Search results for: high polymerised substance
14831 Enzyme Immobilization on Functionalized Polystyrene Nanofibersfor Bioprocessing Applications
Authors: Mailin Misson, Bo Jin, Sheng Dai, Hu Zhang
Abstract:
Advances in biotechnology have witnessed a growing interest in enzyme applications for the development of green and sustainable bio processes. While known as powerful bio catalysts, enzymes are no longer of economic value when extended to large commercialization. Alternatively, immobilization technology allows enzyme recovery and continuous reuse which subsequently compensates high operating costs. Employment of enzymes on nano structured materials has been recognized as a promising approach to enhance enzyme catalytic performances. High porosity, inter connectivity and self-assembling behaviors endow nano fibers as exciting candidate for enzyme carrier in bio reactor systems. In this study, nano fibers were successfully fabricated via electro spinning system by optimizing the polymer concentration (10-30 %, w/v), applied voltage (10-30 kV) and discharge distance (11-26 cm). Microscopic images have confirmed the quality as homogeneous and good fiber alignment. The nano fibers surface was modified using strong oxidizing agent to facilitate bio molecule binding. Bovine serum albumin and β-galactosidase enzyme were employed as model bio catalysts and immobilized onto the oxidized surfaces through covalent binding. Maximum enzyme adsorption capacity of the modified nano fibers was 3000 mg/g, 3-fold higher than the unmodified counterpart (1000 mg/g). The highest immobilization yield was 80% and reached the saturation point at 2 mg/ml of enzyme concentration. The results indicate a significant increase of activity retention by the enzyme-bound modified nano fibers (80%) as compared to the nascent one (60%), signifying excellent enzyme-nano carrier bio compatibility. The immobilized enzyme was further used for the bio conversion of dairy wastes into value-added products. This study demonstrates great potential of acid-modified electrospun polystyrene nano fibers as enzyme carriers.Keywords: immobilization, enzyme, nanocarrier, nanofibers
Procedia PDF Downloads 29814830 Mechanical Properties and Antibiotic Release Characteristics of Poly(methyl methacrylate)-based Bone Cement Formulated with Mesoporous Silica Nanoparticles
Authors: Kumaran Letchmanan, Shou-Cang Shen, Wai Kiong Ng
Abstract:
Postoperative implant-associated infections in soft tissues and bones remain a serious complication in orthopaedic surgery, which leads to impaired healing, re-implantation, prolong hospital stay and increase cost. Drug-loaded implants with sustained release of antibiotics at the local site are current research interest to reduce the risk of post-operative infections and osteomyelitis, thus, minimize the need for follow-up care and increase patient comfort. However, the improved drug release of the drug-loaded bone cements is usually accompanied by a loss in mechanical strength, which is critical for weight-bearing bone cement. Recently, more attempts have been undertaken to develop techniques to enhance the antibiotic elution as well as preserve the mechanical properties of the bone cements. The present study investigates the potential influence of addition of mesoporous silica nanoparticles (MSN) on the in vitro drug release kinetics of gentamicin (GTMC), along with the mechanical properties of bone cements. Simplex P was formulated with MSN and loaded with GTMC by direct impregnation. Meanwhile, Simplex P with water soluble poragen (xylitol) and high loading of GTMC as well as commercial bone cement CMW Smartset GHV were used as controls. MSN-formulated bone cements are able to increase the drug release of GTMC by 3-fold with a cumulative release of more than 46% as compared with other control groups. Furthermore, a sustained release could be achieved for two months. The loaded nano-sized MSN with uniform pore channels significantly build up an effective nano-network path in the bone cement facilitates the diffusion and extended release of GTMC. Compared with formulations using xylitol and high GTMC loading, incorporation of MSN shows no detrimental effect on biomechanical properties of the bone cements as no significant changes in the mechanical properties as compared with original bone cement. After drug release for two months, the bending modulus of MSN-formulated bone cements is 4.49 ± 0.75 GPa and the compression strength is 92.7 ± 2.1 MPa (similar to the compression strength of Simplex-P: 93.0 ± 1.2 MPa). The unaffected mechanical properties of MSN-formulated bone cements was due to the unchanged microstructures of bone cement, whereby more than 98% of MSN remains in the matrix and supports the bone cement structures. In contrast, the large portions of extra voids can be observed for the formulations using xylitol and high drug loading after the drug release study, thus caused compressive strength below the ASTM F541 and ISO 5833 minimum of 70 MPa. These results demonstrate the potential applicability of MSN-functionalized poly(methyl methacrylate)-based bone cement as a highly efficient, sustained and local drug delivery system with good mechanical properties.Keywords: antibiotics, biomechanical properties, bone cement, sustained release
Procedia PDF Downloads 25914829 Cable De-Commissioning of Legacy Accelerators at CERN
Authors: Adya Uluwita, Fernando Pedrosa, Georgi Georgiev, Christian Bernard, Raoul Masterson
Abstract:
CERN is an international organisation funded by 23 countries that provide the particle physics community with excellence in particle accelerators and other related facilities. Founded in 1954, CERN has a wide range of accelerators that allow groundbreaking science to be conducted. Accelerators bring particles to high levels of energy and make them collide with each other or with fixed targets, creating specific conditions that are of high interest to physicists. A chain of accelerators is used to ramp up the energy of particles and eventually inject them into the largest and most recent one: the Large Hadron Collider (LHC). Among this chain of machines is, for instance the Proton Synchrotron, which was started in 1959 and is still in operation. These machines, called "injectors”, keep evolving over time, as well as the related infrastructure. Massive decommissioning of obsolete cables started in 2015 at CERN in the frame of the so-called "injectors de-cabling project phase 1". Its goal was to replace aging cables and remove unused ones, freeing space for new cables necessary for upgrades and consolidation campaigns. To proceed with the de-cabling, a project co-ordination team was assembled. The start of this project led to the investigation of legacy cables throughout the organisation. The identification of cables stacked over half a century proved to be arduous. Phase 1 of the injectors de-cabling was implemented for 3 years with success after overcoming some difficulties. Phase 2, started 3 years later, focused on improving safety and structure with the introduction of a quality assurance procedure. This paper discusses the implementation of this quality assurance procedure throughout phase 2 of the project and the transition between the two phases. Over hundreds of kilometres of cable were removed in the injectors complex at CERN from 2015 to 2023.Keywords: CERN, de-cabling, injectors, quality assurance procedure
Procedia PDF Downloads 10214828 Sensing Study through Resonance Energy and Electron Transfer between Föster Resonance Energy Transfer Pair of Fluorescent Copolymers and Nitro-Compounds
Authors: Vishal Kumar, Soumitra Satapathi
Abstract:
Föster Resonance Energy Transfer (FRET) is a powerful technique used to probe close-range molecular interactions. Physically, the FRET phenomenon manifests as a dipole–dipole interaction between closely juxtaposed fluorescent molecules (10–100 Å). Our effort is to employ this FRET technique to make a prototype device for highly sensitive detection of environment pollutant. Among the most common environmental pollutants, nitroaromatic compounds (NACs) are of particular interest because of their durability and toxicity. That’s why, sensitive and selective detection of small amounts of nitroaromatic explosives, in particular, 2,4,6-trinitrophenol (TNP), 2,4-dinitrotoluene (DNT) and 2,4,6-trinitrotoluene (TNT) has been a critical challenge due to the increasing threat of explosive-based terrorism and the need of environmental monitoring of drinking and waste water. In addition, the excessive utilization of TNP in several other areas such as burn ointment, pesticides, glass and the leather industry resulted in environmental accumulation, and is eventually contaminating the soil and aquatic systems. To the date, high number of elegant methods, including fluorimetry, gas chromatography, mass, ion-mobility and Raman spectrometry have been successfully applied for explosive detection. Among these efforts, fluorescence-quenching methods based on the mechanism of FRET show good assembly flexibility, high selectivity and sensitivity. Here, we report a FRET-based sensor system for the highly selective detection of NACs, such as TNP, DNT and TNT. The sensor system is composed of a copolymer Poly [(N,N-dimethylacrylamide)-co-(Boc-Trp-EMA)] (RP) bearing tryptophan derivative in the side chain as donor and dansyl tagged copolymer P(MMA-co-Dansyl-Ala-HEMA) (DCP) as an acceptor. Initially, the inherent fluorescence of RP copolymer is quenched by non-radiative energy transfer to DCP which only happens once the two molecules are within Förster critical distance (R0). The excellent spectral overlap (Jλ= 6.08×10¹⁴ nm⁴M⁻¹cm⁻¹) between donors’ (RP) emission profile and acceptors’ (DCP) absorption profile makes them an exciting and efficient FRET pair i.e. further confirmed by the high rate of energy transfer from RP to DCP i.e. 0.87 ns⁻¹ and lifetime measurement by time correlated single photon counting (TCSPC) to validate the 64% FRET efficiency. This FRET pair exhibited a specific fluorescence response to NACs such as DNT, TNT and TNP with 5.4, 2.3 and 0.4 µM LODs, respectively. The detection of NACs occurs with high sensitivity by photoluminescence quenching of FRET signal induced by photo-induced electron transfer (PET) from electron-rich FRET pair to electron-deficient NAC molecules. The estimated stern-volmer constant (KSV) values for DNT, TNT and TNP are 6.9 × 10³, 7.0 × 10³ and 1.6 × 104 M⁻¹, respectively. The mechanistic details of molecular interactions are established by time-resolved fluorescence, steady-state fluorescence and absorption spectroscopy confirmed that the sensing process is of mixed type, i.e. both dynamic and static quenching as lifetime of FRET system (0.73 ns) is reduced to 0.55, 0.57 and 0.61 ns DNT, TNT and TNP, respectively. In summary, the simplicity and sensitivity of this novel FRET sensor opens up the possibility of designing optical sensor of various NACs in one single platform for developing multimodal sensor for environmental monitoring and future field based study.Keywords: FRET, nitroaromatic, stern-Volmer constant, tryptophan and dansyl tagged copolymer
Procedia PDF Downloads 13814827 A Study on the Correlation Analysis between the Pre-Sale Competition Rate and the Apartment Unit Plan Factor through Machine Learning
Authors: Seongjun Kim, Jinwooung Kim, Sung-Ah Kim
Abstract:
The development of information and communication technology also affects human cognition and thinking, especially in the field of design, new techniques are being tried. In architecture, new design methodologies such as machine learning or data-driven design are being applied. In particular, these methodologies are used in analyzing the factors related to the value of real estate or analyzing the feasibility in the early planning stage of the apartment housing. However, since the value of apartment buildings is often determined by external factors such as location and traffic conditions, rather than the interior elements of buildings, data is rarely used in the design process. Therefore, although the technical conditions are provided, the internal elements of the apartment are difficult to apply the data-driven design in the design process of the apartment. As a result, the designers of apartment housing were forced to rely on designer experience or modular design alternatives rather than data-driven design at the design stage, resulting in a uniform arrangement of space in the apartment house. The purpose of this study is to propose a methodology to support the designers to design the apartment unit plan with high consumer preference by deriving the correlation and importance of the floor plan elements of the apartment preferred by the consumers through the machine learning and reflecting this information from the early design process. The data on the pre-sale competition rate and the elements of the floor plan are collected as data, and the correlation between pre-sale competition rate and independent variables is analyzed through machine learning. This analytical model can be used to review the apartment unit plan produced by the designer and to assist the designer. Therefore, it is possible to make a floor plan of apartment housing with high preference because it is possible to feedback apartment unit plan by using trained model when it is used in floor plan design of apartment housing.Keywords: apartment unit plan, data-driven design, design methodology, machine learning
Procedia PDF Downloads 26914826 Performance Comparison and Visualization of COMSOL Multiphysics, Matlab, and Fortran for Predicting the Reservoir Pressure on Oil Production in a Multiple Leases Reservoir with Boundary Element Method
Authors: N. Alias, W. Z. W. Muhammad, M. N. M. Ibrahim, M. Mohamed, H. F. S. Saipol, U. N. Z. Ariffin, N. A. Zakaria, M. S. Z. Suardi
Abstract:
This paper presents the performance comparison of some computation software for solving the boundary element method (BEM). BEM formulation is the numerical technique and high potential for solving the advance mathematical modeling to predict the production of oil well in arbitrarily shaped based on multiple leases reservoir. The limitation of data validation for ensuring that a program meets the accuracy of the mathematical modeling is considered as the research motivation of this paper. Thus, based on this limitation, there are three steps involved to validate the accuracy of the oil production simulation process. In the first step, identify the mathematical modeling based on partial differential equation (PDE) with Poisson-elliptic type to perform the BEM discretization. In the second step, implement the simulation of the 2D BEM discretization using COMSOL Multiphysic and MATLAB programming languages. In the last step, analyze the numerical performance indicators for both programming languages by using the validation of Fortran programming. The performance comparisons of numerical analysis are investigated in terms of percentage error, comparison graph and 2D visualization of pressure on oil production of multiple leases reservoir. According to the performance comparison, the structured programming in Fortran programming is the alternative software for implementing the accurate numerical simulation of BEM. As a conclusion, high-level language for numerical computation and numerical performance evaluation are satisfied to prove that Fortran is well suited for capturing the visualization of the production of oil well in arbitrarily shaped.Keywords: performance comparison, 2D visualization, COMSOL multiphysic, MATLAB, Fortran, modelling and simulation, boundary element method, reservoir pressure
Procedia PDF Downloads 49414825 Calculation of Secondary Neutron Dose Equivalent in Proton Therapy of Thyroid Gland Using FLUKA Code
Authors: M. R. Akbari, M. Sadeghi, R. Faghihi, M. A. Mosleh-Shirazi, A. R. Khorrami-Moghadam
Abstract:
Proton radiotherapy (PRT) is becoming an established treatment modality for cancer. The localized tumors, the same as undifferentiated thyroid tumors are insufficiently handled by conventional radiotherapy, while protons would propose the prospect of increasing the tumor dose without exceeding the tolerance of the surrounding healthy tissues. In spite of relatively high advantages in giving localized radiation dose to the tumor region, in proton therapy, secondary neutron production can have significant contribution on integral dose and lessen advantages of this modality contrast to conventional radiotherapy techniques. Furthermore, neutrons have high quality factor, therefore, even a small physical dose can cause considerable biological effects. Measuring of this neutron dose is a very critical step in prediction of secondary cancer incidence. It has been found that FLUKA Monte Carlo code simulations have been used to evaluate dose due to secondaries in proton therapy. In this study, first, by validating simulated proton beam range in water phantom with CSDA range from NIST for the studied proton energy range (34-54 MeV), a proton therapy in thyroid gland cancer was simulated using FLUKA code. Secondary neutron dose equivalent of some organs and tissues after the target volume caused by 34 and 54 MeV proton interactions were calculated in order to evaluate secondary cancer incidence. A multilayer cylindrical neck phantom considering all the layers of neck tissues and a proton beam impinging normally on the phantom were also simulated. Trachea (accompanied by Larynx) had the greatest dose equivalent (1.24×10-1 and 1.45 pSv per primary 34 and 54 MeV protons, respectively) among the simulated tissues after the target volume in the neck region.Keywords: FLUKA code, neutron dose equivalent, proton therapy, thyroid gland
Procedia PDF Downloads 42814824 Identification and Characterization of Oil-Degrading Bacteria from Crude Oil-Contaminated Desert Soil in Northeastern Jordan
Authors: Mohammad Aladwan, Adelia Skripova
Abstract:
Bioremediation aspects of crude oil-polluted fields can be achieved by isolation and identification of bacterial species from oil-contaminated soil in order to choose the most active isolates and increase the strength of others. In this study, oil-degrading bacteria were isolated and identified from oil-contaminated soil samples in northeastern Jordan. The bacterial growth count (CFU/g) was between 1.06×10⁵ and 0.75×10⁹. Eighty-two bacterial isolates were characterized by their morphology and biochemical tests. The identified bacterial genera included: Klebsiella, Staphylococcus, Citrobacter, Lactobacillus, Alcaligenes, Pseudomonas, Hafnia, Micrococcus, Rhodococcus, Serratia, Enterobacter, Bacillus, Salmonella, Mycobacterium, Corynebacterium, and Acetobacter. Molecular identification of a universal primer 16S rDNA gene was used to identify four bacterial isolates: Microbacterium esteraromaticum strain L20, Pseudomonas stutzeri strain 13636M, Klebsilla pneumoniae, and uncultured Klebsilla sp., known as new strains. Our results indicate that their specific oil-degrading bacteria isolates might have a high strength of oil degradation from oil-contaminated sites. Staphylococcus intermedius (75%), Corynebacterium xerosis (75%), and Pseudomonas fluorescens (50%) showed a high growth rate on different types of hydrocarbons, such as crude oil, toluene, naphthalene, and hexane. In addition, monooxygenase and catechol 2,3-dioxygenase were detected in 17 bacterial isolates, indicating their superior hydrocarbon degradation potential. Total petroleum hydrocarbons were analyzed using gas chromatography for soil samples. Soil samples M5, M7, and M8 showed the highest levels (43,645, 47,805, and 45,991 ppm, respectively), and M4 had the lowest level (7,514 ppm). All soil samples were analyzed for heavy metal contamination (Cu, Cd, Mn, Zn, and Pb). Site M7 contains the highest levels of Cu, Mn, and Pb, while Site M8 contains the highest levels of Mn and Zn. In the future, these isolates of bacteria can be used for the cleanup of oil-contaminated soil.Keywords: bioremediation, 16S rDNA gene, oil-degrading bacteria, hydrocarbons
Procedia PDF Downloads 13114823 Evaluating the Capability of the Flux-Limiter Schemes in Capturing the Turbulence Structures in a Fully Developed Channel Flow
Authors: Mohamed Elghorab, Vendra C. Madhav Rao, Jennifer X. Wen
Abstract:
Turbulence modelling is still evolving, and efforts are on to improve and develop numerical methods to simulate the real turbulence structures by using the empirical and experimental information. The monotonically integrated large eddy simulation (MILES) is an attractive approach for modelling turbulence in high Re flows, which is based on the solving of the unfiltered flow equations with no explicit sub-grid scale (SGS) model. In the current work, this approach has been used, and the action of the SGS model has been included implicitly by intrinsic nonlinear high-frequency filters built into the convection discretization schemes. The MILES solver is developed using the opensource CFD OpenFOAM libraries. The role of flux limiters schemes namely, Gamma, superBee, van-Albada and van-Leer, is studied in predicting turbulent statistical quantities for a fully developed channel flow with a friction Reynolds number, ReT = 180, and compared the numerical predictions with the well-established Direct Numerical Simulation (DNS) results for studying the wall generated turbulence. It is inferred from the numerical predictions that Gamma, van-Leer and van-Albada limiters produced more diffusion and overpredicted the velocity profiles, while superBee scheme reproduced velocity profiles and turbulence statistical quantities in good agreement with the reference DNS data in the streamwise direction although it deviated slightly in the spanwise and normal to the wall directions. The simulation results are further discussed in terms of the turbulence intensities and Reynolds stresses averaged in time and space to draw conclusion on the flux limiter schemes performance in OpenFOAM context.Keywords: flux limiters, implicit SGS, MILES, OpenFOAM, turbulence statistics
Procedia PDF Downloads 19214822 Kinetics and Mechanism Study of Photocatalytic Degradation Using Heterojunction Semiconductors
Authors: Ksenija Milošević, Davor Lončarević, Tihana Mudrinić, Jasmina Dostanić
Abstract:
Heterogeneous photocatalytic processes have gained growing interest as an efficient method to generate hydrogen by using clean energy sources and degrading various organic pollutants. The main obstacles that restrict efficient photoactivity are narrow light-response range and high rates of charge carrier recombination. The formation of heterojunction by combining a semiconductor with low VB and a semiconductor with high CB and a suitable band gap was found to be an efficient method to prepare more sensible materials with improved charge separation, appropriate oxidation and reduction ability, and enhanced visible-light harvesting. In our research, various binary heterojunction systems based on the wide-band gap (TiO₂) and narrow bandgap (g-C₃N₄, CuO, and Co₂O₃) photocatalyst were studied. The morphology, optical, and electrochemical properties of the photocatalysts were analyzed by X-ray diffraction (XRD), scanning electron microscopy (FE-SEM), N₂ physisorption, diffuse reflectance measurements (DRS), and Mott-Schottky analysis. The photocatalytic performance of the synthesized catalysts was tested in single and simultaneous systems. The synthesized photocatalysts displayed good adsorption capacity and enhanced visible-light photocatalytic performance. The mutual interactions of pollutants on their adsorption and degradation efficiency were investigated. The interfacial connection between photocatalyst constituents and the mechanism of the transport pathway of photogenerated charge species was discussed. A radical scavenger study revealed the interaction mechanisms of the photocatalyst constituents in single and multiple pollutant systems under solar and visible light irradiation, indicating the type of heterojunction system (Z scheme or type II).Keywords: bandgap alignment, heterojunction, photocatalysis, reaction mechanism
Procedia PDF Downloads 10714821 Cytotoxic Drugs: Handling Practices and Clinical Manifestations among Hospital Staff
Authors: Boularas El-Alia, Arbi Raja, Bachir Bouiadjra Sara, Rezk-Kallah Haciba, Rezkkallah Baghdad
Abstract:
Objectives : To determine the handling practices of cytotoxic drugs and to describe clinical manifestations expressed by hospital personnel of Sidi Bel Abbes during the year 2014. Methods: Sectional descriptive study conducted in 3 center university hospital units (Hematology, Oncology and Urology) and Gynecology of EHS Sidi Bel Abbes. A questionnaire was administered to hospital workers regulary exposed to cytotoxic drugs. A work-place visit was performed to have an overview about working conditions. The Cytotoxic Contact Index (CCI) was calculated for each nurse on a period of 15 working days. Treatment of the results was done using SPSS software. Results: The survey reveals that 22 men and 58 women are exposed to cytotoxic drugs for an average of 7 years. Many symptoms such as ocular irritation (38,75%), throat irritation (56,25%), headache (68,75%), dizziness (43,75%), nausea (37,5%), metallic taste (30%), were reported with high frequency. Are noted in the offspring, 3 congenital anomalies,2 diaphragmatic hernia and a cleft palate. The Cytotoxic Contact Index (CCI) was higher than 3 among Oncology nurses and higher than 1 for most of the nurses of Hematology and Gynecology service. The wearing of personal protective clothing was not respected by all workers: (22/23) wear gloves and (20/23) wear a mask,(5/23) wear a cap, (2/23) wear glasses. Only 3 nurses have benefited from continuous training on handling cytotoxic drugs. Conclusion: This study shows a high occupational exposure risk to cytotoxic drugs among persons handling these drugs and the necessity to apply rigorously all measures related to personal protection awareness and training of personnel to minimize these exposure.Keywords: cytotoxic drugs, handling, clinical manifestations, hospital staff
Procedia PDF Downloads 44814820 A Multi-Output Network with U-Net Enhanced Class Activation Map and Robust Classification Performance for Medical Imaging Analysis
Authors: Jaiden Xuan Schraut, Leon Liu, Yiqiao Yin
Abstract:
Computer vision in medical diagnosis has achieved a high level of success in diagnosing diseases with high accuracy. However, conventional classifiers that produce an image to-label result provides insufficient information for medical professionals to judge and raise concerns over the trust and reliability of a model with results that cannot be explained. In order to gain local insight into cancerous regions, separate tasks such as imaging segmentation need to be implemented to aid the doctors in treating patients, which doubles the training time and costs which renders the diagnosis system inefficient and difficult to be accepted by the public. To tackle this issue and drive AI-first medical solutions further, this paper proposes a multi-output network that follows a U-Net architecture for image segmentation output and features an additional convolutional neural networks (CNN) module for auxiliary classification output. Class activation maps are a method of providing insight into a convolutional neural network’s feature maps that leads to its classification but in the case of lung diseases, the region of interest is enhanced by U-net-assisted Class Activation Map (CAM) visualization. Therefore, our proposed model combines image segmentation models and classifiers to crop out only the lung region of a chest X-ray’s class activation map to provide a visualization that improves the explainability and is able to generate classification results simultaneously which builds trust for AI-led diagnosis systems. The proposed U-Net model achieves 97.61% accuracy and a dice coefficient of 0.97 on testing data from the COVID-QU-Ex Dataset which includes both diseased and healthy lungs.Keywords: multi-output network model, U-net, class activation map, image classification, medical imaging analysis
Procedia PDF Downloads 20714819 Eating Disorders and Eating Behaviors in Morbid Obese Women with and without Type 2 Diabetes
Authors: Azadeh Mottaghi, Zeynab Shakeri
Abstract:
Background: Eating disorders (ED) are group of psychological disorders that significantly impair physical health and psychosocial function. EDconsists wide range of morbidity such as loss of eating control, binge eating disorder(BED), night eating syndrome (NES), and bulimia nervosa. Eating behavior is a wide range term that includes food choices, eating patterns, eating problems. In this study, current knowledge will be discussed aboutcomparison of eating disorders and eating behaviors in morbid obese women with and without type 2 diabetes. Methods: 231 womenwith morbid obesity were included in the study.Loss of eating control, Binge eating disorder and Bulimia nervosa, Night eating syndrome, and eating behaviors and psychosocial factorswere assessed. SPSS version 20 was used for statistical analysis. A p-value of <0.05 was considered significant. Results: There was a significant difference between women with and without diabetes in case of binge eating disorder (76.3% vs. 47.3%, p=0.001). Women with the least Interpersonal support evaluation list (ISEL) scores had a higher risk of eating disorders, and it is more common among diabetics (29.31% vs. 30.45%, p= 0.050). There was no significant difference between depression level and BDI score among women with or without diabetes. Although 38.5% (n=56) of women with diabetes and 50% (n=71) of women without diabetes had minimal depression. The logistic regression model has shown that women without diabetes had lower odds of exhibiting BED (OR=0.28, 95% CI 0.142-0.552).Women with and without diabetes with high school degree (OR=5.54, 95% CI 2.46-9.45, P= 0.0001 & OR=6.52, 95% CI 3.15-10.56, respectively) and moderate depression level (OR=2.03, 95% CI 0.98-3.95 & OR=3.12, 95% CI 2.12-4.56, P= 0.0001) had higher odds of BED. Conclusion: The result of the present study shows that the odds of BED was lower in non-diabetic women with morbid obesity. Women with morbid obesity who had high school degree and moderate depression level had more odds for BED.Keywords: eating disorders binge eating disorder, night eating syndrome, bulimia nervosa, morbid obesity
Procedia PDF Downloads 14114818 Optimized Electron Diffraction Detection and Data Acquisition in Diffraction Tomography: A Complete Solution by Gatan
Authors: Saleh Gorji, Sahil Gulati, Ana Pakzad
Abstract:
Continuous electron diffraction tomography, also known as microcrystal electron diffraction (MicroED) or three-dimensional electron diffraction (3DED), is a powerful technique, which in combination with cryo-electron microscopy (cryo-ED), can provide atomic-scale 3D information about the crystal structure and composition of different classes of crystalline materials such as proteins, peptides, and small molecules. Unlike the well-established X-ray crystallography method, 3DED does not require large single crystals and can collect accurate electron diffraction data from crystals as small as 50 – 100 nm. This is a critical advantage as growing larger crystals, as required by X-ray crystallography methods, is often very difficult, time-consuming, and expensive. In most cases, specimens studied via 3DED method are electron beam sensitive, which means there is a limitation on the maximum amount of electron dose one can use to collect the required data for a high-resolution structure determination. Therefore, collecting data using a conventional scintillator-based fiber coupled camera brings additional challenges. This is because of the inherent noise introduced during the electron-to-photon conversion in the scintillator and transfer of light via the fibers to the sensor, which results in a poor signal-to-noise ratio and requires a relatively higher and commonly specimen-damaging electron dose rates, especially for protein crystals. As in other cryo-EM techniques, damage to the specimen can be mitigated if a direct detection camera is used which provides a high signal-to-noise ratio at low electron doses. In this work, we have used two classes of such detectors from Gatan, namely the K3® camera (a monolithic active pixel sensor) and Stela™ (that utilizes DECTRIS hybrid-pixel technology), to address this problem. The K3 is an electron counting detector optimized for low-dose applications (like structural biology cryo-EM), and Stela is also a counting electron detector but optimized for diffraction applications with high speed and high dynamic range. Lastly, data collection workflows, including crystal screening, microscope optics setup (for imaging and diffraction), stage height adjustment at each crystal position, and tomogram acquisition, can be one of the other challenges of the 3DED technique. Traditionally this has been all done manually or in a partly automated fashion using open-source software and scripting, requiring long hours on the microscope (extra cost) and extensive user interaction with the system. We have recently introduced Latitude® D in DigitalMicrograph® software, which is compatible with all pre- and post-energy-filter Gatan cameras and enables 3DED data acquisition in an automated and optimized fashion. Higher quality 3DED data enables structure determination with higher confidence, while automated workflows allow these to be completed considerably faster than before. Using multiple examples, this work will demonstrate how to direct detection electron counting cameras enhance 3DED results (3 to better than 1 Angstrom) for protein and small molecule structure determination. We will also show how Latitude D software facilitates collecting such data in an integrated and fully automated user interface.Keywords: continuous electron diffraction tomography, direct detection, diffraction, Latitude D, Digitalmicrograph, proteins, small molecules
Procedia PDF Downloads 11214817 Deciphering Information Quality: Unraveling the Impact of Information Distortion in the UK Aerospace Supply Chains
Authors: Jing Jin
Abstract:
The incorporation of artificial intelligence (AI) and machine learning (ML) in aircraft manufacturing and aerospace supply chains leads to the generation of a substantial amount of data among various tiers of suppliers and OEMs. Identifying the high-quality information challenges decision-makers. The application of AI/ML models necessitates access to 'high-quality' information to yield desired outputs. However, the process of information sharing introduces complexities, including distortion through various communication channels and biases introduced by both human and AI entities. This phenomenon significantly influences the quality of information, impacting decision-makers engaged in configuring supply chain systems. Traditionally, distorted information is categorized as 'low-quality'; however, this study challenges this perception, positing that distorted information, contributing to stakeholder goals, can be deemed high-quality within supply chains. The main aim of this study is to identify and evaluate the dimensions of information quality crucial to the UK aerospace supply chain. Guided by a central research question, "What information quality dimensions are considered when defining information quality in the UK aerospace supply chain?" the study delves into the intricate dynamics of information quality in the aerospace industry. Additionally, the research explores the nuanced impact of information distortion on stakeholders' decision-making processes, addressing the question, "How does the information distortion phenomenon influence stakeholders’ decisions regarding information quality in the UK aerospace supply chain system?" This study employs deductive methodologies rooted in positivism, utilizing a cross-sectional approach and a mono-quantitative method -a questionnaire survey. Data is systematically collected from diverse tiers of supply chain stakeholders, encompassing end-customers, OEMs, Tier 0.5, Tier 1, and Tier 2 suppliers. Employing robust statistical data analysis methods, including mean values, mode values, standard deviation, one-way analysis of variance (ANOVA), and Pearson’s correlation analysis, the study interprets and extracts meaningful insights from the gathered data. Initial analyses challenge conventional notions, revealing that information distortion positively influences the definition of information quality, disrupting the established perception of distorted information as inherently low-quality. Further exploration through correlation analysis unveils the varied perspectives of different stakeholder tiers on the impact of information distortion on specific information quality dimensions. For instance, Tier 2 suppliers demonstrate strong positive correlations between information distortion and dimensions like access security, accuracy, interpretability, and timeliness. Conversely, Tier 1 suppliers emphasise strong negative influences on the security of accessing information and negligible impact on information timeliness. Tier 0.5 suppliers showcase very strong positive correlations with dimensions like conciseness and completeness, while OEMs exhibit limited interest in considering information distortion within the supply chain. Introducing social network analysis (SNA) provides a structural understanding of the relationships between information distortion and quality dimensions. The moderately high density of ‘information distortion-by-information quality’ underscores the interconnected nature of these factors. In conclusion, this study offers a nuanced exploration of information quality dimensions in the UK aerospace supply chain, highlighting the significance of individual perspectives across different tiers. The positive influence of information distortion challenges prevailing assumptions, fostering a more nuanced understanding of information's role in the Industry 4.0 landscape.Keywords: information distortion, information quality, supply chain configuration, UK aerospace industry
Procedia PDF Downloads 7014816 Syndecan -1 as Regulator of Ischemic-Reperfusion Damage Limitation in Experiment
Authors: M. E. Kolpakova, A. A. Jakovleva, L. S. Poliakova, H. El Amghari, S. Soliman, D. R. Faizullina, V. V. Sharoyko
Abstract:
Brain neuroplasticity is associated with blood-brain barrier vascular endothelial proteoglycans and post-stroke microglial activation. The study of the mechanisms of reperfusion injury limitation by remote ischemic postconditioning (RC) is of interest due to the effects on functional recovery after cerebral ischemia. The goal of the study is the assessment of the role of syndecan-1 (SDC-1) in restriction of ischemic-reperfusion injury on middle cerebral artery model in rats using RC protocol. Randomized controlled trials were conducted. Ischemia was performed by middle cerebral artery occlusion by Belayev L. (1996) on the Wistar rat-males (n= 87) weighting 250 ± 50 g. under general anesthesia (Zoletil 100 и Xylazine 2%). Syndecan-1 (SDC-1) concentration difference in plasma samples of false operated animals and animals with brain ischemia was 30% (30 min. МСАо: 41.4 * ± 1.3 ng/ml). SDC-1 concentration in animal plasma samples with ischemia + RC protocol was 112% (30 min МСАо+ RC): 67.8**± 5.8 ng/ml). Calculation of infarction volume in the ischemia group revealed brain injury in 31.97 ± 2.5%; the volume of infarction was 13.6 ± 1.3% in 30 min. МCАо + RC group. Swelling of tissue in the group 30 min. МCАо + RC was 16 ± 2.1%; it was 47 ± 3.3%. in 30 min. МCАо group. Correlation analysis showed a high direct correlation relationship between infarct area and muscle strength in the right forelimb (КК=0.72) in the 30 min. МCАо + RC group. Correlation analysis showed very high inverse correlation between infarct area and capillary blood flow in the 30 min. МCАо + RC group (p <0.01; r = -0.98). We believe the SDC-1 molecule in blood plasma may play role of potential messenger of ischemic-reperfusion injury restriction mechanisms. This leads to infarct-limiting effect of remote ischemic postconditioning and early functioning recovery.Keywords: ischemia, МСАо, remote ischemic postconditioning, syndecan-1
Procedia PDF Downloads 6614815 HCIO4-SiO2 Nanoparticles as an Efficient Catalyst for Three-Component Synthesis of Triazolo[1,2-A]Indazole-Triones
Authors: Hossein Anaraki-Ardakani, Tayebe Heidari-Rakati
Abstract:
An environmentally benign protocol for the one-pot, three-component synthesis of Triazolo[1,2-a]indazole-1,3,8-trione derivatives by condensation of dimedone, urazole and aromatic aldehydes catalyzed by HClO4/SiO2 NPS as an ecofriendly catalyst with high catalytic activity and reusability at 100 ºC under solvent-free conditions is reported. The reaction proceeds to completion within 20-30 min in 77-86 % yield.Keywords: one-pot reaction, dimedone, triazoloindazole, urazole
Procedia PDF Downloads 37614814 Decarboxylation of Waste Coconut Oil and Comparison of Acid Values
Authors: Pabasara H. Gamage, Sisira K. Weliwegamage, Sameera R. Gunatilake, Hondamuni I. C De Silva, Parakrama Karunaratne
Abstract:
Green diesel is an upcoming category of biofuels, which has more practical advantages than biodiesel. Production of green diesel involves production of hydrocarbons from various fatty acid sources. Though green diesel is chemically similar to fossil fuel hydrocarbons, it is more environmentally friendly. Decarboxylation of fatty acid sources is one of green diesel production methods and is less expensive and more energy efficient compared to hydrodeoxygenation. Free fatty acids (FFA), undergo decarboxylation readily than triglycerides. Waste coconut oil, which is a rich source of FFA, can be easily decarboxylated than other oils which have lower FFA contents. These free fatty acids can be converted to hydrocarbons by decarboxylation. Experiments were conducted to carry out decarboxylation of waste coconut oil in a high pressure hastealloy reactor (Toption Goup LTD), in the presence of soda lime and mixtures of soda lime and alumina. Acid value (AV) correlates to the amount of FFA available in a sample of oil. It can be shown that with the decreasing of AV, FFAs have converted to hydrocarbons. First, waste coconut oil was reacted with soda lime alone, at 150 °C, 200 °C, and 250 °C and 1.2 MPa pressure for 2 hours. AVs of products at different temperatures were compared. AV of products decreased with increasing temperature. Thereafter, different mixtures of soda lime and alumina (100% Soda lime, 1:1 soda lime and alumina and 100% alumina) were employed at temperatures 150 °C, 200 °C, and 250 °C and 1.2 MPa pressure. The lowest AV of 2.99±0.03 was obtained when 1:1 soda lime and alumina were employed at 250 °C. It can be concluded with respect to the AV that the amount of FFA decreased when decarboxylation temperature was increased. Soda lime:alumina 1:1 mixture showed the lowest AV among the compositions studied. These findings lead to formulate a method to successfully synthesize hydrocarbons by decarboxylating waste coconut oil in the presence of soda lime and alumina (1:1) at elevated tempertaures such as 250 °C.Keywords: acid value, free fatty acids, green diesel, high pressure reactor, waste coconut oil
Procedia PDF Downloads 30414813 Wave Agitated Signatures in the Oolitic Limestones of Kunihar Formation, Proterozoic Simla Group, Lesser Himalaya, India
Authors: Alono Thorie, Ananya Mukhopadhyay
Abstract:
Ooid bearing horizons of the Proterozoic Kunihar Formation, Simla Group, Lesser Himalaya have been addressed in the present work. The study is concentrated around the outskirts of Arki town, Solan district, Himachal Pradesh, India. Based on the sedimentary facies associations, the processes that promote the formation of ooids have been documented. The facies associations that have been recorded are: (i) Oolitic-Intraclastic grainstone (FA1), (ii) Oolitic grainstone (FA2), (iii) Boundstone (FA3), (iv) Dolomudstone (FA4) and (v) Rudstone (FA5). Oolitic-Intraclastic grainstone (FA1) mainly consists of well sorted ooids with concentric laminae and intraclasts. Large ooids with grain sizes more than 4 mm are characteristic of oolites throughout the area. Normally graded beds consisting of ooids and intraclasts are frequently documented in storm sediments in shelf environments and carbonate platforms. The well-sorted grainstone fabric indicates deposition in a high-energy shoal with tidal currents and storm reworking. FA2 comprises spherical to elliptical grains up to 8.5cm in size with concentric cortex and micritic nuclei. Peloids in FA2 are elliptical, rounded objects <0.3 mm in size. FA1 and FA2 have been recorded alongside boundstones (FA3) comprising stromatolites having columnar, wavy and domal morphology. Boundstones (FA3) reflect microbial growth in carbonate platforms and reefs. Dolomudstones (FA4) interbedded with cross laminated sandstones and erosional surfaces reflect sedimentation in storm dominated zones below fair-weather wave base. Rudstone (FA5) is composed of oolitic grainstone (FA2), boundstone (FA3) and dolomudstone (FA4). These clasts are few mm to more than 10 cm in length. Rudstones indicate deposition along a slope with intermittent influence of wave currents and storm activities. Most ooids from the Kunihar Formation are regular ooids with abundance of broken ooids. Compound and concentric ooids indicating medium to low energy environments are present but scarce. Ooids from high energy domains are more dominant than ooids developed from low energy environments. The unusually large size of the Kunihar ooids (more than 8.5 cm) is rare in the geological record. Development of carbonate deposits such as oolitic- intraclastic Grainstones (FA1), oolitic grainstones (FA2) and rudstones (FA5), and reflect deposition in an agitated beach environment with abundant microbial activity and high energy shallow marine waters influenced by tide, wave and storm currents. Occurrences of boundstone (FA4) or stromatolitic carbonate amongst oolitic facies (FA1 and FA2) and appearance of compound and concentric ooids indicate intervals of calm in between agitated phases of storm, wave and tidal activities.Keywords: proterozoic, Simla Group, ooids, stromatolites
Procedia PDF Downloads 19114812 Stress Analysis of Hexagonal Element for Precast Concrete Pavements
Authors: J. Novak, A. Kohoutkova, V. Kristek, J. Vodicka, M. Sramek
Abstract:
While the use of cast-in-place concrete for an airfield and highway pavement overlay is very common, the application of precast concrete elements is very limited today. The main reasons consist of high production costs and complex structural behavior. Despite that, several precast concrete systems have been developed and tested with the aim to provide a system with rapid construction. The contribution deals with the reinforcement design of a hexagonal element developed for a proposed airfield pavement system. The sub-base course of the system is composed of compacted recycled concrete aggregates and fiber reinforced concrete with recycled aggregates place on top of it. The selected element belongs to a group of precast concrete elements which are being considered for the construction of a surface course. Both high costs of full-scale experiments and the need to investigate various elements force to simulate their behavior in a numerical analysis software by using finite element method instead of performing expensive experiments. The simulation of the selected element was conducted on a nonlinear model in order to obtain such results which could fully compensate results from experiments. The main objective was to design reinforcement of the precast concrete element subject to quasi-static loading from airplanes with respect to geometrical imperfections, manufacturing imperfections, tensile stress in reinforcement, compressive stress in concrete and crack width. The obtained findings demonstrate that the position and the presence of imperfection in a pavement highly affect the stress distribution in the precast concrete element. The precast concrete element should be heavily reinforced to fulfill all the demands. Using under-reinforced concrete elements would lead to the formation of wide cracks and cracks permanently open.Keywords: imperfection, numerical simulation, pavement, precast concrete element, reinforcement design, stress analysis
Procedia PDF Downloads 16314811 Combining in vitro Protein Expression with AlphaLISA Technology to Study Protein-Protein Interaction
Authors: Shayli Varasteh Moradi, Wayne A. Johnston, Dejan Gagoski, Kirill Alexandrov
Abstract:
The demand for a rapid and more efficient technique to identify protein-protein interaction particularly in the areas of therapeutics and diagnostics development is growing. The method described here is a rapid in vitro protein-protein interaction analysis approach based on AlphaLISA technology combined with Leishmania tarentolae cell-free protein production (LTE) system. Cell-free protein synthesis allows the rapid production of recombinant proteins in a multiplexed format. Among available in vitro expression systems, LTE offers several advantages over other eukaryotic cell-free systems. It is based on a fast growing fermentable organism that is inexpensive in cultivation and lysate production. High integrity of proteins produced in this system and the ability to co-express multiple proteins makes it a desirable method for screening protein interactions. Following the translation of protein pairs in LTE system, the physical interaction between proteins of interests is analysed by AlphaLISA assay. The assay is performed using unpurified in vitro translation reaction and therefore can be readily multiplexed. This approach can be used in various research applications such as epitope mapping, antigen-antibody analysis and protein interaction network mapping. The intra-viral protein interaction network of Zika virus was studied using the developed technique. The viral proteins were co-expressed pair-wise in LTE and all possible interactions among viral proteins were tested using AlphaLISA. The assay resulted to the identification of 54 intra-viral protein-protein interactions from which 19 binary interactions were found to be novel. The presented technique provides a powerful tool for rapid analysis of protein-protein interaction with high sensitivity and throughput.Keywords: AlphaLISA technology, cell-free protein expression, epitope mapping, Leishmania tarentolae, protein-protein interaction
Procedia PDF Downloads 24014810 An Automated Magnetic Dispersive Solid-Phase Extraction Method for Detection of Cocaine in Human Urine
Authors: Feiyu Yang, Chunfang Ni, Rong Wang, Yun Zou, Wenbin Liu, Chenggong Zhang, Fenjin Sun, Chun Wang
Abstract:
Cocaine is the most frequently used illegal drug globally, with the global annual prevalence of cocaine used ranging from 0.3% to 0.4 % of the adult population aged 15–64 years. Growing consumption trend of abused cocaine and drug crimes are a great concern, therefore urine sample testing has become an important noninvasive sampling whereas cocaine and its metabolites (COCs) are usually present in high concentrations and relatively long detection windows. However, direct analysis of urine samples is not feasible because urine complex medium often causes low sensitivity and selectivity of the determination. On the other hand, presence of low doses of analytes in urine makes an extraction and pretreatment step important before determination. Especially, in gathered taking drug cases, the pretreatment step becomes more tedious and time-consuming. So developing a sensitive, rapid and high-throughput method for detection of COCs in human body is indispensable for law enforcement officers, treatment specialists and health officials. In this work, a new automated magnetic dispersive solid-phase extraction (MDSPE) sampling method followed by high performance liquid chromatography-mass spectrometry (HPLC-MS) was developed for quantitative enrichment of COCs from human urine, using prepared magnetic nanoparticles as absorbants. The nanoparticles were prepared by silanizing magnetic Fe3O4 nanoparticles and modifying them with divinyl benzene and vinyl pyrrolidone, which possesses the ability for specific adsorption of COCs. And this kind of magnetic particle facilitated the pretreatment steps by electromagnetically controlled extraction to achieve full automation. The proposed device significantly improved the sampling preparation efficiency with 32 samples in one batch within 40mins. Optimization of the preparation procedure for the magnetic nanoparticles was explored and the performances of magnetic nanoparticles were characterized by scanning electron microscopy, vibrating sample magnetometer and infrared spectra measurements. Several analytical experimental parameters were studied, including amount of particles, adsorption time, elution solvent, extraction and desorption kinetics, and the verification of the proposed method was accomplished. The limits of detection for the cocaine and cocaine metabolites were 0.09-1.1 ng·mL-1 with recoveries ranging from 75.1 to 105.7%. Compared to traditional sampling method, this method is time-saving and environmentally friendly. It was confirmed that the proposed automated method was a kind of highly effective way for the trace cocaine and cocaine metabolites analyses in human urine.Keywords: automatic magnetic dispersive solid-phase extraction, cocaine detection, magnetic nanoparticles, urine sample testing
Procedia PDF Downloads 20614809 Variation of Fertility-Related Traits in Italian Tomato Landraces under Mild Heat Stress
Authors: Maurizio E. Picarella, Ludovica Fumelli, Francesca Siligato, Andrea Mazzucato
Abstract:
Studies on reproductive dynamics in crops subjected to heat stress are crucial to breed more tolerant cultivars. In tomato, cultivars, breeding lines, and wild species have been thoroughly evaluated for the response to heat stress in several studies. Here, we address the reaction to temperature stress in a panel of selected landraces representing genotypes cultivated before the advent of professional varieties that usually show high adaptation to local environments. We adopted an experimental design with two open field trials, where transplanting was spaced by one month. In the second field, plants were thus subjected to mild stress with natural temperature fluctuations. The genotypes showed wide variation for both vegetative (plant height) and reproductive (stigma exsertion, pollen viability, number of flowers per inflorescence, and fruit set) traits. On average, all traits were affected by heat conditions; except for the number of flowers per inflorescence, the “G*E” interaction was always significant. In agreement with studies based on different materials, estimated broad sense heritability was high for plant height, stigma exsertion, and pollen viability and low for the number of flowers per inflorescence and fruit set. Despite the interaction, traits recorded in control and in heat conditions were positively correlated. The first two principal components estimated by multivariate analysis explained more than 50% of the total variability. The study indicated that landraces present a wide variability for the response of reproductive traits to temperature stress and that such variability could be very informative to dissect the traits with higher heritability and identify new QTL useful for breeding more resilient varieties.Keywords: fruit set, heat stress, solanum lycopersicum L., style exsertion, tomato
Procedia PDF Downloads 13514808 Investigation Into the Effects of Egg Shells Powder and Groundnut Husk Ash on the Properties of Concrete
Authors: Usman B.M., Basheer O. B., . Ahmed A., Amali N. U., Taufeeq O.
Abstract:
This study presents an investigation into the improvement of strength properties of concrete using egg shell powder (ESP) and groundnut husk ash (GHA) as additives so as to reduce its high cost and find alternative disposal method for agricultural waste. A standard consistency test was carried out on the egg shell powder and groundnut husk ash. A prescribed concrete mix ratio of 1:2:4 concrete cubes (150mm by 150mm) and water-cement ratio of 0.6 were casted. A total of One hundred and forty four (144) cubes were cast and cured for 3, 7 and 28 days and compressive strength subsequently determined in comparison with the relevant specifications. Consistency test on the cement paste at the various concentrations exhibited an increase in the setting time as the concentration increases with the highest value recorded at 5% egg shell powder and groundnut husk ash concentration as 219 minutes for the initial setting time and 275 minutes for the final setting time as against the control specimen of 159 minutes and 234 minutes for both initial and final setting times respectively. The results of the investigations showed that GHA was predominantly of Silicon oxide (56.73%) and a combined SiO₂, Al₂O₃ and Fe₂O₃ content of 66.75%; and the result of the investigations showed that ESP was predominantly of Calcium oxide (52.75%) and a combined SiO₂, Al₂O₃ and Fe₂O₃ content of 3.86%. The addition of GHA and ESP in concrete showed slight different in compressive strength with increase in GHA and ESP additive up to 5% and high decrease in compressive strength with further increase in GHA and ESP content. The 28 days compressive strength of the concrete cubes; compared with that of the control; showed a slight increase. Thus the use of GHA and ESP as partial replacement of cement will provide an economic use of by-product and consequently produce a cheaper concrete construction without comprising its strengthKeywords: additive, concrete, eggshell powder, groundnut husk ash compressive strength
Procedia PDF Downloads 14414807 DEKA-1 a Dose-Finding Phase 1 Trial: Observing Safety and Biomarkers using DK210 (EGFR) for Inoperable Locally Advanced and/or Metastatic EGFR+ Tumors with Progressive Disease Failing Systemic Therapy
Authors: Spira A., Marabelle A., Kientop D., Moser E., Mumm J.
Abstract:
Background: Both interleukin-2 (IL-2) and interleukin-10 (IL-10) have been extensively studied for their stimulatory function on T cells and their potential to obtain sustainable tumor control in RCC, melanoma, lung, and pancreatic cancer as monotherapy, as well as combination with PD-1 blockers, radiation, and chemotherapy. While approved, IL-2 retains significant toxicity, preventing its widespread use. The significant efforts undertaken to uncouple IL-2 toxicity from its anti-tumor function have been unsuccessful, and early phase clinical safety observed with PEGylated IL-10 was not met in a blinded Phase 3 trial. Deka Biosciences has engineered a novel molecule coupling wild-type IL-2 to a high affinity variant of Epstein Barr Viral (EBV) IL-10 via a scaffold (scFv) that binds to epidermal growth factor receptors (EGFR). This patented molecule, termed DK210 (EGFR), is retained at high levels within the tumor microenvironment for days after dosing. In addition to overlapping and non-redundant anti-tumor function, IL-10 reduces IL-2 mediated cytokine release syndrome risks and inhibits IL-2 mediated T regulatory cell proliferation. Methods: DK210 (EGFR) is being evaluated in an open-label, dose-escalation (Phase 1) study with 5 (0.025-0.3 mg/kg) monotherapy dose levels and (expansion cohorts) in combination with PD-1 blockers, or radiation or chemotherapy in patients with advanced solid tumors overexpressing EGFR. Key eligibility criteria include 1) confirmed progressive disease on at least one line of systemic treatment, 2) EGFR overexpression or amplification documented in histology reports, 3) at least a 4 week or 5 half-lives window since last treatment, and 4) excluding subjects with long QT syndrome, multiple myeloma, multiple sclerosis, myasthenia gravis or uncontrolled infectious, psychiatric, neurologic, or cancer disease. Plasma and tissue samples will be investigated for pharmacodynamic and predictive biomarkers and genetic signatures associated with IFN-gamma secretion, aiming to select subjects for treatment in Phase 2. Conclusion: Through successful coupling of wild-type IL-2 with a high affinity IL-10 and targeting directly to the tumor microenvironment, DK210 (EGFR) has the potential to harness IL-2 and IL-10’s known anti-cancer promise while reducing immunogenicity and toxicity risks enabling safe concomitant cytokine treatment with other anti-cancer modalities.Keywords: cytokine, EGFR over expression, interleukine-2, interleukine-10, clinical trial
Procedia PDF Downloads 9014806 Analysis of Fuel Efficiency in Heavy Construction Compaction Machine and Factors Affecting Fuel Efficiency
Authors: Amey Kulkarni, Paavan Shetty, Amol Patil, B. Rajiv
Abstract:
Fuel Efficiency plays a very important role in overall performance of an automobile. In this paper study of fuel efficiency of heavy construction, compaction machine is done. The fuel Consumption trials are performed in order to obtain the consumption of fuel in performing certain set of actions by the compactor. Usually, Heavy Construction machines are put to work in locations where refilling the fuel tank is not an easy task and also the fuel is consumed at a greater rate than a passenger automobile. So it becomes important to have a fuel efficient machine for long working hours. The fuel efficiency is the most important point in determining the future scope of the product. A heavy construction compaction machine operates in five major roles. These five roles are traveling, Static working, High-frequency Low amplitude compaction, Low-frequency High amplitude compaction, low idle. Fuel consumption readings for 1950 rpm, 2000 rpm & 2350 rpm of the engine are taken by using differential fuel flow meter and are analyzed. And the optimum RPM setting which fulfills the fuel efficiency, as well as engine performance criteria, is considered. Also, other factors such as rear end gears, Intake and exhaust restriction for an engine, vehicle operating techniques, air drag, Tribological aspects, Tires are considered for increasing the fuel efficiency of the compactor. The fuel efficiency of compactor can be precisely calculated by using Differential Fuel Flow Meter. By testing the compactor at different combinations of Engine RPM and also considering other factors such as rear end gears, Intake and exhaust restriction of an engine, vehicle operating techniques, air drag, Tribological aspects, The optimum solution was obtained which lead to significant improvement in fuel efficiency of the compactor.Keywords: differential fuel flow meter, engine RPM, fuel efficiency, heavy construction compaction machine
Procedia PDF Downloads 29314805 Men's Decision Making: The Determinant of Home Delivery among Women in Khyber Pakhtunkhwa Pakistan
Authors: Hussain Ali, Ahmad Ali, Syed Rashid Ali
Abstract:
The maternal mortality is one of the basic health issues faced by rural women in Pakistan. There are various structural and socio-cultural determinants which confine women to domestic sphere. Such mobility restriction compels women for home delivery which causes high maternal mortality and morbidity. However, it is hard to find out the research findings and well-organized literature that explain the cultural factors act as determinant to home delivery among Pakhtun women. The overall objective of this research is to study men’s decision making within the household in Pakhtun society as determinant of home delivery among Pakhtun women in Khyber Pakhtunkhwa province of Pakistan. In the present study, researchers used the quantitative research design in which the data are collected through household survey technique from (n=503) ever-married women having reproductive age (15-49 years) by using interview schedule. The data are analyzed through SPSS, and binary logistic regression was applied to draw the association between home as a place of delivery and men’s decision making in the Pakhtun society. The results show that majority (76%) of the husbands are key decision makers about the home delivery due to their superior position within household. Similarly, majority (88%) Pakhtun women prefer to stay in home for their delivery due to their dependency on husband’s decision. The researcher concludes that men are key decision makers in Pakhtun society and their decisions affect women maternal health care. Similarly, the women are in subordinate position, and their limited decision making in the domestic sphere are greatly responsible for home delivery which causing high maternal mortality rate in the study area. In order to achieve Sustainable Development Goal No. 3, the study recommends empowering women in the decision making about accessing and utilizing maternal health care services and given financial autonomy to them.Keywords: home delivery, men’s decision, Pakhtun women, subordinate position
Procedia PDF Downloads 14914804 Evaluate Effects of Different Curing Methods on Compressive Strength, Modulus of Elasticity and Durability of Concrete
Authors: Dhara Shah, Chandrakant Shah
Abstract:
Construction industry utilizes plenty of water in the name of curing. Looking at the present scenario, the days are not so far when all construction industries will have to switch over to an alternative-self curing system, not only to save water for sustainable development of the environment but also to promote indoor and outdoor construction activities even in water scarce areas. At the same time, curing is essential for the development of proper strength and durability. IS 456-2000 recommends a curing period of 7 days for ordinary Portland cement concrete, and 10 to 14 days for concrete prepared using mineral admixtures or blended cements. But, being the last act in the concreting operations, it is often neglected or not fully done. Consequently, the quality of hardened concrete suffers, more so, if the freshly laid concrete gets exposed to the environmental conditions of low humidity, high wind velocity and high ambient temperature. To avoid the adverse effects of neglected or insufficient curing, which is considered a universal phenomenon, concrete technologist and research scientists have come up with curing compounds. Concrete is said to be self-cured, if it is able to retain its water content to perform chemical reaction for the development of its strength. Curing compounds are liquids which are either incorporated in concrete or sprayed directly onto concrete surfaces and which then dry to form a relatively impermeable membrane that retards the loss of moisture from the concrete. They are an efficient and cost-effective means of curing concrete and may be applied to freshly placed concrete or that which has been partially cured by some other means. However, they may affect the bond between concrete and subsequent surface treatments. Special care in the choice of a suitable compound needs to be exercised in such circumstances. Curing compounds are generally formulated from wax emulsions, chlorinated rubbers, synthetic and natural resins, and from PVA emulsions. Their effectiveness varies quite widely, depending on the material and strength of the emulsion.Keywords: curing methods, self-curing compound, compressive strength, modulus of elasticity, durability
Procedia PDF Downloads 33114803 Effect of Mixture of Flaxseed and Pumpkin Seeds Powder on Hypercholesterolemia
Authors: Zahra Ashraf
Abstract:
Flax and pumpkin seeds are a rich source of unsaturated fatty acids, antioxidants and fiber, known to have anti-atherogenic properties. Hypercholesterolemia is a state characterized by the elevated level of cholesterol in the blood. This research was designed to study the effect of flax and pumpkin seeds powder mixture on hypercholesterolemia and body weight. Rat’s species were selected as human representative. Thirty male albino rats were divided into three groups: a control group, a CD-chol group (control diet+cholesterol) fed with 1.5% cholesterol and FP-chol group (flaxseed and pumpkin seed powder+ cholesterol) fed with 1.5% cholesterol. Flax and pumpkin seed powder mixed at proportion of (5/1) (omega-3 and omega-6). Blood samples were collected to examine lipid profile and body weight was also measured. Thus the data was subjected to analysis of variance. In CD-chol group, body weight, total cholesterol TC, triacylglycerides TG in plasma, plasma LDL-C, ratio significantly increased with a decrease in plasma HDL (good cholesterol). In FP-chol group lipid parameters and body weights were decreased significantly with an increase in HDL and decrease in LDL (bad cholesterol). The mean values of body weight, total cholesterol, triglycerides, low density lipoprotein and high density lipoproteins in FP-chol group were 240.66±11.35g, 59.60±2.20mg/dl, 50.20±1.79 mg/dl, 36.20±1.62mg/dl, 36.40±2.20 mg/dl, respectively. Flaxseed and pumpkin seeds powder mixture showed reduction in body weight, serum cholesterol, low density lipoprotein and triglycerides. While significant increase was shown in high density lipoproteins when given to hypercholesterolemic rats. Our results suggested that flax and pumpkin seed mixture has hypocholesterolemic effects which were probably mediated by polyunsaturated fatty acids (omega-3 and omega-6) present in seed mixture.Keywords: hypercolesterolemia, omega 3 and omega 6 fatty acids, cardiovascular diseases
Procedia PDF Downloads 42214802 In vitro and vivo Studies for Assessing the Anti-Proliferative, Anti-Migration and Apoptotic Activity of A. squamosa L. Leaves Extract
Authors: Rawan Al-Nemari, Abdulrahman Al-Senaidy, Abdelhabib Semlali
Abstract:
Background and objectives: The most common cause of death in women worldwide is breast cancer. Regarding all chemotherapy disadvantages and side effects, it’s becoming necessary to identify natural products that target cancer cells with lesser harmful side effects on non-targeted cells and biological environment. Different parts of A. squamosa L., commonly known as custard apple, show varied therapeutic effects. The objective of this study is to investigate in vitro and in vivo, the anti-cancer activity of A. squamosa leaves extract. Methods: The physiological responses using MTT, nucleus staining, and LDH assays were used to evaluate cell survival and proliferation in both ER+ and ER- cells when they were exposed to extract. Monolayer wound repair assay was used to investigate the effect of extracts on cell migration. Apoptotic gene’s expression was investigated by real-time polymerase chain reaction. To study the effect of the extract on the size of tumor, breast cancer induced rats were used. Results: A. squamosa leaves extract showed high anti-proliferative and cytotoxicity effects against different breast cancer cell lines with high concentration, 100 ug/ml. The extracts have reduced the cells wound closure. Polymerase chain reaction revealed downregulation of Bcl-2 and upregulation of Bax. In breast cancer model animal developed in our laboratory, after 4 weeks treatment, treated groups have shown smaller tumor size in comparison with control group (n=4). Conclusion: These results suggest that A. squamosa leaves extract has anti-cancer activity against breast cancer in both in vitro and in vivo, and it may be developed as a potential novel agent to treat breast cancer.Keywords: apoptosis, breast cancer, migration, proliferation
Procedia PDF Downloads 152