
4753 Research on the Optical Properties and Polymerization Environment of Broadband Reflective Films in the Visible Region

Authors: Z. Miao, Y. Chu, Y. Zhang

Abstract:

The unique cholesteric phase liquid crystals obtained by mixing nematic liquid crystals with chiral dopants have gained valuable applications in the display field for their selective reflection and circular dichroism properties. The periodic arrangement of the helical structure of cholesteric liquid crystals makes it possible to produce Bragg reflection of circularly polarized light irradiated perpendicularly to the liquid crystals and, therefore, to acquire semi- or fully reflective surfaces or films. If the polymer-liquid crystal composites are combined with polymeric monomers, commercialized reflective broadband films can be fabricated. In this study, the polymer-liquid crystal composites reflecting visible light region (wavelength centered at 550 nm) were studied to analyze the effects of AC electric field at different voltages and frequencies on the optical texture of the composites, as well as the effects of polymerization temperature and ultraviolet (UV) intensity on the polymerization reaction and reflection bandwidth. The optimal sample was finally obtained at 100Hz, 120V, 30℃, 1.00 mW/cm², which provides a research suggestion to solve the influencing factors of visible light reflection bandwidths.

Keywords: cholesteric liquid crystal, reflection bandwidths, negative dielectric anisotropy, planar texture

Procedia PDF Downloads 152
4752 Competition between Regression Technique and Statistical Learning Models for Predicting Credit Risk Management

Authors: Chokri Slim

Abstract:

The objective of this research is attempting to respond to this question: Is there a significant difference between the regression model and statistical learning models in predicting credit risk management? A Multiple Linear Regression (MLR) model was compared with neural networks including Multi-Layer Perceptron (MLP), and a Support vector regression (SVR). The population of this study includes 50 listed Banks in Tunis Stock Exchange (TSE) market from 2000 to 2016. Firstly, we show the factors that have significant effect on the quality of loan portfolios of banks in Tunisia. Secondly, it attempts to establish that the systematic use of objective techniques and methods designed to apprehend and assess risk when considering applications for granting credit, has a positive effect on the quality of loan portfolios of banks and their future collectability. Finally, we will try to show that the bank governance has an impact on the choice of methods and techniques for analyzing and measuring the risks inherent in the banking business, including the risk of non-repayment. The results of empirical tests confirm our claims.

Keywords: credit risk management, multiple linear regression, principal components analysis, artificial neural networks, support vector machines

Procedia PDF Downloads 135
4751 One-off Separation of Multiple Types of Oil-In-Water Emulsions With Surface-Engineered Graphene-Based Multilevel Structure Materials

Authors: Han Longxiang

Abstract:

In the process of treating industrial oily wastewater with complex components, the traditional treatment methods (flotation, coagulation, microwave heating, etc.) often produce high operating costs, secondary pollution, and other problems. In order to solve these problems, the materials with high flux and stability applied to surfactant-stabilized emulsions separation have gained huge attention in the treatment of oily wastewater. Nevertheless, four stable oil-in-water emulsions can be formed due to different surfactants (surfactant-free, anionic surfactant, cationic surfactant, and non-ionic surfactant), and the previous advanced materials can only separate one or several of them, cannot effectively separate in one step. Herein, a facile synthesis method of graphene-based multilevel filter materials (GMFM) which can efficiently separate the oil-in-water emulsions stabilized with different surfactants only through its gravity. The prepared materials with high stability of 20 cycles show a high flux of ~ 5000 L m-2 h-1 with a high separation efficiency of > 99.9 %. GMFM can effectively separate the emulsion stabilized by mixed surfactants and oily wastewater from factories. The results indicate that the GMFM have a wide range of applications in oil-in-water emulsions separation in industry and environmental science.

Keywords: emulsion, filtration, graphene, one-step

Procedia PDF Downloads 77
4750 Nonreciprocal Optical Effects in Plasmonic Nanoparticle Aggregates

Authors: Ward Brullot, Thierry Verbiest

Abstract:

Nonreciprocal optical effects, such as Faraday rotation or magnetic circular dichroism, are very useful both for fundamental studies as for applications such as magnetic field sensors or optical isolators. In this study, we developed layer-by-layer deposited 20nm thick plasmonic nanoparticle aggregates consisting of gold, silver and magnetite nanoparticles that show broadband nonreciprocal asymmetric transmission. As such, the optical transmittance, or absorbance, depends on the direction of light propagation in the material, which means that looking from one direction or the other, more or less light passes through the sample. Theoretical analysis showed that strong electric quadrupole fields, which are electric field gradients, occur in the aggregates and that these quadrupole fields are responsible for the observed asymmetric transmission and the nonreciprocity of the effect. Apart from nonreciprocal asymmetric transmission, also other effects such as, but not limited to, optical rotation, circular dichroism or nonlinear optical responses were measured in the plasmonic nanoparticle aggregates and the influences of the intense electric quadrupole fields determined. In conclusion, the presence of strong electric quadrupole fields make the developed plasmonic nanoparticle aggregates ideal candidates for the study and application of various nonreciprocal optical effects.

Keywords: asymmetric transmission, electric quadrupoles, nanoparticle aggregates, nonreciprocity

Procedia PDF Downloads 412
4749 The Use of Building Energy Simulation Software in Case Studies: A Literature Review

Authors: Arman Ameen, Mathias Cehlin

Abstract:

The use of Building Energy Simulation (BES) software has increased in the last two decades, parallel to the development of increased computing power and easy to use software applications. This type of software is primarily used to simulate the energy use and the indoor environment for a building. The rapid development of these types of software has raised their level of user-friendliness, better parameter input options and the increased possibility of analysis, both for a single building component or an entire building. This, in turn, has led to many researchers utilizing BES software in their research in various degrees. The aim of this paper is to carry out a literature review concerning the use of the BES software IDA Indoor Climate and Energy (IDA ICE) in the scientific community. The focus of this paper will be specifically the use of the software for whole building energy simulation, number and types of articles and publications dates, the area of application, types of parameters used, the location of the studied building, type of building, type of analysis and solution methodology. Another aspect that is examined, which is of great interest, is the method of validations regarding the simulation results. The results show that there is an upgoing trend in the use of IDA ICE and that researchers use the software in their research in various degrees depending on case and aim of their research. The satisfactory level of validation of the simulations carried out in these articles varies depending on the type of article and type of analysis.

Keywords: building simulation, IDA ICE, literature review, validation

Procedia PDF Downloads 120
4748 Scheduling of Cross-Docking Center: An Auction-Based Algorithm

Authors: Eldho Paul, Brijesh Paul

Abstract:

This work proposes an auction mechanism based solution methodology for the optimum scheduling of trucks in a cross-docking centre. The cross-docking centre is an important element of lean supply chain. It reduces the amount of storage and transportation costs in the distribution system compared to an ordinary warehouse. Better scheduling of trucks in a cross-docking center is the best way to reduce storage and transportation costs. Auction mechanism is commonly used for allocation of limited resources in different real-life applications. Here, we try to schedule inbound trucks by integrating auction mechanism with the functioning of a cross-docking centre. A mathematical model is developed for the optimal scheduling of inbound trucks based on the auction methodology. The determination of exact solution for problems involving large number of trucks was found to be computationally difficult, and hence a genetic algorithm based heuristic methodology is proposed in this work. A comparative study of exact and heuristic solutions is done using five classes of data sets. It is observed from the study that the auction-based mechanism is capable of providing good solutions to scheduling problem in cross-docking centres.

Keywords: auction mechanism, cross-docking centre, genetic algorithm, scheduling of trucks

Procedia PDF Downloads 396
4747 Image Segmentation Techniques: Review

Authors: Lindani Mbatha, Suvendi Rimer, Mpho Gololo

Abstract:

Image segmentation is the process of dividing an image into several sections, such as the object's background and the foreground. It is a critical technique in both image-processing tasks and computer vision. Most of the image segmentation algorithms have been developed for gray-scale images and little research and algorithms have been developed for the color images. Most image segmentation algorithms or techniques vary based on the input data and the application. Nearly all of the techniques are not suitable for noisy environments. Most of the work that has been done uses the Markov Random Field (MRF), which involves the computations and is said to be robust to noise. In the past recent years' image segmentation has been brought to tackle problems such as easy processing of an image, interpretation of the contents of an image, and easy analysing of an image. This article reviews and summarizes some of the image segmentation techniques and algorithms that have been developed in the past years. The techniques include neural networks (CNN), edge-based techniques, region growing, clustering, and thresholding techniques and so on. The advantages and disadvantages of medical ultrasound image segmentation techniques are also discussed. The article also addresses the applications and potential future developments that can be done around image segmentation. This review article concludes with the fact that no technique is perfectly suitable for the segmentation of all different types of images, but the use of hybrid techniques yields more accurate and efficient results.

Keywords: clustering-based, convolution-network, edge-based, region-growing

Procedia PDF Downloads 71
4746 A Literature Review of Precision Agriculture: Applications of Diagnostic Diseases in Corn, Potato, and Rice Based on Artificial Intelligence

Authors: Carolina Zambrana, Grover Zurita

Abstract:

The food loss production that occurs in deficient agricultural production is one of the major problems worldwide. This puts the population's food security and the efficiency of farming investments at risk. It is to be expected that this food security will be achieved with the own and efficient production of each country. It will have an impact on the well-being of its population and, thus, also on food sovereignty. The production losses in quantity and quality occur due to the lack of efficient detection of diseases at an early stage. It is very difficult to solve the agriculture efficiency using traditional methods since it takes a long time to be carried out due to detection imprecision of the main diseases, especially when the production areas are extensive. Therefore, the main objective of this research study is to perform a systematic literature review, of the latest five years, of Precision Agriculture (PA) to be able to understand the state of the art of the set of new technologies, procedures, and optimization processes with Artificial Intelligence (AI). This study will focus on Corns, Potatoes, and Rice diagnostic diseases. The extensive literature review will be performed on Elsevier, Scopus, and IEEE databases. In addition, this research will focus on advanced digital imaging processing and the development of software and hardware for PA. The convolution neural network will be handling special attention due to its outstanding diagnostic results. Moreover, the studied data will be incorporated with artificial intelligence algorithms for the automatic diagnosis of crop quality. Finally, precision agriculture with technology applied to the agricultural sector allows the land to be exploited efficiently. This system requires sensors, drones, data acquisition cards, and global positioning systems. This research seeks to merge different areas of science, control engineering, electronics, digital image processing, and artificial intelligence for the development, in the near future, of a low-cost image measurement system that allows the optimization of crops with AI.

Keywords: precision agriculture, convolutional neural network, deep learning, artificial intelligence

Procedia PDF Downloads 64
4745 Cost Analysis of Optimized Fast Network Mobility in IEEE 802.16e Networks

Authors: Seyyed Masoud Seyyedoshohadaei, Borhanuddin Mohd Ali

Abstract:

To support group mobility, the NEMO Basic Support Protocol has been standardized as an extension of Mobile IP that enables an entire network to change its point of attachment to the Internet. Using NEMO in IEEE 802.16e (WiMax) networks causes latency in handover procedure and affects seamless communication of real-time applications. To decrease handover latency and service disruption time, an integrated scheme named Optimized Fast NEMO (OFNEMO) was introduced by authors of this paper. In OFNEMO a pre-establish multi tunnels concept, cross function optimization and cross layer design are used. In this paper, an analytical model is developed to evaluate total cost consisting of signaling and packet delivery costs of the OFNEMO compared with RFC3963. Results show that OFNEMO increases probability of predictive mode compared with RFC3963 due to smaller handover latency. Even though OFNEMO needs extra signalling to pre-establish multi tunnel, it has less total cost thanks to its optimized algorithm. OFNEMO can minimize handover latency for supporting real time application in moving networks.

Keywords: fast mobile IPv6, handover latency, IEEE802.16e, network mobility

Procedia PDF Downloads 179