Search results for: solution validation
1225 Seed Priming Winter Wheat (Triticum aestivum L.) for Germination and Emergence
Authors: Pakize Ozlem Kurt Polat, Gizem Metin, Koksal Yagdi
Abstract:
In order to evaluate the effect of the different sources of salt on germination and early growth of five wheat cultivars (Katea, Bezostaja, Koksal-2000, Golia, Pehlivan) an experiment was conducted at the seed laboratory of the Uludag University, Agricultural Faculty, Department of Field Crops in Bursa/Turkey. Seeds were applied in five different resources media (KCl % 2, KCl %4, KNO₃ %0,5, KH₂PO₄ %0,5, PEG %10) and distilled water as the control). The seed was fully immersed in priming media at a temperature of 24ᵒC for durations of 12 and 24hours. Six different agronomic characters (seed germination, stem length, stem weight, radicle length, fresh weight, dry weight) were measured in 7th days and 14th days. Maximum seed germination percentage of seven days are Pehlivan was observed when the seeds were applied by KH₂PO₄ and Katea by distilled water as a control. The most stem length and stem weight were obtained for seeds were applied by KH₂PO₄ %0,5 with Katea and Bezostja immersed in priming media at 12h intervals beginning 7d after planting. Seeds were applied KH₂PO₄ %0,5 media produced maximum radicle length by Koksal and dry weight by Katea. The freshest weight obtains in Katea by KNO₃ %0,5 immersed in priming media at 24h. The most germination percent, dry weight, stem length of fourteen days was observed in Katea which subjected to KH₂PO₄ %0,5 solution. The most radicle length was observed Katea and Koksal in media of KH₂PO₄ %0,5. The most stem length was obtained for seeds were applied by KH₂PO₄ %0,5 and KNO₃ with Katea and Bezostaja. When the applied chemicals and all days examined KH₂PO₄ %0,5 treatment in fourteen days and immersed for the duration of 24 hours had better effects than other medias, seven days treatments and 12hours immersed. As a result of this research, the best response of media for the wheat germination can be said that the KH₂PO₄ %0,5 immersed in priming media at 24h intervals beginning 14 days after planting.Keywords: germination, priming, seedling growth, wheat
Procedia PDF Downloads 1791224 Proof of Concept of Video Laryngoscopy Intubation: Potential Utility in the Pre-Hospital Environment by Emergency Medical Technicians
Authors: A. Al Hajeri, M. E. Minton, B. Haskins, F. H. Cummins
Abstract:
The pre-hospital endotracheal intubation is fraught with difficulties; one solution offered has been video laryngoscopy (VL) which permits better visualization of the glottis than the standard method of direct laryngoscopy (DL). This method has resulted in a higher first attempt success rate and fewer failed intubations. However, VL has mainly been evaluated by experienced providers (experienced anesthetists), and as such the utility of this device for those whom infrequently intubate has not been thoroughly assessed. We sought to evaluate this equipment to determine whether in the hands of novice providers this equipment could prove an effective airway management adjunct. DL and two VL methods (C-Mac with distal screen/C-Mac with attached screen) were evaluated by simulating practice on a Laerdal airway management trainer manikin. Twenty Emergency Medical Technicians (basics) were recruited as novice practitioners. This group was used to eliminate bias, as these clinicians had no pre-hospital experience of intubation (although they did have basic airway skills). The following areas were assessed: Time taken to intubate, number of attempts required to successfully intubate, ease of use of equipment VL (attached screen) took on average longer for novice clinicians to successfully intubate and had a lower success rate and reported higher rating of difficulty compared to DL. However, VL (with distal screen) and DL were comparable on intubation times, success rate, gastric inflation rate and rating of difficulty by the user. This study highlights the routine use of VL by inexperienced clinicians would be of no added benefit over DL. Further studies are required to determine whether Emergency Medical Technicians (Paramedics) would benefit from this airway adjunct, and ascertain whether after initial mastery of VL (with a distal screen), lower intubation times and difficulty rating may be achievable.Keywords: direct laryngoscopy, endotracheal intubation, pre-hospital, video laryngoscopy
Procedia PDF Downloads 4101223 A Study on Effect of Almahdi Aluminium Factory of Bandar Abbas on Environment Status of the Region with an Emphasis on Measuring of Some Scarce Metals Existing in the Air (Atmosphere)
Authors: Maryam Ehsanpour, Maryam Malekpour, Rastin Afkhami
Abstract:
Today, industry is one of the indices of growth and development of countries and is a suitable applicable criterion to compare the countries. Bandar Abbas has a high industrial centralization in term of geographical redundancy of industries in comparison with other rural and urban places of Hormozgan province. Most important and major industries of the province are located in Bandar abbas eighth refinery, power plant, zinc melting company, Almahdi Aluminium, Hormozgan steel, south steel, which are the most important of these industries. So, it is necessary to study pollution from these industries and their destructive effects on environment of region. In respect of these things, general purpose of this research is codling and presenting managing solution of Almahdi Aluminium factory in them of measuring of air (atmosphere) parameters. For gaining this purpose it is necessary to determine measure of heavy metals suspension in the air (atmosphere) in the neighborhood of industries and also in residential regions close to them as partial purposes. So, for achieving the purposes above, operation of sampling from the air in two hot and cold seasons of the year (2010-2011) was performed, after field reviews to recognize the sources of effluence and to choose place of sampling stations. Sampling and preparation way to read was based on EPA and NIOSH. Also, decreasing process was included Fe>Al>Cd>Pb>Ni respectively, in term of results gaining from sampling of ingredients existing in the air (atmosphere). Also Ni and Fe elements in samples of air were higher than permissive measure in both of cold and hot season. Average of these two metals was 34% and 33% in cold season and 44% and 34% micrograms/m3 in hot season. Finally, suitable managing solutions to improve existing situation is presented in term for all results.Keywords: Almahdi aluminium factory, Bandar Abbas, scarce metals, atmosphere
Procedia PDF Downloads 5861222 Case Report: Mandibular Area Abscesses in Calves
Authors: Dovilė Bačėninaitė, Karina Džermeikaitė, Justinas Kirvela, Ramūnas Antanaitis
Abstract:
Bacteria are often present in the mouth of cattle. Some of them can cause abscesses. Starting with severe swelling of the mouth, muscle spasm, or locked jaw, it can lead to inability to open its mouth, move the neck, cause pain while eating. While the calf is unable to eat properly, it becomes more susceptible to infectious diseases, lower weight gain can be observed. Abscesses can be considered as a continuum of oral disease, whereby early stages of the lumpy jaw could proceed from gingivitis to periodontal disease. In the event of tissue damage, bacteria can enter the bloodstream, even cause sepsis. The most common lesions occur when animals eat sharp grass, coarse fodder, sharp, piercing foreign bodies (this is especially common for calves when they are trying to eat inedible objects). A crossbred Holstein calf presented with a history of proliferative outgrowth in the mandibular region. On clinical examination, needle aspiration, mandibular swelling revealed sticky, white curd-like fluid containing. Pus bacteriology revealed gram-negative cocci. They were sensitive to amoxicillin, cephalexin, enrofloxacin, ceftiofur. Blood morphology was in physiological ranges. The calf was treated surgically. The growth was excised, the puss drained and the wound was flushed with potassium permanganate solution (0,01%). A week after clinical surgery examination was performed. The swelling was decreased. Superficial bacterial infections are often associated with poor hygiene, which should be improved before treatment is commenced. Clipping away dirty hair and gently washing affected areas of skin daily with solutions such as povidone-iodine, potassium permanganate is effective. Appropriate antibiotic therapy, based on sensitivity testing, may be used where there is evidence of systemic illness.Keywords: calf, abscess, lumpy jaw, pus, Streptococcus, Staphylococcus, Actinobacillus, infection
Procedia PDF Downloads 2801221 Remedying the Scourge of Poverty as a Social Problem: The Islamic Perspective
Authors: Maryam Umar Ladan, Arshad Munir
Abstract:
Poverty has always been a constant feature of society throughout history. It has existed in the lives of people and it is a fact that although the majority of people lives in poverty, the remaining minority lives in luxury. While some countries called the first World countries lives in luxury, the third World countries lives in poverty. It remains an undesirable phenomenon affecting a vast number of people across the globe despite governmental, institutional and private organizations’ interventions with measures aimed at cushioning its adverse effects. Unequal distribution of societal resources, accumulated wealth in the hands of few, lack of access to education and employment, individual responsibility among others, were highlighted as factors associated with poverty. Poverty predisposes the poor individual to malnutrition and starvation, exposure to disease, thereby resulting to violence, crimes, and experiencing lifelong problems. Evidence show that about 50 percent of the world population lives on less than 2.50 dollar a day, 90 percent of whom are from Sub-Saharan Africa and South Asia including countries where Islam is the major if not one adherent religion. As a solution to poverty, Islam prescribes a system of annual Zakat (charity). The Islamic law prescribes that every person who has a saving that reaches a certain limit should give out 2.5 percent of the total annual earning (as in income, money, farm produce) to deserving and prescribed citizens. This is to, among others; reduce the level of inequality through distribution of wealth among the Muslim Ummah (community). Furthermore, Islam encourages the rich in several places in the Qur’an to spend their wealth on poor people other than the compulsory 2.5%. Therefore, it is inarguable that the Islamic system of distribution of resources (as zakat) is the best strategy to poverty eradication. Thus, strongly recommended for desired results in poverty eradication efforts. If every rich person gives Zakat sincerely, poverty will be eradicated in the world, and not a single person will die of want of food or material things.Keywords: Islam, charity, poverty, zakat
Procedia PDF Downloads 2871220 Variation of Manning’s Coefficient in a Meandering Channel with Emergent Vegetation Cover
Authors: Spandan Sahu, Amiya Kumar Pati, Kishanjit Kumar Khatua
Abstract:
Vegetation plays a major role in deciding the flow parameters in an open channel. It enhances the aesthetic view of the revetments. The major types of vegetation in river typically comprises of herbs, grasses, weeds, trees, etc. The vegetation in an open channel usually consists of aquatic plants with complete submergence, partial submergence, floating plants. The presence of vegetative plants can have both benefits and problems. The major benefits of aquatic plants are they reduce the soil erosion, which provides the water with a free surface to move on without hindrance. The obvious problems are they retard the flow of water and reduce the hydraulic capacity of the channel. The degree to which the flow parameters are affected depends upon the density of the vegetation, degree of submergence, pattern of vegetation, vegetation species. Vegetation in open channel tends to provide resistance to flow, which in turn provides a background to study the varying trends in flow parameters having vegetative growth in the channel surface. In this paper, an experiment has been conducted on a meandering channel having sinuosity of 1.33 with rigid vegetation cover to investigate the effect on flow parameters, variation of manning’s n with degree of the denseness of vegetation, vegetation pattern and submergence criteria. The measurements have been carried out in four different cross-sections two on trough portion of the meanders, two on the crest portion. In this study, the analytical solution of Shiono and knight (SKM) for lateral distributions of depth-averaged velocity and bed shear stress have been taken into account. Dimensionless eddy viscosity and bed friction have been incorporated to modify the SKM to provide more accurate results. A mathematical model has been formulated to have a comparative analysis with the results obtained from Shiono-Knight Method.Keywords: bed friction, depth averaged velocity, eddy viscosity, SKM
Procedia PDF Downloads 1371219 Kinetics and Thermodynamics Adsorption of Phenolic Compounds on Organic-Inorganic Hybrid Mesoporous Material
Authors: Makhlouf Mourad, Messabih Sidi Mohamed, Bouchher Omar, Houali Farida, Benrachedi Khaled
Abstract:
Mesoporous materials are very commonly used as adsorbent materials for removing phenolic compounds. However, the adsorption mechanism of these compounds is still poorly controlled. However, understanding the interactions mesoporous materials/adsorbed molecules is very important in order to optimize the processes of liquid phase adsorption. The difficulty of synthesis is to keep an orderly and cubic pore structure and achieve a homogeneous surface modification. The grafting of Si(CH3)3 was chosen, to transform hydrophilic surfaces hydrophobic surfaces. The aim of this work is to study the kinetics and thermodynamics of two volatile organic compounds VOC phenol (PhOH) and P hydroxy benzoic acid (4AHB) on a mesoporous material of type MCM-48 grafted with an organosilane of the Trimethylchlorosilane (TMCS) type, the material thus grafted or functionalized (hereinafter referred to as MCM-48-G). In a first step, the kinetic and thermodynamic study of the adsorption isotherms of each of the VOCs in mono-solution was carried out. In a second step, a similar study was carried out on a mixture of these two compounds. Kinetic models (pseudo-first order, pseudo-second order) were used to determine kinetic adsorption parameters. The thermodynamic parameters of the adsorption isotherms were determined by the adsorption models (Langmuir, Freundlich). The comparative study of adsorption of PhOH and 4AHB proved that MCM-48-G had a high adsorption capacity for PhOH and 4AHB; this may be related to the hydrophobicity created by the organic function of TMCS in MCM-48-G. The adsorption results for the two compounds using the Freundlich and Langmuir models show that the adsorption of 4AHB was higher than PhOH. The values obtained by the adsorption thermodynamics show that the adsorption interactions for our sample with the phenol and 4AHB are of a physical nature. The adsorption of our VOCs on the MCM-48 (G) is a spontaneous and exothermic process.Keywords: adsorption, kinetics, isotherm, mesoporous materials, Phenol, P-hydroxy benzoique acid
Procedia PDF Downloads 2081218 FEM for Stress Reduction by Optimal Auxiliary Holes in a Loaded Plate with Elliptical Hole
Authors: Basavaraj R. Endigeri, S. G. Sarganachari
Abstract:
Steel is widely used in machine parts, structural equipment and many other applications. In many steel structural elements, holes of different shapes and orientations are made with a view to satisfy the design requirements. The presence of holes in steel elements creates stress concentration, which eventually reduce the mechanical strength of the structure. Therefore, it is of great importance to investigate the state of stress around the holes for the safety and properties design of such elements. By literature survey, it is known that till date, there is no analytical solution to reduce the stress concentration by providing auxiliary holes at a definite location and radii in a steel plate. The numerical method can be used to determine the optimum location and radii of auxiliary holes. In the present work plate with an elliptical hole, for a steel material subjected to uniaxial load is analyzed and the effect of stress concentration is graphically represented .The introduction of auxiliary holes at a optimum location and radii with its effect on stress concentration is also represented graphically. The finite element analysis package ANSYS 11.0 is used to analyse the steel plate. The analysis is carried out using a plane 42 element. Further the ANSYS optimization model is used to determine the location and radii for optimum values of auxiliary hole to reduce stress concentration. All the results for different diameter to plate width ratio are presented graphically. The results of this study are in the form of the graphs for determining the locations and diameter of optimal auxiliary holes. The graph of stress concentration v/s central hole diameter to plate width ratio. The Finite Elements results of the study indicates that the stress concentration effect of central elliptical hole in an uniaxial loaded plate can be reduced by introducing auxiliary holes on either side of the central circular hole.Keywords: finite element method, optimization, stress concentration factor, auxiliary holes
Procedia PDF Downloads 4531217 Behavioral Effects of Oxidant and Reduced Chemorepellent on Mutant and Wild-Type Tetrahymena thermophila
Authors: Ananya Govindarajan
Abstract:
Tetrahymena thermophila is a single-cell, eukaryotic organism that belongs to the Protozoa Kingdom. Tetrahymena thermophila is often used in signal transduction pathway studies because of its ability to model sensory input and the effects of environmental conditions such as chemicals and temperature. The recently discovered G37 chemorepellent receptor showed increased responsiveness to all chemorepellents. Investigating the mutant G37 Tetrahymena gene in various test solutions, including ferric chloride, ferrous sulfate, hydrogen peroxide, tetrazolium blue, potassium chloride, and dithiothreitol were performed to determine the role of oxidants and reducing agents with the mutant and wild-type cells (CU427) to assess the role of the receptor. Behavioral assays and recordings processed by ImageJ indicated that ferric chloride, hydrogen peroxide, and tetrazolium blue yielded little to no chemorepellent responses from G37 cells (<20% ARs). CU427 cells were over-responsive based on the mean percent of cells (>50% ARs). Reducing agents elicited chemorepellent responses from both G37 and CU427, in addition to potassium chloride. Cell responses were classified as over-responsive (>50% ARs). Dithiothreitol yielded unexpected results as G37 (37.0% ARs) and CU427 (38.1% ARs) had relatively similar responses and were only responsive and not over-responsive to the reducing agent test chemical solution. Ultimately, this indicates that the G37 receptor is more interactive with molecules that are reducing agents or non-oxidant compounds; G37 may be unable to sense and respond to oxidants effectively, further elucidating the pathways of the G37 strain and nature of this receptor. Results also indicate that the CSF most likely contained an oxidant, like ferric chloride. This research can be further applied to neuronal influences and how specific compounds may affect human neurons individually and their excitability as the responses model action potentials and membrane potential.Keywords: tetrahymena thermophila, signal transduction, chemosensory, oxidant, reducing agent
Procedia PDF Downloads 1321216 Investigation on the Energy Impact of Spatial Geometry in a Residential Building Using Building Information Modeling Technology
Authors: Shashank. S. Bagane, H. N. Rajendra Prasad
Abstract:
Building Information Modeling (BIM) has currently developed into a potent solution. The consistent development of BIM technology in the sphere of Architecture, Engineering, and Construction (AEC) industry has enhanced the effectiveness of construction and decision making. However, aggrandized global warming and energy crisis has impacted on building energy analysis. It is now becoming an important factor to be considered in the AEC industry. Amalgamating energy analysis in the planning and design phase of a structure has become a necessity. In the current construction industry, estimating energy usage and reducing its footprint is of high priority. The construction industry is giving more prominence to sustainability alongside energy efficiency. This demand is compelling the designers, planners, and engineers to inspect the sustainable performance throughout the building's life cycle. The current study primarily focuses on energy consumption, space arrangement, and spatial geometry of a residential building. Most commonly residential structures in India are constructed considering Vastu Shastra. Vastu designs are intended to integrate architecture with nature and utilizing geometric patterns, symmetry, and directional alignments. In the current study, a residential brick masonry structure is considered for BIM analysis, Architectural model of the structure will be created using Revit software, later the orientation and spatial arrangement will be finalized based on Vastu principles. Furthermore, the structure will be investigated for the impact of building orientation and spatial arrangements on energy using Green Building Studio software. Based on the BIM analysis of the structure, energy consumption of subsequent building orientations will be understood. A well-orientated building having good spatial arrangement can save a considerable amount of energy throughout its life cycle and reduces the need for heating and lighting which will prove to diminish energy usage and improve the energy efficiency of the residential building.Keywords: building information modeling, energy impact, spatial geometry, vastu
Procedia PDF Downloads 1611215 Developing a Sustainable Business Model for Platform-Based Applications in Small and Medium-Sized Enterprise Sawmills: A Systematic Approach
Authors: Franziska Mais, Till Gramberg
Abstract:
The paper presents the development of a sustainable business model for a platform-based application tailored for sawing companies in small and medium-sized enterprises (SMEs). The focus is on the integration of sustainability principles into the design of the business model to ensure a technologically advanced, legally sound, and economically efficient solution. Easy2IoT is a research project that aims to enable companies in the prefabrication sheet metal and sheet metal processing industry to enter the Industrial Internet of Things (IIoT) with a low-threshold and cost-effective approach. The methodological approach of Easy2IoT includes an in-depth requirements analysis and customer interviews with stakeholders along the value chain. Based on these insights, actions, requirements, and potential solutions for smart services are derived. The structuring of the business ecosystem within the application plays a central role, whereby the roles of the partners, the management of the IT infrastructure and services, as well as the design of a sustainable operator model are considered. The business model is developed using the value proposition canvas, whereby a detailed analysis of the requirements for the business model is carried out, taking sustainability into account. This includes coordination with the business model patterns, according to Gassmann, and integration into a business model canvas for the Easy2IoT product. Potential obstacles and problems are identified and evaluated in order to formulate a comprehensive and sustainable business model. In addition, sustainable payment models and distribution channels are developed. In summary, the article offers a well-founded insight into the systematic development of a sustainable business model for platform-based applications in SME sawmills, with a particular focus on the synergy of ecological responsibility and economic efficiency.Keywords: business model, sustainable business model, IIoT, IIoT-platform, industrie 4.0, big data
Procedia PDF Downloads 811214 Influence of Degassing on the Curing Behaviour and Void Occurrence Properties of Epoxy / Anhydride Resin System
Authors: Latha Krishnan, Andrew Cobley
Abstract:
Epoxy resin is most widely used as matrices for composites of aerospace, automotive and electronic applications due to its outstanding mechanical properties. These properties are chiefly predetermined by the chemical structure of the prepolymer and type of hardener but can also be varied by the processing conditions such as prepolymer and hardener mixing, degassing and curing conditions. In this research, the effect of degassing on the curing behaviour and the void occurrence is experimentally evaluated for epoxy /anhydride resin system. The epoxy prepolymer was mixed with an anhydride hardener and accelerator in an appropriate quantity. In order to investigate the effect of degassing on the curing behaviour and void content of the resin, the uncured resin samples were prepared using three different methods: 1) no degassing 2) degassing on prepolymer and 3) degassing on mixed solution of prepolymer and hardener with an accelerator. The uncured resins were tested in differential scanning calorimeter (DSC) to observe the changes in curing behaviour of the above three resin samples by analysing factors such as gel temperature, peak cure temperature and heat of reaction/heat flow in curing. Additionally, the completely cured samples were tested in DSC to identify the changes in the glass transition temperature (Tg) between the three samples. In order to evaluate the effect of degassing on the void content and morphology changes in the cured epoxy resin, the fractured surfaces of cured epoxy resin were examined under the scanning electron microscope (SEM). In addition, the amount of void, void geometry and void fraction were also investigated using an optical microscope and image J software (image analysis software). It was found that degassing at different stages of resin mixing had significant effects on properties such as glass transition temperature, the void content and void size of the epoxy/anhydride resin system. For example, degassing (vacuum applied on the mixed resin) has shown higher glass transition temperature (Tg) with lower void content.Keywords: anhydride epoxy, curing behaviour, degassing, void occurrence
Procedia PDF Downloads 2161213 Swift Rising Pattern of Emerging Construction Technology Trends in the Construction Management
Authors: Gayatri Mahajan
Abstract:
Modern Construction Technology (CT) includes a broad range of advanced techniques and practices that bound the recent developments in material technology, design methods, quantity surveying, facility management, services, structural analysis and design, and other management education. Adoption of recent digital transformation technology is the need of today to speed up the business and is also the basis of construction improvement. Incorporating and practicing the technologies such as cloud-based communication and collaboration solution, Mobile Apps and 5G,3D printing, BIM and Digital Twins, CAD / CAM, AR/ VR, Big Data, IoT, Wearables, Blockchain, Modular Construction, Offsite Manifesting, Prefabrication, Robotic, Drones and GPS controlled equipment expedite the progress in the Construction industry (CI). Resources used are journaled research articles, web/net surfing, books, thesis, reports/surveys, magazines, etc. The outline of the research organization for this study is framed at four distinct levels in context to conceptualization, resources, innovative and emerging trends in CI, and better methods for completion of the construction projects. The present study conducted during 2020-2022 reveals that implementing these technologies improves the level of standards, planning, security, well-being, sustainability, and economics too. Application uses, benefits, impact, advantages/disadvantages, limitations and challenges, and policies are dealt with to provide information to architects and builders for smooth completion of the project. Results explain that construction technology trends vary from 4 to 15 for CI, and eventually, it reaches 27 for Civil Engineering (CE). The perspective of the most recent innovations, trends, tools, challenges, and solutions is highly embraced in the field of construction. The incorporation of the above said technologies in the pandemic Covid -19 and post-pandemic might lead to a focus on finding out effective ways to adopt new-age technologies for CI.Keywords: BIM, drones, GPS, mobile apps, 5G, modular construction, robotics, 3D printing
Procedia PDF Downloads 1051212 Engineering Study on the Handling of Date Palm Fronds to Reduce Waste and Used as Energy Environmentally Friendly Fuel
Authors: Ayman H. Amer Eissa, Abdul Rahman O. Alghannam
Abstract:
The agricultural crop residuals are considered one of the most important problems faced by the environmental life and farmers in the world. A study was carried out to evaluate the physical characteristics of chopped date palm stalks (fronds and leaflets). These properties are necessary to apply normal design procedures such as pneumatic conveying, fluidization, drying, and combustion. The mechanical treatment by cutting, crushing or chopping and briquetting processes are the primary step and the suitable solution for solving this problem and recycling these residuals to be transformed into useful products. So the aim of the present work to get a high quality for agriculture residues such as date palm stalks (fronds), date palm leaflets briquettes. The results obtained from measuring the mechanical properties (average shear and compressive strength) for date palm stalks at different moisture content (12.63, 33.21 and 60.54%) was (6.4, 4.7 and 3.21MPa) and (3.8, 3.18 and 2.86MPa) respectively. The modulus of elasticity and toughness were evaluated as a function of moisture content. As the moisture content of the stalk regions increased the modulus of elasticity and toughness decreased indicating a reduction in the brittleness of the stalk regions. Chopped date palm stalks (palm fronds), date palm leaflets having moisture content of 8, 10 and 12% and 8, 10 and 12.8% w.b. were dandified into briquettes without binder and with binder (urea-formaldehyde) using a screw press machine. Quality properties for briquettes were durability, compression ratio hardness, bulk density, compression ratio, resiliency, water resistance and gases emission. The optimum quality properties found for briquettes at 8 % moisture content and without binder. Where the highest compression stress and durability were 8.95, 10.39 MPa and 97.06 %, 93.64 % for date palm stalks (palm fronds), date palm leaflets briquettes, respectively. The CO and CO2 emissions for date palm stalks (fronds), date palm leaflets briquettes were less than these for loose residuals.Keywords: residues, date palm stalks, chopper, briquetting, quality properties
Procedia PDF Downloads 5491211 Chemical Life Cycle Alternative Assessment as a Green Chemical Substitution Framework: A Feasibility Study
Authors: Sami Ayad, Mengshan Lee
Abstract:
The Sustainable Development Goals (SDGs) were designed to be the best possible blueprint to achieve peace, prosperity, and overall, a better and more sustainable future for the Earth and all its people, and such a blueprint is needed more than ever. The SDGs face many hurdles that will prevent them from becoming a reality, one of such hurdles, arguably, is the chemical pollution and unintended chemical impacts generated through the production of various goods and resources that we consume. Chemical Alternatives Assessment has proven to be a viable solution for chemical pollution management in terms of filtering out hazardous chemicals for a greener alternative. However, the current substitution practice lacks crucial quantitative datasets (exposures and life cycle impacts) to ensure no unintended trade-offs occur in the substitution process. A Chemical Life Cycle Alternative Assessment (CLiCAA) framework is proposed as a reliable and replicable alternative to Life Cycle Based Alternative Assessment (LCAA) as it integrates chemical molecular structure analysis and Chemical Life Cycle Collaborative (CLiCC) web-based tool to fill in data gaps that the former frameworks suffer from. The CLiCAA framework consists of a four filtering layers, the first two being mandatory, with the final two being optional assessment and data extrapolation steps. Each layer includes relevant impact categories of each chemical, ranging from human to environmental impacts, that will be assessed and aggregated into unique scores for overall comparable results, with little to no data. A feasibility study will demonstrate the efficiency and accuracy of CLiCAA whilst bridging both cancer potency and exposure limit data, hoping to provide the necessary categorical impact information for every firm possible, especially those disadvantaged in terms of research and resource management.Keywords: chemical alternative assessment, LCA, LCAA, CLiCC, CLiCAA, chemical substitution framework, cancer potency data, chemical molecular structure analysis
Procedia PDF Downloads 921210 Adhesion Enhancement of Boron Carbide Coatings on Aluminum Substrates Utilizing an Intermediate Adhesive Layer
Authors: Sharon Waichman, Shahaf Froim, Ido Zukerman, Shmuel Barzilai, Shmual Hayun, Avi Raveh
Abstract:
Boron carbide is a ceramic material with superior properties such as high chemical and thermal stability, high hardness and high wear resistance. Moreover, it has a big cross section for neutron absorption and therefore can be employed in nuclear based applications. However, an efficient attachment of boron carbide to a metal such as aluminum can be very challenging, mainly because of the formation of aluminum-carbon bonds that are unstable in humid environment, the affinity of oxygen to the metal and the different thermal expansion coefficients of the two materials that may cause internal stresses and a subsequent failure of the bond. Here, we aimed to achieving a strong and a durable attachment between the boron carbide coating and the aluminum substrate. For this purpose, we applied Ti as a thin intermediate layer that provides a gradual change in the thermal expansion coefficients of the configured layers. This layer is continuous and therefore prevents the formation of aluminum-carbon bonds. Boron carbide coatings with a thickness of 1-5 µm were deposited on the aluminum substrate by pulse-DC magnetron sputtering. Prior to the deposition of the boron carbide layer, the surface was pretreated by energetic ion plasma followed by deposition of the Ti intermediate adhesive layer in a continuous process. The properties of the Ti intermediate layer were adjusted by the bias applied to the substrate. The boron carbide/aluminum bond was evaluated by various methods and complementary techniques, such as SEM/EDS, XRD, XPS, FTIR spectroscopy and Glow Discharge Spectroscopy (GDS), in order to explore the structure, composition and the properties of the layers and to study the adherence mechanism of the boron carbide/aluminum contact. Based on the interfacial bond characteristics, we propose a desirable solution for improved adhesion of boron carbide to aluminum using a highly efficient intermediate adhesive layer.Keywords: adhesion, boron carbide coatings, ceramic/metal bond, intermediate layer, pulsed-DC magnetron sputtering
Procedia PDF Downloads 1641209 Multi-Walled Carbon Nanotubes as Nucleating Agents
Authors: Rabindranath Jana, Plabani Basu, Keka Rana
Abstract:
Nucleating agents are widely used to modify the properties of various polymers. The rate of crystallization and the size of the crystals have a strong impact on mechanical and optical properties of a polymer. The addition of nucleating agents to the semi-crystalline polymers provides a surface on which the crystal growth can start easily. As a consequence, fast crystal formation will result in many small crystal domains so that the cycle times for injection molding may be reduced. Moreover, the mechanical properties e.g., modulus, tensile strength, heat distortion temperature and hardness may increase. In the present work, multi-walled carbon nanotubes (MWNTs) as nucleating agents for the crystallization of poly (e-caprolactone)diol (PCL). Thus nanocomposites of PCL filled with MWNTs were prepared by solution blending. Differential scanning calorimetry (DSC) tests were carried out to study the effect of CNTs on on-isothermal crystallization of PCL. The polarizing optical microscopy (POM), and wide-angle X-ray diffraction (WAXD) were used to study the morphology and crystal structure of PCL and its nanocomposites. It is found that MWNTs act as effective nucleating agents that significantly shorten the induction period of crystallization and however, decrease the crystallization rate of PCL, exhibiting a remarkable decrease in the Avrami exponent n, surface folding energy σe and crystallization activation energy ΔE. The carbon-based fillers act as templates for hard block chains of PCL to form an ordered structure on the surface of nanoparticles during the induction period, bringing about some increase in equilibrium temperature. The melting process of PCL and its nanocomposites are also studied; the nanocomposites exhibit two melting peaks at higher crystallization temperature which mainly refer to the melting of the crystals with different crystal sizes however, PCL shows only one melting temperature.Keywords: poly(e-caprolactone)diol, multiwalled carbon nanotubes, composite materials, nonisothermal crystallization, crystal structure, nucleation
Procedia PDF Downloads 4961208 Microstructure, Mechanical and Tribological Properties of (TiTaZrNb)Nx Medium Entropy Nitride Coatings: Influence of Nitrogen Content and Bias Voltage
Authors: Mario Alejandro Grisales, M. Daniela Chimá, Gilberto Bejarano Gaitán
Abstract:
High entropy alloys (HEA) and nitride (HEN) are currently very attractive to the automotive, aerospace, metalworking and materials forming manufacturing industry, among others, for exhibiting higher mechanical properties, wear resistance, and thermal stability than binary and ternary alloys. In this work medium-entropy coatings of TiTaZrNb and the nitrides of (TiTaZrNb)Nx were synthesized on to AISI 420 and M2 steel samples by the direct current magnetron sputtering technique. The influence of the bias voltage supplied to the substrate on the microstructure, chemical- and phase composition of the matrix coating was evaluated, and the effect of nitrogen flow on the microstructural, mechanical and tribological properties of the corresponding nitrides was studied. A change in the crystalline structure from BCC for TiTaZrNb coatings to FCC for (TiTaZrNb)Nx was observed, that is associated with the incorporation of nitrogen into the matrix and the consequent formation of a solid solution of (TiTaZrNb)Nx. An increase in hardness and residual stresses was observed with increasing bias voltage for TiTaZrNb, reaching 12.8 GPa for the coating deposited with a bias of -130V. In the case of (TiTaZrNb)Nx nitride, a greater hardness of 23 GPa is achieved for the coating deposited with a N2 flow of 12 sccm, which slightly drops to 21.7 GPa for that deposited with N2 flow of 15 sccm. The slight reduction in hardness could be associated with the precipitation of the TiN and ZrN phases that are formed at higher nitrogen flows. The specific wear rate of the deposited coatings ranged between 0.5xexp13 and 0.6xexp13 N/m2. The steel substrate exhibited an average hardness of 2.0 GPa and a specific wear rate of 203.2exp13 N/m2. Both the hardness and the specific wear rate of the synthesized nitride coatings were higher than that of the steel substrate, showing a protective effect of the steel against wear.Keywords: medium entropy coatings, hard coatings, magnetron sputtering, tribology, wear resistance
Procedia PDF Downloads 721207 A General Form of Characteristics Method Applied on Minimum Length Nozzles Design
Authors: Merouane Salhi, Mohamed Roudane, Abdelkader Kirad
Abstract:
In this work, we present a new form of characteristics method, which is a technique for solving partial differential equations. Typically, it applies to first-order equations; the aim of this method is to reduce a partial differential equation to a family of ordinary differential equations along which the solution can be integrated from some initial data. This latter developed under the real gas theory, because when the thermal and the caloric imperfections of a gas increases, the specific heat and their ratio do not remain constant anymore and start to vary with the gas parameters. The gas doesn’t stay perfect. Its state equation change and it becomes for a real gas. The presented equations of the characteristics remain valid whatever area or field of study. Here we need have inserted the developed Prandtl Meyer function in the mathematical system to find a new model when the effect of stagnation pressure is taken into account. In this case, the effects of molecular size and intermolecular attraction forces intervene to correct the state equation, the thermodynamic parameters and the value of Prandtl Meyer function. However, with the assumptions that Berthelot’s state equation accounts for molecular size and intermolecular force effects, expressions are developed for analyzing the supersonic flow for thermally and calorically imperfect gas. The supersonic parameters depend directly on the stagnation parameters of the combustion chamber. The resolution has been made by the finite differences method using the corrector predictor algorithm. As results, the developed mathematical model used to design 2D minimum length nozzles under effect of the stagnation parameters of fluid flow. A comparison for air with the perfect gas PG and high temperature models on the one hand and our results by the real gas theory on the other of nozzles shapes and characteristics are made.Keywords: numerical methods, nozzles design, real gas, stagnation parameters, supersonic expansion, the characteristics method
Procedia PDF Downloads 2431206 Psychosocial Effect of Body-Contouring Surgery on Patients after Weight Loss
Authors: Abdullah Kattan, Khalid Alzahrani, Saud Alsaleh, Loui Ezzat, Khalid Murad, Bader Alghamdi
Abstract:
Background and Significance: Patients are often bothered by the excess skin laxity and redundancy that they are left with after losing weight. Body-contouring surgery offers a solution to this problem; however, there is scarce literature on the psychological and social effects of these surgeries. This study was conducted to assess the psychosocial impact of body-contouring surgery on patients after weight loss. Methodology: In this cross-sectional study, a specifically designed questionnaire was administered to forty three patients whom have undergone body-contouring surgery. All included patients had lost no less than 20 Kg before body-contouring surgery, and were interviewed at least 6 months after surgery. The twenty-question interviewer based questionnaire was used to assess the psychosocial status of the patients before and after undergoing body-contouring surgery. The questionnaire assessed the quality of life (social life, job performance and sexual activity), presence of symptoms of depression and overall satisfaction. Data was analyzed as paired variables in SPSS using McNemar’s test. Results: Among the 43 participants, 19 (44.2%) have undergone mammoplasty, 12 (27.9%) have undergone abdominoplasty and the remainder of the patients have undergone other various procedures including brachioplasty, thigh lifts and nick liposuction. The mean age of patients was 34 +/- 10, the sample included 24 (55.8%) females and 19 (44.2%) males. The patients’ quality of life significantly improved in the following areas; social life (P<0.001), job performance (P<0.002) and sexual activity (P<0.001). Moreover, 17 (39.5%) patients suffered symptoms of depression before body-contouring surgery; however, only 1 (2.3%) patient suffered symptoms of depression after surgery. Overall satisfaction rate was found to be 62.8%; with mammoplasty being the highest satisfaction rate procedure (66.6 %). Conclusion: Body-contouring surgery after weight loss has shown to improve the psychological and social aspects in patients. These findings have been found to be consistent with the majority of relevant published studies, further increasing reliability of our study.Keywords: abdominoplasty, body-contouring, mammoplasty, psychosocial
Procedia PDF Downloads 2851205 Waste Derived from Refinery and Petrochemical Plants Activities: Processing of Oil Sludge through Thermal Desorption
Authors: Anna Bohers, Emília Hroncová, Juraj Ladomerský
Abstract:
Oil sludge with its main characteristic of high acidity is a waste product generated from the operation of refinery and petrochemical plants. Former refinery and petrochemical plant - Petrochema Dubová is present in Slovakia as well. Its activities was to process the crude oil through sulfonation and adsorption technology for production of lubricating and special oils, synthetic detergents and special white oils for cosmetic and medical purposes. Seventy years ago – period, when this historical acid sludge burden has been created – comparing to the environmental awareness the production was in preference. That is the reason why, as in many countries, also in Slovakia a historical environmental burden is present until now – 229 211 m3 of oil sludge in the middle of the National Park of Nízke Tatry mountain chain. Neither one of tried treatment methods – bio or non-biologic one - was proved as suitable for processing or for recovery in the reason of different factors admission: i.e. strong aggressivity, difficulty with handling because of its sludgy and liquid state et sim. As a potential solution, also incineration was tested, but it was not proven as a suitable method, as the concentration of SO2 in combustion gases was too high, and it was not possible to decrease it under the acceptable value of 2000 mg.mn-3. That is the reason why the operation of incineration plant has been terminated, and the acid sludge landfills are present until nowadays. The objective of this paper is to present a new possibility of processing and valorization of acid sludgy-waste. The processing of oil sludge was performed through the effective separation - thermal desorption technology, through which it is possible to split the sludgy material into the matrix (soil, sediments) and organic contaminants. In order to boost the efficiency in the processing of acid sludge through thermal desorption, the work will present the possibility of application of an original technology – Method of Blowing Decomposition for recovering of organic matter into technological lubricating oil.Keywords: hazardous waste, oil sludge, remediation, thermal desorption
Procedia PDF Downloads 2001204 Women's Vulnerability to Cross-Border Criminality in Saki/Iseyin Area of Oyo State in Nigeria: Insight and Experiences
Authors: Samuel Kehinde Okunade, Daniel Sunday Tolorunshagba
Abstract:
Globally women are classified to be part of the vulnerable group in any environment. In a conflict-ridden environment, women being vulnerable often suffer the consequences as it relates to security and access to basic social services such as medical care. This is the situation in border communities in Nigeria where cross-border crimes are on the rife, thus, putting women at a disadvantaged position and, eventually, victims of such inimical activities. Border communities in the Saki/Iseyin area of Oyo state are a case in point where the lives of inhabitants are daily threatened most, especially women. In light of the above, this article examined the security situation of the Saki/Iseyin area of Oyo State with a view to ascertaining its status in terms of safety of lives and property. This paper also explored the experiences of women in the border communities within the area as it relates to their safety, the safety of their children, access to good health facilities in their immediate environment, and above all, how they have been able to cope or manage the situation. The qualitative research model was adopted utilizing a phenomenological case study approach. A Focused Group Discussion was conducted with 10 pregnant women and 10 mothers in Okerete and Abugudu communities while a Key Informant Interview was conducted with the women leaders in both communities of the Saki/Iseyin border area of Oyo State. The findings of the study revealed the poor state of basic infrastructure. So bad to a point that inhabitants of these communities no longer see themselves as Nigerians because they have been neglected by the government for too long. The only solution is for the government to embark on developmental projects within these communities so that they can live a good life just as those in the cities do. More importantly, this will increase the loyalty of these communities to the Nigeria state by defending and resisting all forms of cross-border criminal activities that go on along the porous borders.Keywords: security, women, Saki/Iseyin border area, cross-border criminalities, basic infrastructure
Procedia PDF Downloads 1291203 Investigation into the Optimum Hydraulic Loading Rate for Selected Filter Media Packed in a Continuous Upflow Filter
Authors: A. Alzeyadi, E. Loffill, R. Alkhaddar
Abstract:
Continuous upflow filters can combine the nutrient (nitrogen and phosphate) and suspended solid removal in one unit process. The contaminant removal could be achieved chemically or biologically; in both processes the filter removal efficiency depends on the interaction between the packed filter media and the influent. In this paper a residence time distribution (RTD) study was carried out to understand and compare the transfer behaviour of contaminants through a selected filter media packed in a laboratory-scale continuous up flow filter; the selected filter media are limestone and white dolomite. The experimental work was conducted by injecting a tracer (red drain dye tracer –RDD) into the filtration system and then measuring the tracer concentration at the outflow as a function of time; the tracer injection was applied at hydraulic loading rates (HLRs) (3.8 to 15.2 m h-1). The results were analysed according to the cumulative distribution function F(t) to estimate the residence time of the tracer molecules inside the filter media. The mean residence time (MRT) and variance σ2 are two moments of RTD that were calculated to compare the RTD characteristics of limestone with white dolomite. The results showed that the exit-age distribution of the tracer looks better at HLRs (3.8 to 7.6 m h-1) and (3.8 m h-1) for limestone and white dolomite respectively. At these HLRs the cumulative distribution function F(t) revealed that the residence time of the tracer inside the limestone was longer than in the white dolomite; whereas all the tracer took 8 minutes to leave the white dolomite at 3.8 m h-1. On the other hand, the same amount of the tracer took 10 minutes to leave the limestone at the same HLR. In conclusion, the determination of the optimal level of hydraulic loading rate, which achieved the better influent distribution over the filtration system, helps to identify the applicability of the material as filter media. Further work will be applied to examine the efficiency of the limestone and white dolomite for phosphate removal by pumping a phosphate solution into the filter at HLRs (3.8 to 7.6 m h-1).Keywords: filter media, hydraulic loading rate, residence time distribution, tracer
Procedia PDF Downloads 2771202 Mathematical Modeling and Analysis of COVID-19 Pandemic
Authors: Thomas Wetere
Abstract:
Background: The coronavirus disease 2019 (COVID-19) pandemic (COVID-19) virus infection is a severe infectious disease with the highly transmissible variant, which become the global public health treat now. It has taken the life of more than 4 million people so far. What makes the disease the worst of all is no specific effective treatment available, its dynamics is not much researched and understood. Methodology: To end the global COVID-19 pandemic, implementation of multiple population-wide strategies, including vaccination, environmental factors, Government action, testing, and contact tracing, is required. In this article, a new mathematical model incorporating both temperature and government action to study the dynamics of the COVID-19 pandemic has been developed and comprehensively analysed. The model considers eight stages of infection: susceptible (S), infected Asymptomatic and Undetected(IAU ), infected Asymptomatic and detected(IAD), infected symptomatic and Undetected(ISU ), infected Symptomatic and detected(ISD), Hospitalized or threatened(H), Recovered(R) and Died(D). Results: The existence as well as non-negativity of the solution to the model is also verified, and the basic reproduction number is calculated. Besides, stability conditions are also checked, and finally, simulation results are compared with real data. The results demonstrates that effective government action will need to be combined with vaccination to end the ongoing COVID-19 pandemic. Conclusion: Vaccination and Government action are highly the crucial measures to control the COVID-19 pandemic. Besides, as the cost of vaccination might be high, we recommend an optimal control to reduce the cost and number of infected individuals. Moreover, in order to prevent COVID-19 pandemic, through the analysis of the model, the government must strictly manage the policy on COVID-19 and carry it out. This, in turn, helps for health campaigning and raising health literacy which plays a role to control the quick spread of the disease. We finally strongly believe that our study will play its own role in the current effort of controlling the pandemic.Keywords: modeling, COVID-19, MCMC, stability
Procedia PDF Downloads 1131201 Downscaling Grace Gravity Models Using Spectral Combination Techniques for Terrestrial Water Storage and Groundwater Storage Estimation
Authors: Farzam Fatolazadeh, Kalifa Goita, Mehdi Eshagh, Shusen Wang
Abstract:
The Gravity Recovery and Climate Experiment (GRACE) is a satellite mission with twin satellites for the precise determination of spatial and temporal variations in the Earth’s gravity field. The products of this mission are monthly global gravity models containing the spherical harmonic coefficients and their errors. These GRACE models can be used for estimating terrestrial water storage (TWS) variations across the globe at large scales, thereby offering an opportunity for surface and groundwater storage (GWS) assessments. Yet, the ability of GRACE to monitor changes at smaller scales is too limited for local water management authorities. This is largely due to the low spatial and temporal resolutions of its models (~200,000 km2 and one month, respectively). High-resolution GRACE data products would substantially enrich the information that is needed by local-scale decision-makers while offering the data for the regions that lack adequate in situ monitoring networks, including northern parts of Canada. Such products could eventually be obtained through downscaling. In this study, we extended the spectral combination theory to simultaneously downscale spatiotemporally the 3o spatial coarse resolution of GRACE to 0.25o degrees resolution and monthly coarse resolution to daily resolution. This method combines the monthly gravity field solution of GRACE and daily hydrological model products in the form of both low and high-frequency signals to produce high spatiotemporal resolution TWSA and GWSA products. The main contribution and originality of this study are to comprehensively and simultaneously consider GRACE and hydrological variables and their uncertainties to form the estimator in the spectral domain. Therefore, it is predicted that we reach downscale products with an acceptable accuracy.Keywords: GRACE satellite, groundwater storage, spectral combination, terrestrial water storage
Procedia PDF Downloads 831200 A Team-Based Learning Game Guided by a Social Robot
Authors: Gila Kurtz, Dan Kohen Vacs
Abstract:
Social robots (SR) is an emerging field striving to deploy computers capable of resembling human shapes and mimicking human movements, gestures, and behaviors. The evolving capability of SR to interact with human offers groundbreaking ways for learning and training opportunities. Studies show that SR can offer instructional experiences for fostering creativity, entertainment, enjoyment, and curiosity. These added values are essential for empowering instructional opportunities as gamified learning experiences. We present our project focused on deploying an activity to be experienced in an escape room aimed at team-based learning scaffolded by an SR, NAO. An escape room is a well-known approach for gamified activities focused on a simulated scenario experienced by team-based participants. Usually, the simulation takes place in a physical environment where participants must complete a series of challenges in a limited amount of time. During this experience, players learn something about the assigned topic of the room. In the current learning simulation, students must "save the nation" by locating sensitive information stolen and stored in a vault of four locks. Team members have to look for hints and solve riddles mediated by NAO. Each solution provides a unique code for opening one of the four locks. NAO is also used to provide ongoing feedback on the team's performance. We captured the proceeding of our activity and used it to conduct an evaluation study among ten experts in related areas. The experts were interviewed on their overall assessment of the learning activity and their perception of the added value related to the robot. The results were very encouraging on the feasibility that NAO can serve as a motivational tutor in adults' collaborative game-based learning. We believe that this study marks the first step toward a template for developing innovative team-based training using escape rooms supported by a humanoid robot.Keywords: social robot, NAO, learning, team based activity, escape room
Procedia PDF Downloads 681199 Green Crypto Mining: A Quantitative Analysis of the Profitability of Bitcoin Mining Using Excess Wind Energy
Authors: John Dorrell, Matthew Ambrosia, Abilash
Abstract:
This paper employs econometric analysis to quantify the potential profit wind farms can receive by allocating excess wind energy to power bitcoin mining machines. Cryptocurrency mining consumes a substantial amount of electricity worldwide, and wind energy produces a significant amount of energy that is lost because of the intermittent nature of the resource. Supply does not always match consumer demand. By combining the weaknesses of these two technologies, we can improve efficiency and a sustainable path to mine cryptocurrencies. This paper uses historical wind energy from the ERCOT network in Texas and cryptocurrency data from 2000-2021, to create 4-year return on investment projections. Our research model incorporates the price of bitcoin, the price of the miner, the hash rate of the miner relative to the network hash rate, the block reward, the bitcoin transaction fees awarded to the miners, the mining pool fees, the cost of the electricity and the percentage of time the miner will be running to demonstrate that wind farms generate enough excess energy to mine bitcoin profitably. Excess wind energy can be used as a financial battery, which can utilize wasted electricity by changing it into economic energy. The findings of our research determine that wind energy producers can earn profit while not taking away much if any, electricity from the grid. According to our results, Bitcoin mining could give as much as 1347% and 805% return on investment with the starting dates of November 1, 2021, and November 1, 2022, respectively, using wind farm curtailment. This paper is helpful to policymakers and investors in determining efficient and sustainable ways to power our economic future. This paper proposes a practical solution for the problem of crypto mining energy consumption and creates a more sustainable energy future for Bitcoin.Keywords: bitcoin, mining, economics, energy
Procedia PDF Downloads 341198 Development of PPy-M Composites Materials for Sensor Application
Authors: Yatimah Alias, Tilagam Marimuthu, M. R. Mahmoudian, Sharifah Mohamad
Abstract:
The rapid growth of science and technology in energy and environmental fields has enlightened the substantial importance of the conducting polymer and metal composite materials engineered at nano-scale. In this study, polypyrrole-cobalt composites (PPy-Co Cs) and polypyrrole-nickel oxide composites (PPy-NiO Cs) were prepared by a simple and facile chemical polymerization method with an aqueous solution of pyrrole monomer in the presence of metal salt. These composites then fabricated into non-enzymatic hydrogen peroxide (H2O2) and glucose sensor. The morphology and composition of the composites are characterized by the Field Emission Scanning Electron Microscope, Fourier Transform Infrared Spectrum and X-ray Powder Diffraction. The obtained results were compared with the pure PPy and metal oxide particles. The structural and morphology properties of synthesized composites are different from those of pure PPy and metal oxide particles, which were attributed to the strong interaction between the PPy and the metal particles. Besides, a favorable micro-environment for the electrochemical oxidation of H2O2 and glucose was achieved on the modified glassy carbon electrode (GCE) coated with PPy-Co Cs and PPy-NiO Cs respectively, resulting in an enhanced amperometric response. Both PPy-Co/GCE and PPy-NiO/GCE give high response towards target analyte at optimum condition of 500 μl pyrrole monomer content. Furthermore, the presence of pyrrole monomer greatly increases the sensitivity of the respective modified electrode. The PPy-Co/GCE could detect H2O2 in a linear range of 20 μM to 80 mM with two linear segments (low and high concentration of H2O2) and the detection limit for both ranges is 2.05 μM and 19.64 μM, respectively. Besides, PPy-NiO/GCE exhibited good electrocatalytic behavior towards glucose oxidation in alkaline medium and could detect glucose in linear ranges of 0.01 mM to 0.50 mM and 1 mM to 20 mM with detection limit of 0.33 and 5.77 μM, respectively. The ease of modifying and the long-term stability of this sensor have made it superior to enzymatic sensors, which must kept in a critical environment.Keywords: metal oxide, composite, non-enzymatic sensor, polypyrrole
Procedia PDF Downloads 2661197 Climate Change Results in Increased Accessibility of Offshore Wind Farms for Installation and Maintenance
Authors: Victoria Bessonova, Robert Dorrell, Nina Dethlefs, Evdokia Tapoglou, Katharine York
Abstract:
As the global pursuit of renewable energy intensifies, offshore wind farms have emerged as a promising solution to combat climate change. The global offshore wind installed capacity is projected to increase 56-fold by 2055. However, the impacts of climate change, particularly changes in wave climate, are not widely understood. Offshore wind installation and maintenance activities often require specific weather windows, characterized by calm seas and low wave heights, to ensure safe and efficient operations. However, climate change-induced alterations in wave characteristics can reduce the availability of suitable weather windows, leading to delays and disruptions in project timelines. it applied the operational limits of installation and maintenance vessels to past and future climate wave projections. This revealed changes in the annual and monthly accessibility of offshore wind farms at key global development locations. When accessibility is only defined by significant wave height, spatial patterns in the annual accessibility roughly follow changes in significant wave height, with increased availability where significant wave height is decreasing. This resulted in a 1-6% increase in Europe and North America and a similar decrease in South America, Australia and Asia. Monthly changes suggest unchanged or slightly decreased (1-2%) accessibility in summer months and increased (2-6%) in winter. Further assessment includes assessing the sensitivity of accessibility to operational limits defined by wave height combined with wave period and wave height combined with wind speed. Results of this assessment will be included in the presentation. These findings will help stakeholders inform climate change adaptations in installation and maintenance planning practices.Keywords: climate change, offshore wind, offshore wind installation, operations and maintenance, wave climate, wind farm accessibility
Procedia PDF Downloads 831196 Drivers and Barriers of Asphalt Rubber in Sweden
Authors: Raheb Mirzanamadi, João Patrício
Abstract:
Asphalt rubber (AR) was initially developed in Sweden in the 1960s by replacing crumb rubber (CR) as aggregates in asphalt pavement. The AR produced by this method had better mechanical properties than conventional asphalt pavement but was very expensive. Since then, different technologies and methods have been developed to use CR in asphalt pavements, including blending CR with bitumen at a high temperature in the mixture, called the wet method, and blending CR with bitumen in the refinery, called the terminal blending method. In 2006, the wet method was imported from the USA to Sweden to evaluate the potential of using AR on Swedish roads. 154 km AR roads were constructed by the wet method in Sweden. The evaluation showed that the AR had, in most cases, better mechanical performance than conventional asphalt pavements. However, the terrible smoke and smell led the Swedish Transport Administration (STA) to stop using AR in Sweden. Today, there are few focuses on AR, despite its good mechanical properties and environmental aspects. Hence, there is a need to study the drives and barriers of using AR mixture in Sweden. The aims of this paper are: (i) to study drivers and barriers of using AR pavements in Sweden and (ii) to discover knowledge gaps for further research in this area. The study was done using a literature review and completed by interviews with experts, including three researchers from Swedish National Road and Transport Research Institute (VTI) and two experts from STA. The results showed that AR can be an alternative not only for conventional asphalt pavement but also for polymer modified asphalt (PMA) due to the same mechanical properties but the lower cost for production. New technologies such as terminal blending and using warm mix asphalt (WMA) methods can lead to reducing the energy and temperature during production processes. From this study, it is found that there is not enough experience and knowledge about AR in Sweden, and more research is needed, including the lifespan of AR, mechanical properties of AR using new technologies, and the impact of AR on spreading and leaching substances into nature. More studies can lead to standardization of using AR in Sweden, a potential solution for the use of end-of-life tyres, with better mechanical properties and lower costs, in comparison with conventional asphalt pavements and PMA.Keywords: asphalt rubber, crumb rubber, terminal blending method, wet method
Procedia PDF Downloads 82