Search results for: nitrate production
2036 Antibacterial Activity of Flavonoids from Corn Silk (Zea mays L.) in Propionibacterium acne, Staphylococcus Aureus and Staphylococcus Epidermidis
Authors: Fitri Ayu, Nadia, Tanti, Putri, Fatkhan, Pasid Harlisa, Suparmi
Abstract:
Acne is a skin abnormal conditions experienced by many teens, this is caused by various factors such as the climate is hot, humid and excessive sun exposure can aggravate acne because it will lead to excess oil production. Flavonoids form complex compounds against extracellular proteins that disrupt the integrity of bacterial cell membrane in a way denature bacterial cell proteins and bacterial cell membrane damage. This study aimed to test the antibacterial activity of corn silk extract with a concentration of 10 %, 20 %, 30 %, 40 %, 50 %, 60 %, 70 %, 80 %, 90 % and 100 % in vitro by measuring the inhibition of the growth of bacteria Propionibacterium acne, Staphylococcus aureus and Staphylococcus epidermis then compared with the standard antibiotic clindamycin. Extracts tested by Disk Diffusion Method, in which the blank disc soaked with their respective corn silk extract concentration for 15-30 minutes and then the medium of bacteria that have been planted with Propionibacterium acne, Staphylococcus aureus and Staphylococcus epidermis in the given disk that already contains extracts with various concentration. Incubated for 24 hours and then measured the growth inhibition zone Propionibacterium acne, Staphylococcus aureus and Staphylococcus epidermidis. Corn silk contains flavonoids, is shown by the test of flavonoids in corn silk extract by using a tube heating and without heating. Flavonoid in corn silk potentially as anti acne by inhibiting the growth of bacteria that cause acne. Corn silk extract concentration which has the highest antibacterial activity is then performed in a cream formulation and evaluation test of physical and chemical properties of the resulting cream preparation.Keywords: antibacterial, flavonoid, corn silk, acne
Procedia PDF Downloads 5102035 Determination of Soil Loss by Erosion in Different Land Covers Categories and Slope Classes in Bovilla Watershed, Tirana, Albania
Authors: Valmir Baloshi, Fran Gjoka, Nehat Çollaku, Elvin Toromani
Abstract:
As a sediment production mechanism, soil erosion is the main environmental threat to the Bovilla watershed, including the decline of water quality of the Bovilla reservoir that provides drinking water to Tirana city (the capital of Albania). Therefore, an experiment with 25 erosion plots for soil erosion monitoring has been set up since June 2017. The aim was to determine the soil loss on plot and watershed scale in Bovilla watershed (Tirana region) for implementation of soil and water protection measures or payments for ecosystem services (PES) programs. The results of erosion monitoring for the period June 2017 - May 2018 showed that the highest values of surface runoff were noted in bare land of 38829.91 liters on slope of 74% and the lowest values in forest land of 12840.6 liters on slope of 64% while the highest values of soil loss were found in bare land of 595.15 t/ha on slope of 62% and lowest values in forest land of 18.99 t/ha on slope of 64%. These values are much higher than the average rate of soil loss in the European Union (2.46 ton/ha/year). In the same sloping class, the soil loss was reduced from orchard or bare land to the forest land, and in the same category of land use, the soil loss increased with increasing land slope. It is necessary to conduct chemical analyses of sediments to determine the amount of chemical elements leached out of the soil and end up in the reservoir of Bovilla. It is concluded that PES programs should be implemented for rehabilitation of sub-watersheds Ranxe, Vilez and Zall-Bastar of the Bovilla watershed with valuable conservation practices.Keywords: ANOVA, Bovilla, land cover, slope, soil loss, watershed management
Procedia PDF Downloads 1642034 Developing Indoor Enhanced Bio Composite Vertical Smart Farming System for Climbing Food Plant
Authors: S. Mokhtar, R. Ibrahim, K. Abdan, A. Rashidi
Abstract:
The population in the world are growing in very fast rate. It is expected that urban growth and development would create serious questions of food production and processing, transport, and consumption. Future smart green city policies are emerging to support new ways of visualizing, organizing and managing the city and its flows towards developing more sustainable cities in ensuring food security while maintaining its biodiversity. This is a survey paper analyzing the feasibility of developing a smart vertical farming system for climbing food plant to meet the need of food consumption in urban cities with an alternative green material. This paper documents our investigation on specific requirement for farming high valued climbing type food plant suitable for vertical farming, development of appropriate biocomposite material composition, and design recommendations for developing a new smart vertical farming system inside urban buildings. Results include determination of suitable specific climbing food plant species and material manufacturing processes for reinforcing natural fiber for biocomposite material. The results are expected to become recommendations for developing alternative structural materials for climbing food plant later on towards the development of the future smart vertical farming system. This paper contributes to supporting urban farming in cities and promotes green materials for preserving the environment. Hence supporting efforts in food security agenda especially for developing nations.Keywords: biocomposite, natural reinforce fiber, smart farming, vertical farming
Procedia PDF Downloads 1662033 Synthesis of Highly Efficient Bio-Octane Number Booster Using Nano Au-NiAlZr-Layered Double Hydroxides Catalyst
Authors: Bachir Redouane, Dib Nihel, Bedrane Sumeya, Blanco Ginesa, Calvino José Juan
Abstract:
Furfural, a key biomass-derived platform compound, holds significant potential for biofuel production and the synthesis of high-value intermediates. This study investigates the hydrogenation-condensation reaction of furfural issued from lignocellulosique biomass with isopropyl alcohol to produce isopropylfurfuryl ether (iPFE), a next-generation synfuel with a high-octane number. iPFE’s water stability and resistance to methanol absorption make it a sustainable alternative to conventional gasoline additives, offering comparable performance. The catalyst used in this reaction is based on NiAl layered double hydroxides (LDH), with zirconium incorporated to enhance the distribution and structure of active sites. Gold (Au) was deposited on the NiAlZr-LDH support to improve selectivity and yield. The addition of Zr improved the thermal and mechanical stability of the catalyst, while the Au modification further increased selectivity toward iPFE. Extensive catalytic experiments were conducted to optimize reaction conditions, including temperature, hydrogen pressure, and Au loading, to maximize iPFE yield. The results demonstrate a high conversion rate of furfural, exceeding 90% under optimal conditions, with enhanced selectivity toward iPFE. Moreover, iPFE was shown to have a higher-octane number compared to traditional furfuryl ethers, making it a highly promising candidate for advanced fuel applications.Keywords: Au-NiAlZr-LDH, biofuels, furfural, green chemistry, hydrogenation, isopropylfurfuryl ether, octane number.
Procedia PDF Downloads 162032 Simulation and Fabrication of Plasmonic Lens for Bacteria Detection
Authors: Sangwoo Oh, Jaewoo Kim, Dongmin Seo, Jaewon Park, Yongha Hwang, Sungkyu Seo
Abstract:
Plasmonics has been regarded one of the most powerful bio-sensing modalities to evaluate bio-molecular interactions in real-time. However, most of the plasmonic sensing methods are based on labeling metallic nanoparticles, e.g. gold or silver, as optical modulation markers, which are non-recyclable and expensive. This plasmonic modulation can be usually achieved through various nano structures, e.g., nano-hole arrays. Among those structures, plasmonic lens has been regarded as a unique plasmonic structure due to its light focusing characteristics. In this study, we introduce a custom designed plasmonic lens array for bio-sensing, which was simulated by finite-difference-time-domain (FDTD) approach and fabricated by top-down approach. In our work, we performed the FDTD simulations of various plasmonic lens designs for bacteria sensor, i.e., Samonella and Hominis. We optimized the design parameters, i.e., radius, shape, and material, of the plasmonic lens. The simulation results showed the change in the peak intensity value with the introduction of each bacteria and antigen i.e., peak intensity 1.8711 a.u. with the introduction of antibody layer of thickness of 15nm. For Salmonella, the peak intensity changed from 1.8711 a.u. to 2.3654 a.u. and for Hominis, the peak intensity changed from 1.8711 a.u. to 3.2355 a.u. This significant shift in the intensity due to the interaction between bacteria and antigen showed a promising sensing capability of the plasmonic lens. With the batch processing and bulk production of this nano scale design, the cost of biological sensing can be significantly reduced, holding great promise in the fields of clinical diagnostics and bio-defense.Keywords: plasmonic lens, FDTD, fabrication, bacteria sensor, salmonella, hominis
Procedia PDF Downloads 2702031 The Influence of Caregivers’ Preparedness and Role Burden on Quality of Life among Stroke Patients
Authors: Yeaji Seok, Myung Kyung Lee
Abstract:
Background: Even if patients survive after a stroke, stroke patients may experience disability in mobility, sensation, cognition, and speech and language. Stroke patients require rehabilitation for functional recovery and daily life for a considerable time. During rehabilitation, the role of caregivers is important. However, the stroke patients’ quality of life may deteriorate due to family caregivers’ non-preparedness and increased role burden. Purpose: To investigate the prediction of caregivers' preparedness and role burden on stroke patients’ quality of life. Methods: The target population was stroke patients who were hospitalized for rehabilitation and their family care providers. A total of 153 patient-family caregiver dyads were recruited from June to August 2021. Data were collected from self-reported questionnaires and analyzed using descriptive statistics, t-tests, chi-squared test, one-way analysis of variance, Pearson’s correlation coefficients, and multiple regression with SPSS statistics 28 programs. Results: Family caregivers’ preparedness affected stroke patients’ mobility (β = .20, p < 0.05) and character (β = -.084, p < 0.05) and production activities (β = -.197, p < 0.05) in quality of life. The role burden of family caregivers affected language skills (β = .310, p<0.05), visual functions (β=-.357, p < 0.05), thinking skills (β = 0.443, p = 0.05), mood conditions (β = 0.565, p < 0.001), family roles (β = -0.361, p < 0.001), and social roles (β = -0.304, p < 0.001), while the caregivers’ burden of performing self-protection negatively affected patients’ social roles (β = .180, p=.048). In addition, caregivers’ role burden of personal life sacrifice affected patients’ mobility (β = .311, p < 0.05), self-care (β =.232, p < 0.05) and energy (β = .239, p < 0.05). Conclusion: This study indicated that family caregivers' preparedness and role burden affected stroke patients’ quality of life. The results of this study suggested that intervention to improve family caregivers’ preparedness and to reduce role burden should be required for quality of life in stroke patients.Keywords: quality of life, preparedness, role burden, caregivers, stroke
Procedia PDF Downloads 2112030 X-Ray Diffraction, Microstructure, and Mössbauer Studies of Nanostructured Materials Obtained by High-Energy Ball Milling
Authors: N. Boudinar, A. Djekoun, A. Otmani, B. Bouzabata, J. M. Greneche
Abstract:
High-energy ball milling is a solid-state powder processing technique that allows synthesizing a variety of equilibrium and non-equilibrium alloy phases starting from elemental powders. The advantage of this process technology is that the powder can be produced in large quantities and the processing parameters can be easily controlled, thus it is a suitable method for commercial applications. It can also be used to produce amorphous and nanocrystalline materials in commercially relevant amounts and is also amenable to the production of a variety of alloy compositions. Mechanical alloying (high-energy ball milling) provides an inter-dispersion of elements through a repeated cold welding and fracture of free powder particles; the grain size decreases to nano metric scale and the element mix together. Progressively, the concentration gradients disappear and eventually the elements are mixed at the atomic scale. The end products depend on many parameters such as the milling conditions and the thermodynamic properties of the milled system. Here, the mechanical alloying technique has been used to prepare nano crystalline Fe_50 and Fe_64 wt.% Ni alloys from powder mixtures. Scanning electron microscopy (SEM) with energy-dispersive, X-ray analyses and Mössbauer spectroscopy were used to study the mixing at nanometric scale. The Mössbauer Spectroscopy confirmed the ferromagnetic ordering and was use to calculate the distribution of hyperfin field. The Mössbauer spectrum for both alloys shows the existence of a ferromagnetic phase attributed to γ-Fe-Ni solid solution.Keywords: nanocrystalline, mechanical alloying, X-ray diffraction, Mössbauer spectroscopy, phase transformations
Procedia PDF Downloads 4372029 Biodiesel Fuel Properties of Mixed Culture Microalgae under Different CO₂ Concentration from Coal Fired Flue Gas
Authors: Ambreen Aslam, Tahira Aziz Mughal, Skye R. Thomas-Hall, Peer M. Schenk
Abstract:
Biodiesel is an alternative to petroleum-derived fuel mainly composed of fatty acid from oleaginous microalgae feedstock. Microalgae produced fatty acid methyl esters (FAMEs) as they can store high levels of lipids without competing for food productivity. After lipid extraction and esterification, fatty acid profile from algae feedstock possessed the abundance of fatty acids with carbon chain length specifically C16 and C18. The qualitative analysis of FAME was done by cultivating mix microalgae consortia under three different CO₂ concentrations (1%, 3%, and 5.5%) from a coal fired flue gas. FAME content (280.3 µg/mL) and productivity (18.69 µg/mL/D) was higher under 1% CO₂ (flue gas) as compare to other treatments. Whereas, Mixed C. (F) supplemented with 5.5% CO₂ (50% flue gas) had higher SFA (36.28%) and UFA (63.72%) which improve the oxidative stability of biodiesel. Subsequently, low Iodine value (136.3 gI₂/100g) and higher Cetane number (52) of Mixed C.+P (F) were found to be in accordance with European (EN 14214) standard under 5.5% CO₂ along with 50mM phosphate buffer. Experimental results revealed that sufficient phosphate reduced FAME productivity but significantly enhance biodiesel quality. This research aimed to develop an integrated approach of utilizing flue gas (as CO₂ source) for significant improvement in biodiesel quality under surplus phosphorus. CO₂ sequestration from industrial flue gas not only reduce greenhouse gases (GHG) emissions but also ensure sustainability and eco-friendliness of the biodiesel production process through microalgae.Keywords: biodiesel analysis, carbon dioxide, coal fired flue gas, FAME productivity, fatty acid profile, fuel properties, lipid content, mixed culture microalgae
Procedia PDF Downloads 3282028 Effect of Herbal Mineral Blend on Growth Performance of Broilers
Authors: M. Rizwan, S. Ahmad, U. Farooq, U. Mahmood, S. U. Rehman, P. Akhtar
Abstract:
This experiment was conducted to investigate the effect of supplementation of herbal and mineral mixture on growth performance of boilers. One hundred and eighty birds were randomly distributed into 6 experimental units of 3 replicates (10 birds/replicate) as: negative control (basal diet), positive control (Lincomycin at the rate of 5g/bag), commercially available herbal-mineral product FitFat™ at the rate of 150g/bag and 200g/bag, and herbal-mineral mixture at the rate of 150g/bag and herbal-mineral mixture at the rate of 300g/bag. The data regarding weekly feed intake, body weight gain and feed conversion ratio were recorded, and fecal samples were collected at the end of starter and finisher phase for nutrient digestibility trial. The results of body weight gain showed significant (P < 0.05) differences in 3rd week of age (506.90g), also, feed intake showed significant (P < 0.05) results in 1st (297.22g), 3rd (936.7g) and 4th (967.8g) week and feed conversion ratio indicated significant (P < 0.05) variations in 1st (1.14) and 3rd (1.74) week of age. The starter phase indicated significant (P < 0.05) differences among all treatments groups in body weight gain (902.2g), feed intake (1843.9g) and feed conversion ratio (1.78). In case of nutrient digestibility trial, results showed significant (P < 0.05) values of dry matter, crude protein, and crude fat in starter phase as 77.74%, 69.37%, and 61.18% respectively and 77.65%, 68.79% and 61.03% respectively, in finisher phase. Based on overall results, it was concluded that the dietary inclusion of combination of herbs and mineral can increase the production performance of broilers.Keywords: herbal blend, minerals, crop filling, nutrient digestibility, broiler
Procedia PDF Downloads 2132027 Evaluation of Two Functional Food Products: Tortillas and Yogurt Based on Spirulina platensis and Haematococcus pluvialis
Authors: Raul Alexis Sanchez Cornejo, Elena Ivonne Mancera Andrade, Gibran Sidney Aleman Nava, Angel Josue Arteaga Garces, Roberto Parra Saldivar
Abstract:
An unhealthy diet is one of the main factors for a wide range of chronical diseases such as diabetes, obesity, cancer, cardiovascular diseases, among others. Nowadays, there is a current need to provide innovate healthy products to people in order to decrease the number of people with unhealthy diet. This study focuses on the production of two food products based on two microalgae strains: Tortillas with powder of Haematococcus pluvialis and Spirulina platensis biomass and yogurt with microencapsulated biomass of the same strains. S. platensis has been used widely as food supplements in a form of powder and pills due to its high content in proteins and fatty acids. Haematococcus pluvialis has been recognized for its ability to produce high-added value products under stressful conditions such as antioxidants (astaxanthin). Despite the benefits that those microalgae have, few efforts have been done to use them in food products. The main objective of this work is to evaluate the nutritional properties such as protein content, lipid fraction, carbohydrates, antioxidants,, and vitamins, that these microalgae strains provide to the food product. Additionally, physicochemical, and sensory evaluation were assessed to evaluate the quality of the product. The results obtained will dictate the feasibility of the product to be commercialized. These novel products will have the ability to change the nutritional intake and strength the health of the consumers.Keywords: functional food, Haematococcus pluvialis, microalgae, Spirulina platensis, tortilla, yogurt
Procedia PDF Downloads 3172026 Genetic Characterization of a Composite Transposon Carrying armA and Aac(6)-Ib Genes in an Escherichia coli Isolate from Egypt
Authors: Omneya M. Helmy, Mona T. Kashef
Abstract:
Aminoglycosides are used in treating a wide range of infections caused by both Gram-negative and Gram positive bacteria. The presence of 16S rRNA methyl transferases (16S-RMTase) is among the newly discovered resistance mechanisms that confer high resistance to clinically useful aminoglycosides. Cephalosporins are the most commonly used antimicrobials in Egypt; therefore, this study was conducted to determine the isolation frequency of 16S rRNA methyl transferases among third generation cephalosporin-resistant clinical isolates in Egypt. One hundred and twenty three cephalosporin resistant Gram-negative clinical isolates were screened for aminoglycoside resistance by the Kirby Bauer disk diffusion method and tested for possible production of 16S-RMTase. PCR testing and sequencing were used to confirm the presence of 16S-RMTase and the associated antimicrobial resistance determinants, as well as the genetic region surrounding the armA gene. Out of 123 isolates, 66 (53.66%) were resistant to at least one aminoglycoside antibiotic. Only one Escherichia coli isolate (E9ECMO) which was totally resistant to all tested aminoglycosides, was confirmed to have the armA gene in association with blaTEM-1, blaCTX-M-15, blaCTX-M-14 and aac(6)-Ib genes. The armA gene was found to be carried on a large A/C plasmid. Genetic mapping of the armA surrounding region revealed, for the first time, the association of armA with aac(6)-Ib on the same transposon. In Conclusion, the isolation frequency of 16S-RMTase was low among the tested cephalosporin-resistant clinical samples. However, a novel composite transposon has been detected conferring high-level aminoglycosides resistance.Keywords: aminoglcosides, armA gene, β lactmases, 16S rRNA methyl transferases
Procedia PDF Downloads 2832025 Positive Energy Districts in the Swedish Energy System
Authors: Vartan Ahrens Kayayan, Mattias Gustafsson, Erik Dotzauer
Abstract:
The European Union is introducing the positive energy district concept, which has the goal to reduce overall carbon dioxide emissions. Other studies have already mapped the make-up of such districts, and reviewed their definitions and where they are positioned. The Swedish energy system is unique compared to others in Europe, due to the implementation of low-carbon electricity and heat energy sources and high uptake of district heating. The goal for this paper is to start the discussion about how the concept of positive energy districts can best be applied to the Swedish context and meet their mitigation goals. To explore how these differences impact the formation of positive energy districts, two cases were analyzed for their methods and how these integrate into the Swedish energy system: a district in Uppsala with a focus on energy and another in Helsingborg with a focus on climate. The case in Uppsala uses primary energy calculations which can be critisied but take a virtual border that allows for its surrounding system to be considered. The district in Helsingborg has a complex methodology for considering the life cycle emissions of the neighborhood. It is successful in considering the energy balance on a monthly basis, but it can be problematized in terms of creating sub-optimized systems due to setting tight geographical constraints. The discussion of shaping the definitions and methodologies for positive energy districts is taking place in Europe and Sweden. We identify three pitfalls that must be avoided so that positive energy districts meet their mitigation goals in the Swedish context. The goal of pushing out fossil fuels is not relevant in the current energy system, the mismatch between summer electricity production and winter energy demands should be addressed, and further implementations should consider collaboration with the established district heating grid.Keywords: positive energy districts, energy system, renewable energy, European Union
Procedia PDF Downloads 792024 Application of New Sprouted Wheat Brine for Delicatessen Products From Horse Meat, Beef and Pork
Authors: Gulmira Kenenbay, Urishbay Chomanov, Aruzhan Shoman, Rabiga Kassimbek
Abstract:
The main task of the meat-processing industry is the production of meat products as the main source of animal protein, ensuring the vital activity of the human body, in the required volumes, high quality, diverse assortment. Providing the population with high-quality food products what are biologically full, balanced in composition of basic nutrients and enriched by targeted physiologically active components, is one of the highest priority scientific and technical problems to be solved. In this regard, the formulation of a new brine from sprouted wheat for meat delicacies from horse meat, beef and pork has been developed. The new brine contains flavored aromatic ingredients, juice of the germinated wheat and vegetable juice. The viscosity of meat of horse meat, beef and pork were studied during massaging. Thermodynamic indices, water activity and binding energy of horse meat, beef and pork with application of new brine are investigated. A recipe for meat products with vegetable additives has been developed. Organoleptic evaluation of meat products was carried out. Physicochemical parameters of meat products with vegetable additives are carried out. Analysis of the obtained data shows that the values of the index aw (water activity) and the binding energy of moisture in the experimental samples of meat products are higher than in the control samples. It has been established by investigations that with increasing water activity and the binding energy of moisture, the tenderness of ready meat delicacies increases with the use of a new brine.Keywords: compounding, functional products, delicatessen products, brine, vegetable additives
Procedia PDF Downloads 1782023 The Use of Microalgae Cultivation for Improving the Effluent Behavior of Anaerobic Digestion of Food Wastes at Psychrophilic Range
Authors: Pedro M. Velasco, Cecilia C. Alday, Oscar C. Avello, Ximena T. Faundez, Luis M. Velasco
Abstract:
Anaerobic digestion (AD) plants of food waste (FW) produced by agro-industry, have been widely developed from last decade to nowadays, because of the advantages over aerobic active sludge systems. Despite several bioreactor configurations and operation modes have been successfully improved and implemented at industrial scale in a wide range of applications, effluent behavior, after AD, does not commonly meet requirements for direct disposal into the environment without further treatments. In addition, literature has rarely shown AD of food waste at psychrophilic range. This temperature range may be of interest for making AD plant operation easier and increasing the stability of digestion. In spite of literature shows several methods for post-treatment, such as the use of microalgae, these have not been cultivated on effluents from AD at psychrophilic range. Hence, with the aim of showing the potential use of AD of FW at the psychrophilic range (25ºC) and the viability of microalgae post-treatment, single batch reactors have been used for methane potential tests at laboratory scale. Afterwards, digestates, derived from this AD of FW sludge, were diluted with fresh water at different ratios (1:0, 1:1; 1:4) and used as culture media for photoautotrophic microalgae. Several parameters, such as pH, biogas production, and chemical oxygen demand, were measured periodically over several months. Results show that methane potential is 150 ml g-1 per volatile solid with up to 57.7 % of methane content. Moreover, microalgae has been successfully cultivated on all tested effluents and in case of 1:1 and 1:4 rates, the resulting effluents meet the quality levels required for irrigation water.Keywords: anaerobic digestion, biogas, food waste, microalgae, psychrophilic range
Procedia PDF Downloads 3052022 Dilution of Saline Irrigation Based on Plant's Physiological Responses to Salt Stress Following by Re-Watering
Authors: Qaiser Javed, Ahmad Azeem
Abstract:
Salinity and water scarcity are major environmental problems which are limiting the agricultural production. This research was conducted to construct a model to find out appropriate regime to dilute saline water based on physiological and electrophysiological properties of Brassica napus L., and Orychophragmus violaceus (L.). Plants were treated under salt-stressed concentrations of NaCl (NL₁: 2.5, NL₂: 5, NL₃: 10; gL⁻¹), Na₂SO₄ (NO₁: 2.5, NO₂: 5, NO₃: 10; gL⁻¹), and mixed salt concentration (MX₁: NL₁+ NO₃; MX₂: NL₃+ NO₁; MX₃: NL₂+ NO₂; gL⁻¹) and 0 as control, followed by re-watering. Growth, physiological and electrophysiology traits were highly restricted under high salt concentration levels at NL₃, NO₃, MX₁, and MX₂, respectively. However, during the rewatering phase, growth, electrophysiological, and physiological parameters were recovered well. Consequently, the increase in net photosynthetic rate was noted under moderate stress condition which was 44.13, 37.07, and 43.01%, respectively in Orychophragmus violaceus (L.) and 44.94%, 53.45%, and 63.04%, respectively were found in Brassica napus L. According to the results, the best dilution point was 5–2.5% for NaCl and Na₂SO₄ alternatively, whereas it was 10–0.0% for the mixture of salts. Therefore, the effect of salinity in O. violaceus and B. napus may also be reduced effectively by dilution of saline irrigation. It would be a better approach to utilize dilute saline water for irrigation instead of applies direct saline water to plant. This study provides new insight in the field of agricultural engineering to plan irrigation scheduling considering the crop ability to salt tolerance and irrigation water use efficiency by apply specific quantity of irrigation calculated based on the salt dilution point. It would be helpful to balance between irrigation amount and optimum crop water consumption in salt-affected regions and to utilize saline water in order to safe freshwater resources.Keywords: dilution model, plant growth traits, re-watering, salt stress
Procedia PDF Downloads 1602021 Salicylic Acid Improves Growth, Physiological Attributes and Salt Tolerance in Bread Wheat Cultivar (Triticum Aestivum L.)
Authors: Faiza Ateeq, Huma Jawed, Kamran Azim, Nadeem Khalid
Abstract:
Abiotic constraints such as salinity stress reduce cereal production. Salicylic acid is an elicitor of abiotic stress tolerance in plants. The aim of this study was to investigate the effects of salicylic acid on bread wheat cultivars AAI_10 from Faisalabad, Pakistan (Triticum aestivum L.) grown under salt stress in the presence and absence of 0.5 mM salicylic acid. The Physiological test was performed using different concentrations of salt solutions, i.e., 0%, 1%, 2%, 4%, and 6% on leaf blades, and determined the germination of seedlings growth after 14 days. Results showed a reduction in the weights of wheat seedlings when it’s dry and fresh in the consideration of salt stress. Salicylic Acid treatment has a positive effect when evaluated in the case of salt-treated control. The morphological test (Lowry method) was performed to determine the concentration of proteins in different samples. Results showed that the samples treated with SA showed the highest absorbance(720nm) as compared to the control and other treated samples absorbance was determined. Thus, Salicylic Acid treating wheat seedlings enables the growth of anti-stress effects, such as maintaining proline accumulation. The morphological and physiological parameters revealed that SA treatment not only decreased the negative effect of salinity on the development of the seedlings but also accelerated the reparation of the growth processes. These results suggested that salicylic acid application improved the salt tolerance of bread wheat cultivars.Keywords: salinity, salicylic acid, biotic and abiotic stresses, proline
Procedia PDF Downloads 642020 Analysing Trends in Rice Cropping Intensity and Seasonality across the Philippines Using 14 Years of Moderate Resolution Remote Sensing Imagery
Authors: Bhogendra Mishra, Andy Nelson, Mirco Boschetti, Lorenzo Busetto, Alice Laborte
Abstract:
Rice is grown on over 100 million hectares in almost every country of Asia. It is the most important staple crop for food security and has high economic and cultural importance in Asian societies. The combination of genetic diversity and management options, coupled with the large geographic extent means that there is a large variation in seasonality (when it is grown) and cropping intensity (how often it is grown per year on the same plot of land), even over relatively small distances. Seasonality and intensity can and do change over time depending on climatic, environmental and economic factors. Detecting where and when these changes happen can provide information to better understand trends in regional and even global rice production. Remote sensing offers a unique opportunity to estimate these trends. We apply the recently published PhenoRice algorithm to 14 years of moderate resolution remote sensing (MODIS) data (utilizing 250m resolution 16 day composites from Terra and Aqua) to estimate seasonality and cropping intensity per year and changes over time. We compare the results to the surveyed data collected by International Rice Research Institute (IRRI). The study results in a unique and validated dataset on the extent and change of extent, the seasonality and change in seasonality and the cropping intensity and change in cropping intensity between 2003 and 2016 for the Philippines. Observed trends and their implications for food security and trade policies are also discussed.Keywords: rice, cropping intensity, moderate resolution remote sensing (MODIS), phenology, seasonality
Procedia PDF Downloads 3112019 Electrochemical Modification of Boron Doped Carbon Nanowall Electrodes for Biosensing Purposes
Authors: M. Kowalski, M. Brodowski, K. Dziabowska, E. Czaczyk, W. Bialobrzeska, N. Malinowska, S. Zoledowska, R. Bogdanowicz, D. Nidzworski
Abstract:
Boron-doped-carbon nanowall (BCNW) electrodes are recently in much interest among scientists. BCNWs are good candidates for biosensor purposes as they possess interesting electrochemical characteristics like a wide potential range and the low difference between redox peaks. Moreover, from technical parameters, they are mechanically resistant and very tough. The production process of the microwave plasma-enhanced chemical vapor deposition (MPECVD) allows boron to build into the structure of the diamond being formed. The effect is the formation of flat, long structures with sharp ends. The potential of these electrodes was checked in the biosensing field. The procedure of simple carbon electrodes modification by antibodies was adopted to BCNW for specific antigen recognition. Surface protein D deriving from H. influenzae pathogenic bacteria was chosen as a target analyte. The electrode was first modified with the aminobenzoic acid diazonium salt by electrografting (electrochemical reduction), next anti-protein D antibodies were linked via 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS) chemistry, and free sites were blocked by BSA. Cyclic voltammetry measurements confirmed the proper electrode modification. Electrochemical impedance spectroscopy records indicated protein detection. The sensor was proven to detect protein D in femtograms. This work was supported by the National Centre for Research and Development (NCBR) TECHMATSTRATEG 1/347324/12/NCBR/ 2017.Keywords: anti-protein D antibodies, boron-doped carbon nanowall, impedance spectroscopy, Haemophilus influenzae.
Procedia PDF Downloads 1732018 Low Temperature Biological Treatment of Chemical Oxygen Demand for Agricultural Water Reuse Application Using Robust Biocatalysts
Authors: Vedansh Gupta, Allyson Lutz, Ameen Razavi, Fatemeh Shirazi
Abstract:
The agriculture industry is especially vulnerable to forecasted water shortages. In the fresh and fresh-cut produce sector, conventional flume-based washing with recirculation exhibits high water demand. This leads to a large water footprint and possible cross-contamination of pathogens. These can be alleviated through advanced water reuse processes, such as membrane technologies including reverse osmosis (RO). Water reuse technologies effectively remove dissolved constituents but can easily foul without pre-treatment. Biological treatment is effective for the removal of organic compounds responsible for fouling, but not at the low temperatures encountered at most produce processing facilities. This study showed that the Microvi MicroNiche Engineering (MNE) technology effectively removes organic compounds (> 80%) at low temperatures (6-8 °C) from wash water. The MNE technology uses synthetic microorganism-material composites with negligible solids production, making it advantageously situated as an effective bio-pretreatment for RO. A preliminary technoeconomic analysis showed 60-80% savings in operation and maintenance costs (OPEX) when using the Microvi MNE technology for organics removal. This study and the accompanying economic analysis indicated that the proposed technology process will substantially reduce the cost barrier for adopting water reuse practices, thereby contributing to increased food safety and furthering sustainable water reuse processes across the agricultural industry.Keywords: biological pre-treatment, innovative technology, vegetable processing, water reuse, agriculture, reverse osmosis, MNE biocatalysts
Procedia PDF Downloads 1292017 A Study of Body Weight and Type Traits Recorded on Hairy Goat in Punjab, Pakistan
Authors: A. Qayyum, G. Bilal, H. M. Waheed
Abstract:
The objectives of the study were to determine phenotypic variations in Hairy goats for quantitative and qualitative traits and to analyze the relationship between different body measurements and body weight in Hairy goats. Data were collected from the Barani Livestock Production Research Institute (BLPRI) at Kherimurat, Attock and potential farmers who were raising hairy goats in the Potohar region. Twelve (12) phenotypic parameters were measured on 99 adult Hairy goat (18 male and 81 female). Four qualitative and 8 quantitative traits were investigated. Qualitative traits were visually observed and expressed as percentages. Descriptive analysis was done on quantitative variables. All hairy goats had predominately black body coat color (72%), whereas white (11%) and brown (11%) body coat color were also observed. Both the pigmented (45.5%) and non-pigmented (54.5%) type of body skin were observed in the goat breed. Horns were present in the majority (91%) of animals. Most of the animals (83%) had straight facial head profiles. Analysis was performed in SAS On-Demand for Academics using PROC mixed model procedure. Overall means ± SD of body weight (BW), body length (BL), height at wither (HAW), ear length (EL), head length (HL), heart girth (HG), tail length (TL) and MC (muzzle circumference) were 41.44 ± 12.21 kg, 66.40 ± 7.87 cm, 75.17 ± 7.83 cm, 22.99 ± 6.75 cm, 15.07 ± 3.44 cm, 76.54 ± 8.80 cm, 18.28 ± 4.18 cm, and 26.24 ± 5.192 cm, respectively. Sex had a significant effect on BL and HG (P < 0.05), whereas BW, HAW, EL, HL, TL, and MC were not significantly affected (P > 0.05). The herd had a significant effect on BW, BL, HAW, HL, HG, and TL (P < 0.05) except EL and MC (P > 0.05). Hairy goats appear to have the potential for selection as mutton breeds in the Potohar region of Punjab. The findings of the present study would help in the characterization and conservation of hairy goats using genetic and genomic tools in the future.Keywords: body weight, Hairy goat, type traits Punjab, Pakistan
Procedia PDF Downloads 682016 “Lightyear” – The Battle for LGBTQIA+ Representation Behind Disney/Pixar’s Failed Blockbuster
Authors: Ema Vitória Fonseca Lavrador
Abstract:
In this work, we intend to explore the impact that the film "Lightyear" (2022) had on the social context of its production, distribution, and reception. This film, produced by Walt Disney Animation Studios and Pixar Animation Studios, depicts the story of Buzz Lightyear, a Space Ranger from which the character of the same name in the "Toy Story" film franchise is based. This prequel was predicted to be the blockbuster of the year, but it was a financial fiasco and the subject of numerous controversies, which also caused it to be drowned out by the film "Minions: The Rise of Gru" (2022). The reason for its failure is not based on the film's narrative or quality but on its controversial context for being a commitment to LGBTQIA+ representation in an unexpected way, by featuring a same-sex couple and showing a kiss shared by them. This representation cost Disney distribution in countries against LGBTQIA+ representation in media and involved Disney in major disagreements with fans and politicians, especially for being a direct opposition to the Florida House Bill 1557, also called the “Don't Say Gay” bill. Many major companies have taken a stand against this law because it jeopardizes the safety of the LGBTQIA+ community, and, although Disney initially cut the kiss off the film, pressure from the staff and audience resulted in unprecedented progress. For featuring a brief homosexual kiss, its exhibition was banned in several countries and discouraged by the same public that was previously the focus of Disney's attention, as this is a conservative “family-friendly” branded company. We believe it is relevant to study the case of "Lightyear" because it is a work that raises awareness and promotes representation of communities affected during the dark times while less legislation is being approved to protect the rights and safety of queer people.Keywords: Don’t Say Gay” bill, gender stereotypes, LGBTQIA+ representation, lightyear, Disney/Pixar
Procedia PDF Downloads 822015 The Effect of Addition of White Mulberry Fruit on the Sensory Quality of the New Developed Bioactive Bread
Authors: Kmiecik Dominik, Kobus-Cisowska Joanna, Gramza-Michalowska Anna, Marcinkowska Agata, Korczak Józef
Abstract:
The relationship between the choice of a proper diet, a diet, lifestyle man and his health has been known for a long time. Because of the increase in public awareness of food ingredients and their influence on health status, measures have been taken towards the production of food, which is designed to not only eat, but also to protect against the incidence of lifestyle diseases. For this purpose, the bio active products with healthy properties was developed. Mulberry have a very high nutritional value, rich in chemical composition and many properties used in the prevention of lifestyle diseases. In addition to basic chemical components, nutrients, mulberry fruit contain compounds having a physiological effect. The aim of this study was to assess the effect of white mulberry fruit on the sensory quality of bread to be healthy diet of people suffering from anemia, diabetes, obesity and cardiovascular disease. Sensory analysis was carried out by the profile method. Intra-operative differentiators color, aroma, taste, texture, and overall assessment. Sensory analysis showed that all test trials were characterized by a uniform and concise consistency, similar in color from dark to light beige. The taste and smell of herbal characteristic was designed in an attempt to prevention of diabetes, while the other samples were characterized by a typical taste and smell of bread grain. There were no foreign taste and odor in the test bread. It was found that the addition of white mulberry fruit does not affect the sensory quality of the newly developed bioactive bread.Keywords: mulberry, bread, bioactive, sensory analysis
Procedia PDF Downloads 4632014 Polymer Nanocoatings With Enhanced Self-Cleaning and Icephobic Properties
Authors: Bartlomiej Przybyszewski, Rafal Kozera, Katarzyna Zolynska, Anna Boczkowska, Daria Pakula
Abstract:
The build-up and accumulation of dirt, ice, and snow on structural elements and vehicles is an unfavorable phenomenon, leading to economic losses and often also posing a threat to people. This problem occurs wherever the use of polymer coatings has become a standard, among others in photovoltaic farms, aviation, wind energy, and civil engineering. The accumulated pollution on the photovoltaic modules can reduce their efficiency by several percent, and snow stops power production. Accumulated ice on the blades of wind turbines or the wings of airplanes and drones disrupts the airflow by changing their shape, leading to increased drag and reduced efficiency. This results in costly maintenance and repairs. The goal of the work is to reduce or completely eliminate the accumulation of dirt, snow, and ice build-up on polymer coatings by achieving self-cleaning and icephobic properties. It is done by the use of a multi-step surface modification of the polymer nanocoatings. For this purpose, two methods of surface structuring and the preceding volumetric modification of the chemical composition with proprietary organosilicon compounds and/or mineral additives were used. To characterize the surface topography of the modified coatings, light profilometry was utilized. Measurements of the wettability parameters (static contact angle and contact angle hysteresis) on the investigated surfaces allowed to identify their wetting behavior and determine relation between hydrophobic and anti-icing properties. Ice adhesion strength was measured to assess coatings' anti-icing behavior.Keywords: anti-icing properties, self-cleaning, polymer coatings, icephobic coatings
Procedia PDF Downloads 1102013 Finding Optimal Operation Condition in a Biological Nutrient Removal Process with Balancing Effluent Quality, Economic Cost and GHG Emissions
Authors: Seungchul Lee, Minjeong Kim, Iman Janghorban Esfahani, Jeong Tai Kim, ChangKyoo Yoo
Abstract:
It is hard to maintain the effluent quality of the wastewater treatment plants (WWTPs) under with fixed types of operational control because of continuously changed influent flow rate and pollutant load. The aims of this study is development of multi-loop multi-objective control (ML-MOC) strategy in plant-wide scope targeting four objectives: 1) maximization of nutrient removal efficiency, 2) minimization of operational cost, 3) maximization of CH4 production in anaerobic digestion (AD) for CH4 reuse as a heat source and energy source, and 4) minimization of N2O gas emission to cope with global warming. First, benchmark simulation mode is modified to describe N2O dynamic in biological process, namely benchmark simulation model for greenhouse gases (BSM2G). Then, three types of single-loop proportional-integral (PI) controllers for DO controller, NO3 controller, and CH4 controller are implemented. Their optimal set-points of the controllers are found by using multi-objective genetic algorithm (MOGA). Finally, multi loop-MOC in BSM2G is implemented and evaluated in BSM2G. Compared with the reference case, the ML-MOC with the optimal set-points showed best control performances than references with improved performances of 34%, 5% and 79% of effluent quality, CH4 productivity, and N2O emission respectively, with the decrease of 65% in operational cost.Keywords: Benchmark simulation model for greenhouse gas, multi-loop multi-objective controller, multi-objective genetic algorithm, wastewater treatment plant
Procedia PDF Downloads 5042012 Harmonic Assessment and Mitigation in Medical Diagonesis Equipment
Authors: S. S. Adamu, H. S. Muhammad, D. S. Shuaibu
Abstract:
Poor power quality in electrical power systems can lead to medical equipment at healthcare centres to malfunction and present wrong medical diagnosis. Equipment such as X-rays, computerized axial tomography, etc. can pollute the system due to their high level of harmonics production, which may cause a number of undesirable effects like heating, equipment damages and electromagnetic interferences. The conventional approach of mitigation uses passive inductor/capacitor (LC) filters, which has some drawbacks such as, large sizes, resonance problems and fixed compensation behaviours. The current trends of solutions generally employ active power filters using suitable control algorithms. This work focuses on assessing the level of Total Harmonic Distortion (THD) on medical facilities and various ways of mitigation, using radiology unit of an existing hospital as a case study. The measurement of the harmonics is conducted with a power quality analyzer at the point of common coupling (PCC). The levels of measured THD are found to be higher than the IEEE 519-1992 standard limits. The system is then modelled as a harmonic current source using MATLAB/SIMULINK. To mitigate the unwanted harmonic currents a shunt active filter is developed using synchronous detection algorithm to extract the fundamental component of the source currents. Fuzzy logic controller is then developed to control the filter. The THD without the active power filter are validated using the measured values. The THD with the developed filter show that the harmonics are now within the recommended limits.Keywords: power quality, total harmonics distortion, shunt active filters, fuzzy logic
Procedia PDF Downloads 4792011 Educational Experience, Record Keeping, Genetic Selection and Herd Management Effects on Monthly Milk Yield and Revenues of Dairy Farms in Southern Vietnam
Authors: Ngoc-Hieu Vu
Abstract:
A study was conducted to estimate the record keeping, genetic selection, educational experience, and farm management effect on monthly milk yield per farm, average milk yield per cow, monthly milk revenue per farm, and monthly milk revenue per cow of dairy farms in the Southern region of Vietnam. The dataset contained 5448 monthly record collected from January 2013 to May 2015. Results showed that longer experience increased (P < 0.001) monthly milk yields and revenues. Better educated farmers produced more monthly milk per farm and monthly milk per cow and revenues (P < 0.001) than lower educated farmers. Farm that kept records on individual animals had higher (P < 0.001) for monthly milk yields and revenues than farms that did not. Farms that used hired people produced the highest (p < 0.05) monthly milk yield per farm, milk yield per cow and revenues, followed by farms that used both hire and family members, and lowest values were for farms that used family members only. Farms that used crosses Holstein in herd were higher performance (p < 0.001) for all traits than farms that used purebred Holstein and other breeds. Farms that used genetic information and phenotypes when selecting sires were higher (p < 0.05) for all traits than farms that used only phenotypes and personal option. Farms that received help from Vet, organization staff, or government officials had higher monthly milk yield and revenues than those that decided by owner. These findings suggest that dairy farmers should be training in systematic, must be considered and continuous support to improve farm milk production and revenues, to increase the likelihood of adoption on a sustainable way.Keywords: dairy farming, education, milk yield, Southern Vietnam
Procedia PDF Downloads 3332010 Digital Twin Smart Hospital: A Guide for Implementation and Improvements
Authors: Enido Fabiano de Ramos, Ieda Kanashiro Makiya, Francisco I. Giocondo Cesar
Abstract:
This study investigates the application of Digital Twins (DT) in Smart Hospital Environments (SHE), through a bibliometric study and literature review, including comparison with the principles of Industry 4.0. It aims to analyze the current state of the implementation of digital twins in clinical and non-clinical operations in healthcare settings, identifying trends and challenges, comparing these practices with Industry 4.0 concepts and technologies, in order to present a basic framework including stages and maturity levels. The bibliometric methodology will allow mapping the existing scientific production on the theme, while the literature review will synthesize and critically analyze the relevant studies, highlighting pertinent methodologies and results, additionally the comparison with Industry 4.0 will provide insights on how the principles of automation, interconnectivity and digitalization can be applied in healthcare environments/operations, aiming at improvements in operational efficiency and quality of care. The results of this study will contribute to a deeper understanding of the potential of Digital Twins in Smart Hospitals, in addition to the future potential from the effective integration of Industry 4.0 concepts in this specific environment, presented through the practical framework, after all, the urgent need for changes addressed in this article is undeniable, as well as all their value contribution to human sustainability, designed in SDG3 – Health and well-being: ensuring that all citizens have a healthy life and well-being, at all ages and in all situations. We know that the validity of these relationships will be constantly discussed, and technology can always change the rules of the game.Keywords: digital twin, smart hospital, healthcare operations, industry 4.0, SDG3, technology
Procedia PDF Downloads 552009 Pragmatism in Adaptive Reuse of Obsolete Industrial Land in China
Authors: Yong Li
Abstract:
Major cities in China has experienced a shift from production based on manufacturing industry to tertiary industry. How to make a better use of existing obsolete industrial land within urban cores has become a difficult problem for many policymakers. City governments regard old manufacturing industrial land as an important source of land to facilitate the development of the cities. Despite the announcement of policies in promoting that, a large portion of industrial land is still not properly redeveloped and most of them became obsolete. The study uses the project of Xinyi International Club as a case to examine the process of adaptive reuse of obsolete industrial space in Guangzhou, China. It attempts to elucidate the underlying mechanisms by identifying the key forces from both the government and the private sectors in influencing the process. The study found that market forces in transforming industrial space are exerting a strong impact on the existing land use planning system in Chinese cities. Pragmatic relaxation of the formal land use the regulatory framework and government supportive land-use intervention have also been crucial towards achieving successful implementation of the restructuring project and making it a showcase. This study questions whether these extraordinary measures, in particular, the use of temporary land use permit, are sustainable in facilitating the transformation of derelict industrial land, and in informing future industrial land-use restructuring policies. It concludes that, while the land use regulatory system in China is becoming increasingly dynamic and flexible, it remains ill-equipped in responding positively to the market, which is characterized by an increasing bargaining power of the private sector. A comprehensive appraisal of the overall impacts of these adaptive re-uses on society is wanting.Keywords: China, land alteration, obsolete industrial properties, urban planning
Procedia PDF Downloads 1482008 Assessing the Impact of Autonomous Vehicles on Supply Chain Performance – A Case Study of Agri-Food Supply Chain
Authors: Nitish Suvarna, Anjali Awasthi
Abstract:
In an era marked by rapid technological advancements, the integration of Autonomous Vehicles into supply chain networks represents a transformative shift, promising to redefine the paradigms of logistics and transportation. This thesis delves into a comprehensive assessment of the impact of autonomous vehicles on supply chain performance, with a particular focus on network design, operational efficiency, and environmental sustainability. Employing the advanced simulation capabilities of anyLogistix (ALX), the study constructs a digital twin of a conventional supply chain network, encompassing suppliers, production facilities, distribution centers, and customer endpoints. The research methodically integrates Autonomous Vehicles into this intricate network, aiming to unravel the multifaceted effects on transportation logistics including transit times, cost-efficiency, and sustainability. Through simulations and scenarios analysis, the study scrutinizes the operational resilience and adaptability of supply chains in the face of dynamic market conditions and disruptive technologies like Autonomous Vehicles. Furthermore, the thesis undertakes carbon footprint analysis, quantifying the environmental benefits and challenges associated with the adoption of Autonomous Vehicles in supply chain operations. The insights from this research are anticipated to offer a strategic framework for industry stakeholders, guiding the adoption of Autonomous Vehicles to foster a more efficient, responsive, and sustainable supply chain ecosystem. The findings aim to serve as a cornerstone for future research and practical implementations in the realm of intelligent transportation and supply chain management.Keywords: autonomous vehicle, agri-food supply chain, ALX simulation, anyLogistix
Procedia PDF Downloads 772007 Application of the Urban Forest Credit Standard as a Tool for Compensating CO2 Emissions in the Metalworking Industry: A Case Study in Brazil
Authors: Marie Madeleine Sarzi Inacio, Ligiane Carolina Leite Dauzacker, Rodrigo Henriques Lopes Da Silva
Abstract:
The climate changes resulting from human activity have increased interest in more sustainable production practices to reduce and offset pollutant emissions. Brazil, with its vast areas capable of carbon absorption, holds a significant advantage in this context. However, to optimize the country's sustainable potential, it is important to establish a robust carbon market with clear rules for the eligibility and validation of projects aimed at reducing and offsetting Greenhouse Gas (GHG) emissions. In this study, our objective is to conduct a feasibility analysis through a case study to evaluate the implementation of an urban forest credits standard in Brazil, using the Urban Forest Credits (UFC) model implemented in the United States as a reference. Thus, the city of Ribeirão Preto, located in Brazil, was selected to assess the availability of green areas. With the CO2 emissions value from the metalworking industry, it was possible to analyze information in the case study, considering the activity. The QGIS software was used to map potential urban forest areas, which can connect to various types of geospatial databases. Although the chosen municipality has little vegetative coverage, the mapping identified at least eight areas that fit the standard definitions within the delimited urban perimeter. The outlook was positive, and the implementation of projects like Urban Forest Credits (UFC) adapted to the Brazilian reality has great potential to benefit the country in the carbon market and contribute to achieving its Greenhouse Gas (GHG) emission reduction goals.Keywords: carbon neutrality, metalworking industry, carbon credits, urban forestry credits
Procedia PDF Downloads 77