Search results for: contrastive learning
1532 A Hybrid Expert System for Generating Stock Trading Signals
Authors: Hosein Hamisheh Bahar, Mohammad Hossein Fazel Zarandi, Akbar Esfahanipour
Abstract:
In this paper, a hybrid expert system is developed by using fuzzy genetic network programming with reinforcement learning (GNP-RL). In this system, the frame-based structure of the system uses the trading rules extracted by GNP. These rules are extracted by using technical indices of the stock prices in the training time period. For developing this system, we applied fuzzy node transition and decision making in both processing and judgment nodes of GNP-RL. Consequently, using these method not only did increase the accuracy of node transition and decision making in GNP's nodes, but also extended the GNP's binary signals to ternary trading signals. In the other words, in our proposed Fuzzy GNP-RL model, a No Trade signal is added to conventional Buy or Sell signals. Finally, the obtained rules are used in a frame-based system implemented in Kappa-PC software. This developed trading system has been used to generate trading signals for ten companies listed in Tehran Stock Exchange (TSE). The simulation results in the testing time period shows that the developed system has more favorable performance in comparison with the Buy and Hold strategy.Keywords: fuzzy genetic network programming, hybrid expert system, technical trading signal, Tehran stock exchange
Procedia PDF Downloads 3321531 Linguistic Features for Sentence Difficulty Prediction in Aspect-Based Sentiment Analysis
Authors: Adrian-Gabriel Chifu, Sebastien Fournier
Abstract:
One of the challenges of natural language understanding is to deal with the subjectivity of sentences, which may express opinions and emotions that add layers of complexity and nuance. Sentiment analysis is a field that aims to extract and analyze these subjective elements from text, and it can be applied at different levels of granularity, such as document, paragraph, sentence, or aspect. Aspect-based sentiment analysis is a well-studied topic with many available data sets and models. However, there is no clear definition of what makes a sentence difficult for aspect-based sentiment analysis. In this paper, we explore this question by conducting an experiment with three data sets: ”Laptops”, ”Restaurants”, and ”MTSC” (Multi-Target-dependent Sentiment Classification), and a merged version of these three datasets. We study the impact of domain diversity and syntactic diversity on difficulty. We use a combination of classifiers to identify the most difficult sentences and analyze their characteristics. We employ two ways of defining sentence difficulty. The first one is binary and labels a sentence as difficult if the classifiers fail to correctly predict the sentiment polarity. The second one is a six-level scale based on how many of the top five best-performing classifiers can correctly predict the sentiment polarity. We also define 9 linguistic features that, combined, aim at estimating the difficulty at sentence level.Keywords: sentiment analysis, difficulty, classification, machine learning
Procedia PDF Downloads 891530 Self-Attention Mechanism for Target Hiding Based on Satellite Images
Authors: Hao Yuan, Yongjian Shen, Xiangjun He, Yuheng Li, Zhouzhou Zhang, Pengyu Zhang, Minkang Cai
Abstract:
Remote sensing data can provide support for decision-making in disaster assessment or disaster relief. The traditional processing methods of sensitive targets in remote sensing mapping are mainly based on manual retrieval and image editing tools, which are inefficient. Methods based on deep learning for sensitive target hiding are faster and more flexible. But these methods have disadvantages in training time and cost of calculation. This paper proposed a target hiding model Self Attention (SA) Deepfill, which used self-attention modules to replace part of gated convolution layers in image inpainting. By this operation, the calculation amount of the model becomes smaller, and the performance is improved. And this paper adds free-form masks to the model’s training to enhance the model’s universal. The experiment on an open remote sensing dataset proved the efficiency of our method. Moreover, through experimental comparison, the proposed method can train for a longer time without over-fitting. Finally, compared with the existing methods, the proposed model has lower computational weight and better performance.Keywords: remote sensing mapping, image inpainting, self-attention mechanism, target hiding
Procedia PDF Downloads 1361529 The Artificial Intelligence (AI) Impact on Project Management: A Destructive or Transformative Agent
Authors: Kwame Amoah
Abstract:
Artificial intelligence (AI) has the prospect of transforming project management, significantly improving efficiency and accuracy. By automating specific tasks with defined guidelines, AI can assist project managers in making better decisions and allocating resources efficiently, with possible risk mitigation. This study explores how AI is already impacting project management and likely future AI's impact on the field. The AI's reaction has been a divided opinion; while others picture it as a destroyer of jobs, some welcome it as an innovation advocate. Both sides agree that AI will be disruptive and revolutionize PM's functions. If current research is to go by, AI or some form will replace one-third of all learning graduate PM jobs by as early as 2030. A recent survey indicates AI spending will reach $97.9 billion by the end of 2023. Considering such a profound impact, the project management profession will also see a paradigm shift driven by AI. The study examines what the project management profession will look like in the next 5-10 years after this technological disruption. The research methods incorporate existing literature, develop trend analysis, and conduct structured interviews with project management stakeholders from North America to gauge the trend. PM professionals can harness the power of AI, ensuring a smooth transition and positive outcomes. AI adoption will maximize benefits, minimize adverse consequences, and uphold ethical standards, leading to improved project performance.Keywords: project management, disruptive teacnologies, project management function, AL applications, artificial intelligence
Procedia PDF Downloads 831528 Development of Prediction Models of Day-Ahead Hourly Building Electricity Consumption and Peak Power Demand Using the Machine Learning Method
Authors: Dalin Si, Azizan Aziz, Bertrand Lasternas
Abstract:
To encourage building owners to purchase electricity at the wholesale market and reduce building peak demand, this study aims to develop models that predict day-ahead hourly electricity consumption and demand using artificial neural network (ANN) and support vector machine (SVM). All prediction models are built in Python, with tool Scikit-learn and Pybrain. The input data for both consumption and demand prediction are time stamp, outdoor dry bulb temperature, relative humidity, air handling unit (AHU), supply air temperature and solar radiation. Solar radiation, which is unavailable a day-ahead, is predicted at first, and then this estimation is used as an input to predict consumption and demand. Models to predict consumption and demand are trained in both SVM and ANN, and depend on cooling or heating, weekdays or weekends. The results show that ANN is the better option for both consumption and demand prediction. It can achieve 15.50% to 20.03% coefficient of variance of root mean square error (CVRMSE) for consumption prediction and 22.89% to 32.42% CVRMSE for demand prediction, respectively. To conclude, the presented models have potential to help building owners to purchase electricity at the wholesale market, but they are not robust when used in demand response control.Keywords: building energy prediction, data mining, demand response, electricity market
Procedia PDF Downloads 3161527 A Quantitative Analysis for the Correlation between Corporate Financial and Social Performance
Authors: Wafaa Salah, Mostafa A. Salama, Jane Doe
Abstract:
Recently, the corporate social performance (CSP) is not less important than the corporate financial performance (CFP). Debate still exists about the nature of the relationship between the CSP and CFP, whether it is a positive, negative or a neutral correlation. The objective of this study is to explore the relationship between corporate social responsibility (CSR) reports and CFP. The study uses the accounting-based and market-based quantitative measures to quantify the financial performance of seven organizations listed on the Egyptian Stock Exchange in 2007-2014. Then uses the information retrieval technologies to quantify the contribution of each of the three dimensions of the corporate social responsibility report (environmental, social and economic). Finally, the correlation between these two sets of variables is viewed together in a model to detect the correlations between them. This model is applied on seven firms that generate social responsibility reports. The results show a positive correlation between the Earnings per share (market based measure) and the economical dimension in the CSR report. On the other hand, total assets and property, plant and equipment (accounting-based measure) are positively correlated to the environmental and social dimensions of the CSR reports. While there is not any significant relationship between ROA, ROE, Operating income and corporate social responsibility. This study contributes to the literature by providing more clarification of the relationship between CFP and the isolated CSR activities in a developing country.Keywords: financial, social, machine learning, corporate social performance, corporate social responsibility
Procedia PDF Downloads 3111526 Dynamic Route Optimization in Vehicle Adhoc Networks: A Heuristics Routing Protocol
Authors: Rafi Ullah, Shah Muhammad Emaduddin, Taha Jilani
Abstract:
Vehicle Adhoc Networks (VANET) belongs to a special class of Mobile Adhoc Network (MANET) with high mobility. Network is created by road side vehicles equipped with communication devices like GPS and Wifi etc. Since the environment is highly dynamic due to difference in speed and high mobility of vehicles and weak stability of the network connection, it is a challenging task to design an efficient routing protocol for such an unstable environment. Our proposed algorithm uses heuristic for the calculation of optimal path for routing the packet efficiently in collaboration with several other parameters like geographical location, speed, priority, the distance among the vehicles, communication range, and networks congestion. We have incorporated probabilistic, heuristic and machine learning based approach inconsistency with the relay function of the memory buffer to keep the packet moving towards the destination. These parameters when used in collaboration provide us a very strong and admissible heuristics. We have mathematically proved that the proposed technique is efficient for the routing of packets, especially in a medical emergency situation. These networks can be used for medical emergency, security, entertainment and routing purposes.Keywords: heuristics routing, intelligent routing, VANET, route optimization
Procedia PDF Downloads 1761525 Developing a Moodle Course for Translation Theory and Methodology: The Importance of Theory in Translation Studies and Its Application
Authors: Antonia Tsaknaki
Abstract:
There are many and divergent views on how the science of translation should be taught in academic institutions or colleges, meaning as an independent study area or as part of Linguistics, Literature or Foreign Languages Departments. A much more debated issue refers to the question of whether translation theory should be included in syllabuses and study programs or the focus should be solely on practicing the profession, that is translating texts. This dissertation examines prevailing views on the significance of translation theory in translation studies in order to design an open course on moodle. Taking into account that there is a remarkable percentage of translation professionals who are self-taught without having any specific studies, the course aims at helping either translation students or professional translators familiarize with concepts, methods and problem-solving strategies that are considered necessary during the process. It is organized in four modules where the learner is guided through a series of topics (register, equivalence, decision-making, level of naturalness, Skopos theory etc); after completing these topics, they are given assignments (further reading) and texts to work on in order to practice the skills obtained. The course does not focus on a specific language pair and therefore is suitable for every individual who needs a theoretical background to boost their performance or for institutions seeking to save classroom time but not at the expense of learners’ skills.Keywords: MOOCs, moodle, online learning, open courses, translation, translation theory
Procedia PDF Downloads 1451524 Detecting and Thwarting Interest Flooding Attack in Information Centric Network
Authors: Vimala Rani P, Narasimha Malikarjunan, Mercy Shalinie S
Abstract:
Data Networking was brought forth as an instantiation of information-centric networking. The attackers can send a colossal number of spoofs to take hold of the Pending Interest Table (PIT) named an Interest Flooding attack (IFA) since the in- interests are recorded in the PITs of the intermediate routers until they receive corresponding Data Packets are go beyond the time limit. These attacks can be detrimental to network performance. PIT expiration rate or the Interest satisfaction rate, which cannot differentiate the IFA from attacks, is the criterion Traditional IFA detection techniques are concerned with. Threshold values can casually affect Threshold-based traditional methods. This article proposes an accurate IFA detection mechanism based on a Multiple Feature-based Extreme Learning Machine (MF-ELM). Accuracy of the attack detection can be increased by presenting the entropy of Internet names, Interest satisfaction rate and PIT usage as features extracted in the MF-ELM classifier. Furthermore, we deploy a queue-based hostile Interest prefix mitigation mechanism. The inference of this real-time test bed is that the mechanism can help the network to resist IFA with higher accuracy and efficiency.Keywords: information-centric network, pending interest table, interest flooding attack, MF-ELM classifier, queue-based mitigation strategy
Procedia PDF Downloads 2051523 An Experiential Learning of Ontology-Based Multi-document Summarization by Removal Summarization Techniques
Authors: Pranjali Avinash Yadav-Deshmukh
Abstract:
Remarkable development of the Internet along with the new technological innovation, such as high-speed systems and affordable large storage space have led to a tremendous increase in the amount and accessibility to digital records. For any person, studying of all these data is tremendously time intensive, so there is a great need to access effective multi-document summarization (MDS) systems, which can successfully reduce details found in several records into a short, understandable summary or conclusion. For semantic representation of textual details in ontology area, as a theoretical design, our system provides a significant structure. The stability of using the ontology in fixing multi-document summarization problems in the sector of catastrophe control is finding its recommended design. Saliency ranking is usually allocated to each phrase and phrases are rated according to the ranking, then the top rated phrases are chosen as the conclusion. With regards to the conclusion quality, wide tests on a selection of media announcements are appropriate for “Jammu Kashmir Overflow in 2014” records. Ontology centered multi-document summarization methods using “NLP centered extraction” outshine other baselines. Our participation in recommended component is to implement the details removal methods (NLP) to enhance the results.Keywords: disaster management, extraction technique, k-means, multi-document summarization, NLP, ontology, sentence extraction
Procedia PDF Downloads 3861522 A Collection of Voices on Higher Educational Access, Quality and Equity in Africa: A Systematic Review
Authors: Araba A. Z. Osei-Tutu, Ebenezer Odame, Joseph Bawa, Samuel Amponsah
Abstract:
Education is recognized as a fundamental human right and a catalyst for development. Despite progress in the provision of higher education on the African continent, there persist challenges with the tripartite areas of access, equity and quality. Therefore, this systematic review aimed at providing a comprehensive overview of conversations and voices of scholars on these three concepts in HE in Africa. The systematic review employed a thematic analysis approach, synthesizing findings from 38 selected sources. After a critical analysis of the sources included in the systematic review, deficits in access, quality, and equity were outlined, focusing on infrastructure, regional disparities, and privatization challenges. The review also revealed the weak enforcement of quality assurance measures. Strategies for improvement, proffered by the study, include expanding public sector HE, deregulating the educational sector, promoting open and distance learning, implementing preferential admission policies, and enhancing financial aid. This research contributes valuable insights for policymakers, educators, and stakeholders, fostering a collaborative approach to address challenges and promote holistic development in African higher education.Keywords: access, equity, quality, higher education, Africa, systematic review, strategies
Procedia PDF Downloads 711521 The Use of Network Tool for Brain Signal Data Analysis: A Case Study with Blind and Sighted Individuals
Authors: Cleiton Pons Ferreira, Diana Francisca Adamatti
Abstract:
Advancements in computers technology have allowed to obtain information for research in biology and neuroscience. In order to transform the data from these surveys, networks have long been used to represent important biological processes, changing the use of this tools from purely illustrative and didactic to more analytic, even including interaction analysis and hypothesis formulation. Many studies have involved this application, but not directly for interpretation of data obtained from brain functions, asking for new perspectives of development in neuroinformatics using existent models of tools already disseminated by the bioinformatics. This study includes an analysis of neurological data through electroencephalogram (EEG) signals, using the Cytoscape, an open source software tool for visualizing complex networks in biological databases. The data were obtained from a comparative case study developed in a research from the University of Rio Grande (FURG), using the EEG signals from a Brain Computer Interface (BCI) with 32 eletrodes prepared in the brain of a blind and a sighted individuals during the execution of an activity that stimulated the spatial ability. This study intends to present results that lead to better ways for use and adapt techniques that support the data treatment of brain signals for elevate the understanding and learning in neuroscience.Keywords: neuroinformatics, bioinformatics, network tools, brain mapping
Procedia PDF Downloads 1821520 Deep Learning Approach to Trademark Design Code Identification
Authors: Girish J. Showkatramani, Arthi M. Krishna, Sashi Nareddi, Naresh Nula, Aaron Pepe, Glen Brown, Greg Gabel, Chris Doninger
Abstract:
Trademark examination and approval is a complex process that involves analysis and review of the design components of the marks such as the visual representation as well as the textual data associated with marks such as marks' description. Currently, the process of identifying marks with similar visual representation is done manually in United States Patent and Trademark Office (USPTO) and takes a considerable amount of time. Moreover, the accuracy of these searches depends heavily on the experts determining the trademark design codes used to catalog the visual design codes in the mark. In this study, we explore several methods to automate trademark design code classification. Based on recent successes of convolutional neural networks in image classification, we have used several different convolutional neural networks such as Google’s Inception v3, Inception-ResNet-v2, and Xception net. The study also looks into other techniques to augment the results from CNNs such as using Open Source Computer Vision Library (OpenCV) to pre-process the images. This paper reports the results of the various models trained on year of annotated trademark images.Keywords: trademark design code, convolutional neural networks, trademark image classification, trademark image search, Inception-ResNet-v2
Procedia PDF Downloads 2321519 Analyzing Students' Writing in an English Code-Mixing Context in Nepali: An Ecological and Systematic Functional Approach
Authors: Binod Duwadi
Abstract:
This article examines the language and literacy practices of English Code-mixing in Nepalese Classroom. Situating the study within an ecological framework, a systematic functional linguistic (SFL) approach was used to analyze students writing in two Neplease schools. Data collection included interviews with teachers, classroom observations, instructional materials, and focal students’ writing samples. Data analyses revealed vastly different language ecologies between the schools owing to sharp socioeconomic stratification, the structural organization of schools, and the pervasiveness of standard language ideology, with stigmatizes English code mixing (ECM) and privileges Standard English in schools. Functional analysis of students’ writing showed that the nature of the writing tasks at the schools created different affordances for exploiting lexicogrammatically choices for meaning making-enhancing them in the case of one school but severely restricting them in the case of another- perpetuating the academic disadvantage for code mixing speakers. Recommendations for structural and attitudinal changes through teacher training and implementation of approaches that engage students’ bidialectal competence for learning are made as important first steps towards addressing educational inequities in Nepalese schools.Keywords: code-mixing, ecological perspective, systematic functional approach, language and identity
Procedia PDF Downloads 1241518 Elite Female Football Coaches’ Experiences and Reflections in a Male-dominated Environment: The Case of Ghana
Authors: Fiona Soraya Addai-Sundiata, Ernest Yeboah Acheampong, Ralph Frimpong
Abstract:
The rationale of this study is to examine the career experiences of elite female football coaches in Ghana. More importantly, it focus on their motives, the challenges of football coaching and their experiences along their career paths. The study draws from literature on female coaches in football to understand their experiences and reflections in their chosen careers. The findings of the study relied on in-depth semi-structured interviews with five elite female football coaches aged between 28 and 50 years. Participants’ responses reveal that both intrinsic and extrinsic motives drive them into football coaching, including learning experiences from abroad, a strong desire to break the gendered hegemony of coaching in Ghana, serving as role models, enjoyment, satisfaction and passion for their chosen careers. Results indicate that they encountered sociocultural, organisational, personal and interpersonal challenges. Also, they experience gender stereotyping, limited career mobility, sexism and marginalisation, which prevent them from becoming elite coaches. The study provides useful data for stakeholders, including Ghana Football Association (GFA), to use effective strategies (e.g., special incentives for women coaches) to attract and retain women in the football coaching space.Keywords: elite female football coaches, career experiences, gender, motives, trajectories
Procedia PDF Downloads 691517 Elite Female Football Coaches’ Experiences and Reflections in a Male-Dominated Environment: The Case of Ghana
Authors: Fiona Soraya Addai-Sundiata, Ernest Yeboah Acheampong, Ralph Frimpong
Abstract:
The rationale of this study is to examine the career experiences of elite female football coaches in Ghana. More importantly, it focus on their motives, the challenges of football coaching and their experiences along their career paths. The study draws from literature on female coaches in football to understand their experiences and reflections in their chosen careers. The findings of the study relied on in-depth semi-structured interviews with five elite female football coaches aged between 28 and 50 years. Participants’ responses reveal that both intrinsic and extrinsic motives drive them into football coaching including learning experiences from abroad, a strong desire to break the gendered hegemony of coaching in Ghana, serving as role models, enjoyment, satisfaction and passion for their chosen careers. Results indicate that they encountered sociocultural, organisational, personal and interpersonal challenges. Also, they experience gender stereotyping, limited career mobility, sexism and marginalisation, which prevent them from becoming elite coaches. The study provides useful data for stakeholders including Ghana Football Association (GFA) to use effective strategies (e.g., special incentives for women coaches) to attract and retain women in the football coaching space.Keywords: elite female football coaches, career experiences, gender, motives, trajectories
Procedia PDF Downloads 621516 Transportation Mode Classification Using GPS Coordinates and Recurrent Neural Networks
Authors: Taylor Kolody, Farkhund Iqbal, Rabia Batool, Benjamin Fung, Mohammed Hussaeni, Saiqa Aleem
Abstract:
The rising threat of climate change has led to an increase in public awareness and care about our collective and individual environmental impact. A key component of this impact is our use of cars and other polluting forms of transportation, but it is often difficult for an individual to know how severe this impact is. While there are applications that offer this feedback, they require manual entry of what transportation mode was used for a given trip, which can be burdensome. In order to alleviate this shortcoming, a data from the 2016 TRIPlab datasets has been used to train a variety of machine learning models to automatically recognize the mode of transportation. The accuracy of 89.6% is achieved using single deep neural network model with Gated Recurrent Unit (GRU) architecture applied directly to trip data points over 4 primary classes, namely walking, public transit, car, and bike. These results are comparable in accuracy to results achieved by others using ensemble methods and require far less computation when classifying new trips. The lack of trip context data, e.g., bus routes, bike paths, etc., and the need for only a single set of weights make this an appropriate methodology for applications hoping to reach a broad demographic and have responsive feedback.Keywords: classification, gated recurrent unit, recurrent neural network, transportation
Procedia PDF Downloads 1371515 Impact of Organic Architecture in Building Design
Authors: Zainab Yahaya Suleiman
Abstract:
Physical fitness, as one of the most important keys to a healthy wellbeing, is the basis of dynamic and creative intellectual activity. As a result, the fitness world is expanding every day. It is believed that a fitness centre is a place of healing and also the natural environment is vital to speedy recovery. The aim of this paper is to propose and designs a suitable location for a fitness centre in Batagarawa metropolis. Batagarawa city is enriched with four tertiary institutions with diverse commerce and culture but lacks the facility of a well-equipped fitness centre. The proposed fitness centre intends to be an organically sound centre that will make use of principles of organic architecture to create a new pleasant environment between man and his environments. Organic architecture is the science of designing a building within pleasant natural resources and features surrounding the environment. It is regarded as visual poetry and reinterpretation of nature’s principles; as well as embodies a settlement of person, place, and materials. Using organic architecture, the design was interlaced with the dynamic, organic and monumental features surrounding the environment. The city has inadequate/no facility that is considered organic where one can keep fit in a friendly, conducive and adequate location. Thus, the need for establishing a fitness centre to cater for this need cannot be over-emphasised. Conclusively, a fitness centre will be an added advantage to this fast growing centre of learning.Keywords: organic architecture, fitness center, environment, natural resources, natural features, building design
Procedia PDF Downloads 4131514 TQM Framework Using Notable Authors Comparative
Authors: Redha M. Elhuni
Abstract:
This paper presents an analysis of the essential characteristics of the TQM philosophy by comparing the work of five notable authors in the field. A framework is produced which gather the identified TQM enablers under the well-known operations management dimensions of process, business and people. These enablers are linked with sustainable development via balance scorecard type economic and non-economic measures. In order to capture a picture of Libyan Company’s efforts to implement the TQM, a questionnaire survey is designed and implemented. Results of the survey are presented showing the main differentiating factors between the sample companies, and a way of assessing the difference between the theoretical underpinning and the practitioners’ undertakings. Survey results indicate that companies are experiencing much difficulty in translating TQM theory into practice. Only a few companies have successfully adopted a holistic approach to TQM philosophy, and most of these put relatively high emphasis on hard elements compared with soft issues of TQM. However, where companies can realize the economic outputs, non- economic benefits such as workflow management, skills development and team learning are not realized. In addition, overall, non-economic measures have secured low weightings compared with the economic measures. We believe that the framework presented in this paper can help a company to concentrate its TQM implementation efforts in terms of process, system and people management dimensions.Keywords: TQM, balance scorecard, EFQM excellence model, oil sector, Libya
Procedia PDF Downloads 4051513 Human Resources Recruitment Defining Peculiarities of Students as Job Seekers
Authors: O. Starineca
Abstract:
Some organizations as employers have difficulties to attract job seekers and retain their employees. Strategic planning of Human Resources (HR) presumes broad analysis of perspectives including analysis of potential job seekers in the field. Human Resources Recruitment (HRR) influences employer brand of an organization and peculiarities of both external organizational factors and stakeholders. Defining peculiarities of the future job seekers, who could potentially become the employees of the organization, could help to adjust HRR tools and methods adapt to the youngest generation employees’ preferences and be more successful in selecting the best candidates, who are likely to be loyal to the employer. The aim of the empirical study is definition of some students’ as job seekers peculiarities and their requirements to their potential employer. The survey in Latvia, Lithuania and Spain. Respondents were students from these countries’ tertiary education institutions Public Administration (PA) or relevant study programs. All three countries students’ peculiarities have just a slight difference. Overall, they all wish to work for a socially responsible employer that is able to provide positive working environment and possibilities for professional development and learning. However, respondents from each country have own peculiarities. The study might have a practical application. PA of the examined countries might use the results developing employer brand and creating job advertisements focusing on recent graduates’ recruitment.Keywords: generation Y, human resources recruitment, job seekers, public administration
Procedia PDF Downloads 2081512 Developing Critical-Process Skills Integrated Assessment Instrument as Alternative Assessment on Electrolyte Solution Matter in Senior High School
Authors: Sri Rejeki Dwi Astuti, Suyanta
Abstract:
The demanding of the asessment in learning process was impact by policy changes. Nowadays, the assessment not only emphasizes knowledge, but also skills and attitude. However, in reality there are many obstacles in measuring them. This paper aimed to describe how to develop instrument of integrated assessment as alternative assessment to measure critical thinking skills and science process skills in electrolyte solution and to describe instrument’s characteristic such as logic validity and construct validity. This instrument development used test development model by McIntire. Development process data was acquired based on development test step and was analyzed by qualitative analysis. Initial product was observed by three peer reviewer and six expert judgment (two subject matter expert, two evaluation expert and two chemistry teacher) to acquire logic validity test. Logic validity test was analyzed using Aiken’s formula. The estimation of construct validity was analyzed by exploratory factor analysis. Result showed that integrated assessment instrument has 0,90 of Aiken’s Value and all item in integrated assessment asserted valid according to construct validity.Keywords: construct validity, critical thinking skills, integrated assessment instrument, logic validity, science process skills
Procedia PDF Downloads 2631511 The Application of System Approach to Knowledge Management and Human Resource Management Evidence from Tehran Municipality
Authors: Vajhollah Ghorbanizadeh, Seyed Mohsen Asadi, Mirali Seyednaghavi, Davoud Hoseynpour
Abstract:
In the current era, all organizations need knowledge to be able to manage the diverse human resources. Creative, dynamic and knowledge-based Human resources are important competitive advantage and the scarcest resource in today's knowledge-based economy. In addition managers with skills of knowledge management must be aware of human resource management science. It is now generally accepted that successful implementation of knowledge management requires dynamic interaction between knowledge management and human resource management. This is emphasized at systematic approach to knowledge management as well. However human resource management can be complementary of knowledge management because human resources management with the aim of empowering human resources as the key resource organizations in the 21st century, the use of other resources, creating and growing and developing today. Thus, knowledge is the major capital of every organization which is introduced through the process of knowledge management. In this context, knowledge management is systematic approach to create, receive, organize, access, and use of knowledge and learning in the organization. This article aims to define and explain the concepts of knowledge management and human resource management and the importance of these processes and concepts. Literature related to knowledge management and human resource management as well as related topics were studied, then to design, illustrate and provide a theoretical model to explain the factors affecting the relationship between knowledge management and human resource management and knowledge management system approach, for schematic design and are drawn.Keywords: systemic approach, human resources, knowledge, human resources management, knowledge management
Procedia PDF Downloads 3761510 Using Presentation as a Means to Develop Communication Skills of Engineering Students
Authors: Urvashi Kaushal
Abstract:
With the entry of multinationals in India, engineering students of Indian universities have opportunity to work with the best and the most innovative industries in the world, but in order to compete in the global job market, they require an added competence of communication skills in English. With work places turning global, competence in English can provide the Indian student the added advantage to begin his/her career in the international market. The present method of teaching English in any engineering college across Gujarat mostly concentrates on developing writing, and reading skills. Developing speech becomes a secondary topic owing to the old trend of lecturing in the class room and the huge strength of the class. This paper aims to highlight the importance of improving speaking skills of engineering students. It also insists that presentations can be used as a viable method to enhance the communication skills of these students. Presentations force students to plan, prepare, practice and perfect their communication skills which will enable them to get a foothold in the industry. The paper also discusses one such experiment carried out at the author’s institute and the response it received. Further, such experimental language learning approach is bound to have some limitations and obstacles. The paper suggests ways to overcome such limitations and strives to develop an interesting means of developing communication skills of the engineering students.Keywords: engineering, English, presentation, communication skills
Procedia PDF Downloads 4411509 Robust Recognition of Locomotion Patterns via Data-Driven Machine Learning in the Cloud Environment
Authors: Shinoy Vengaramkode Bhaskaran, Kaushik Sathupadi, Sandesh Achar
Abstract:
Human locomotion recognition is important in a variety of sectors, such as robotics, security, healthcare, fitness tracking and cloud computing. With the increasing pervasiveness of peripheral devices, particularly Inertial Measurement Units (IMUs) sensors, researchers have attempted to exploit these advancements in order to precisely and efficiently identify and categorize human activities. This research paper introduces a state-of-the-art methodology for the recognition of human locomotion patterns in a cloud environment. The methodology is based on a publicly available benchmark dataset. The investigation implements a denoising and windowing strategy to deal with the unprocessed data. Next, feature extraction is adopted to abstract the main cues from the data. The SelectKBest strategy is used to abstract optimal features from the data. Furthermore, state-of-the-art ML classifiers are used to evaluate the performance of the system, including logistic regression, random forest, gradient boosting and SVM have been investigated to accomplish precise locomotion classification. Finally, a detailed comparative analysis of results is presented to reveal the performance of recognition models.Keywords: artificial intelligence, cloud computing, IoT, human locomotion, gradient boosting, random forest, neural networks, body-worn sensors
Procedia PDF Downloads 111508 Theology of Science and Technology as a Tool for Peace Education
Authors: Jonas Chikelue Ogbuefi
Abstract:
Science and Technology have a major impact on societal peace, it offers support to teaching and learning, cuts costs, and offers solutions to the current agitations and militancy in Nigeria today. Christianity, for instance, did not only change and form the western world in the past 2022 but still has a substantial role to play in society through liquid ecclesiology. This paper interrogated the impact of the theology of Science and Technology as a tool for peace sustainability through peace education in Nigeria. The method adopted is a historical and descriptive method of analysis. It was discovered that a larger number of Nigerian citizens lack almost all the basic things needed for the standard of living, such as Shelter, meaningful employment, and clothing, which is the root course of all agitations in Nigeria. Based on the above findings, the paper contends that the government alone cannot restore Peace in Nigeria. Hence the inability of the government to restore peace calls for all religious actors to be involved. The main thrust and recommendation of this paper are to challenge the religious actors to implement the Theology of Science and Technology as a tool for peace restoration and should network with both the government and the private sectors to make funds available to budding and existing entrepreneurs using Science and Technology as a tool for Peace and economic sustainability. This paper viewed the theology of Science and Technology as a tool for Peace and economic sustainability in Nigeria.Keywords: theology, science, technology, peace education
Procedia PDF Downloads 841507 Museums: The Roles of Lighting in Design
Authors: Fernanda S. Oliveira
Abstract:
The architectural science of lighting has been mainly concerned with technical aspects and has tended to ignore the psychophysical. There is a growing evidence that adopting passive design solutions may contribute to higher satisfaction. This is even more important in countries with higher solar radiation, which should take advantage of favourable daylighting conditions. However, in art museums, the same light that stimulates vision can also cause permanent damage to the exhibits. Not only the visitors want to see the objects, but also to understand their nature and the artist’s intentions. This paper examines the hypothesis that the more varied and exciting the lighting (and particularly the daylight) in museums rooms, over space and time, the more likely it is that visitors will stay longer, enjoy their experience and be willing to return. This question is not often considered in museums that privilege artificial lighting neglecting the various qualities of daylight other than its capacity to illuminate spaces. The findings of this paper show that daylight plays an important role in museum design, affecting how visitors perceive the exhibition space, as well as contributing to their overall enjoyment in the museum. Rooms with high luminance means were considered more pleasant (r=.311, p<.05) and cheerful (r=.349, p<.05). Lighting conditions also have a direct effect on the phenomenon of museum fatigue with the overall room quality showing an effect on how tired visitors reported to be (r=.421, p<.01). The control and distribution of daylight in museums can therefore contribute to create pleasant conditions for learning, entertainment and amusement, so that visitors are willing to return.Keywords: daylight, comfort, museums, luminance, visitor
Procedia PDF Downloads 4861506 African Folklore for Critical Self-Reflection, Reflective Dialogue, and Resultant Attitudinal and Behaviour Change: University Students’ Experiences
Authors: T. M. Buthelezi, E. O. Olagundoye, R. G. L. Cele
Abstract:
This article argues that whilst African folklore has mainly been used for entertainment, it also has an educational value that has power to change young people’s attitudes and behavior. The paper is informed by the findings from the data that was generated from 154 university students who were coming from diverse backgrounds. The qualitative data was thematically analysed. Referring to the six steps of the behaviour change model, we found that African Folklore provides relevant cultural knowledge and instills values that enable young people to engage on self-reflection that eventually leads them towards attitudinal changes and behaviour modification. Using the transformative learning theory, we argue that African Folklore in itself is a pedagogical strategy that integrates cultural knowledge, values with entertainment elements concisely enough to take the young people through a transformative phase which encompasses psychological, convictional and life-style adaptation. During data production stage all ethical considerations were observed including obtaining gatekeeper’s permission letter and ethical clearance certificate from the Ethics Committee of the University. The paper recommends that African Folklore approach should be incorporated into the school curriculum particularly in life skills education with aims to change behaviour.Keywords: African folklore, young people, attitudinal, behavior change, university students
Procedia PDF Downloads 2631505 An Investigation on Smartphone-Based Machine Vision System for Inspection
Authors: They Shao Peng
Abstract:
Machine vision system for inspection is an automated technology that is normally utilized to analyze items on the production line for quality control purposes, it also can be known as an automated visual inspection (AVI) system. By applying automated visual inspection, the existence of items, defects, contaminants, flaws, and other irregularities in manufactured products can be easily detected in a short time and accurately. However, AVI systems are still inflexible and expensive due to their uniqueness for a specific task and consuming a lot of set-up time and space. With the rapid development of mobile devices, smartphones can be an alternative device for the visual system to solve the existing problems of AVI. Since the smartphone-based AVI system is still at a nascent stage, this led to the motivation to investigate the smartphone-based AVI system. This study is aimed to provide a low-cost AVI system with high efficiency and flexibility. In this project, the object detection models, which are You Only Look Once (YOLO) model and Single Shot MultiBox Detector (SSD) model, are trained, evaluated, and integrated with the smartphone and webcam devices. The performance of the smartphone-based AVI is compared with the webcam-based AVI according to the precision and inference time in this study. Additionally, a mobile application is developed which allows users to implement real-time object detection and object detection from image storage.Keywords: automated visual inspection, deep learning, machine vision, mobile application
Procedia PDF Downloads 1231504 Whole Coding Genome Inter-Clade Comparison to Predict Global Cancer-Protecting Variants
Authors: Lamis Naddaf, Yuval Tabach
Abstract:
In this research, we identified the missense genetic variants that have the potential to enhance resistance against cancer. Such field has not been widely explored, as researchers tend to investigate mutations that cause diseases, in response to the suffering of patients, rather than those mutations that protect from them. In conjunction with the genomic revolution, and the advances in genetic engineering and synthetic biology, identifying the protective variants will increase the power of genotype-phenotype predictions and can have significant implications on improved risk estimation, diagnostics, prognosis and even for personalized therapy and drug discovery. To approach our goal, we systematically investigated the sites of the coding genomes and picked up the alleles that showed a correlation with the species’ cancer resistance. We predicted 250 protecting variants (PVs) with a 0.01 false discovery rate and more than 20 thousand PVs with a 0.25 false discovery rate. Cancer resistance in Mammals and reptiles was significantly predicted by the number of PVs a species has. Moreover, Genes enriched with the protecting variants are enriched in pathways relevant to tumor suppression like pathways of Hedgehog signaling and silencing, which its improper activation is associated with the most common form of cancer malignancy. We also showed that the PVs are more abundant in healthy people compared to cancer patients within different human races.Keywords: comparative genomics, machine learning, cancer resistance, cancer-protecting alleles
Procedia PDF Downloads 971503 The Optimum Mel-Frequency Cepstral Coefficients (MFCCs) Contribution to Iranian Traditional Music Genre Classification by Instrumental Features
Authors: M. Abbasi Layegh, S. Haghipour, K. Athari, R. Khosravi, M. Tafkikialamdari
Abstract:
An approach to find the optimum mel-frequency cepstral coefficients (MFCCs) for the Radif of Mirzâ Ábdollâh, which is the principal emblem and the heart of Persian music, performed by most famous Iranian masters on two Iranian stringed instruments ‘Tar’ and ‘Setar’ is proposed. While investigating the variance of MFCC for each record in themusic database of 1500 gushe of the repertoire belonging to 12 modal systems (dastgâh and âvâz), we have applied the Fuzzy C-Mean clustering algorithm on each of the 12 coefficient and different combinations of those coefficients. We have applied the same experiment while increasing the number of coefficients but the clustering accuracy remained the same. Therefore, we can conclude that the first 7 MFCCs (V-7MFCC) are enough for classification of The Radif of Mirzâ Ábdollâh. Classical machine learning algorithms such as MLP neural networks, K-Nearest Neighbors (KNN), Gaussian Mixture Model (GMM), Hidden Markov Model (HMM) and Support Vector Machine (SVM) have been employed. Finally, it can be realized that SVM shows a better performance in this study.Keywords: radif of Mirzâ Ábdollâh, Gushe, mel frequency cepstral coefficients, fuzzy c-mean clustering algorithm, k-nearest neighbors (KNN), gaussian mixture model (GMM), hidden markov model (HMM), support vector machine (SVM)
Procedia PDF Downloads 446